1
|
He Q, Shaw J, Firdaus Y, Hu X, Ding B, Marsh AV, Dumon AS, Han Y, Fei Z, Anthopoulos TD, McNeill CR, Heeney M. p-Type Conjugated Polymers Containing Electron-Deficient Pentacyclic Azepinedione. Macromolecules 2023; 56:5825-5834. [PMID: 37576475 PMCID: PMC10413964 DOI: 10.1021/acs.macromol.3c00843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Indexed: 08/15/2023]
Abstract
Bisthienoazepinedione (BTA) has been reported for constructing high-performing p-type conjugated polymers in organic electronics, but the ring extended version of BTA is not well explored. In this work, we report a new synthesis of a key building block to the ring expanded electron-deficient pentacyclic azepinedione (BTTA). Three copolymers of BTAA with benzodithiophene substituted by different side chains are prepared. These polymers exhibit similar energy levels and optical absorption in solution and solid state, while significant differences are revealed in their film morphologies and behavior in transistor and photovoltaic devices. The best-performing polymers in transistor devices contained alkylthienyl side chains on the BDT unit (pBDT-BTTA-2 and pBDT-BTTA-3) and demonstrated maximum saturation hole mobilities of 0.027 and 0.017 cm2 V-1 s-1. Blends of these polymers with PC71BM exhibited a best photovoltaic efficiency of 6.78% for pBDT-BTTA-3-based devices. Changing to a low band gap non-fullerene acceptor (BTP-eC9) resulted in improved efficiency of up to 13.5%. Our results are among the best device performances for BTA and BTTA-based p-type polymers and highlight the versatile applications of this electron-deficient BTTA unit.
Collapse
Affiliation(s)
- Qiao He
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Jessica Shaw
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Yuliar Firdaus
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Research
Center for Electronics, National Research
and Innovation Agency (BRIN), Komplek BRIN Jl. Sangkuriang Cisitu, Bandung 40135, Indonesia
| | - Xiantao Hu
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Bowen Ding
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Adam V. Marsh
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre S. Dumon
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Yang Han
- School
of Materials Science & Engineering, Tianjin Key Laboratory of
Molecular Optoelectronic Sciences, Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhuping Fei
- Institute
of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory
of Molecular Optoelectronic Science, Tianjin
University, Tianjin 300072, China
| | - Thomas D. Anthopoulos
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Christopher R. McNeill
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Martin Heeney
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
2
|
Bai Y, Zhou Z, Xue Q, Liu C, Li N, Tang H, Zhang J, Xia X, Zhang J, Lu X, Brabec CJ, Huang F. Dopant-Free Bithiophene-Imide-Based Polymeric Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110587. [PMID: 36189852 DOI: 10.1002/adma.202110587] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The development of hole-transport materials (HTMs) with high mobility, long-term stability, and comprehensive passivation is significant for simultaneously improving the efficiency and stability of perovskite solar cells (PVSCs). Herein, two donor-acceptor (D-A) conjugated polymers PBTI and PFBTI with alternating benzodithiophene (BDT) and bithiophene imide (BTI) units are successfully developed with desirable hole mobilities due to the good planarity and extended conjugation of molecular backbone. Both copolymers can be employed as HTMs with suitable energy levels and efficient defect passivation. Shortening the alkyl chain of the BTI unit and introducing fluorine atoms on the BDT moiety effectively enhances hole mobility and hydrophobicity of the HTMs, leading to improved efficiency and stability of PVSCs. As a result, the organic-inorganic hybrid PVSCs with PFBTI as the HTM deliver a power conversion efficiency (PCE) of 23.1% with enhanced long-term operational and ambient stability, which is one of the best efficiencies reported for PVSCs with dopant-free polymeric HTMs to date. Moreover, PFBTI can be applied in inorganic PVSCs and perovskite/organic tandem solar cells, achieving a high PCE of 17.4% and 22.2%, respectively. These results illustrate the great potential of PFBTI as an efficient and widely applicable HTM for cost-effective and stable PVSCs.
Collapse
Affiliation(s)
- Yuanqing Bai
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhisheng Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qifan Xue
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, 510640, P. R. China
| | - Chunchen Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haoran Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiabin Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Jie Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
3
|
Li L, Meng F, Zhang M, Zhang Z, Zhao D. Revisiting the Dithienophthalimide Building Block: Improved Synthetic Method Yielding New High‐Performance Polymer Donors for Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202206311. [DOI: 10.1002/anie.202206311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lianghui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Zhi‐Guo Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
4
|
Li L, Meng F, Zhang M, Zhang ZG, Zhao D. Revisiting the Dithenophthalimide Building Block: Improved Synthetic Method Yielding New High‐Performance Polymer Donors of Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lianghui Li
- Nankai University College of Chemistry Chemistry CHINA
| | - Fei Meng
- Nankai University College of Chemistry Chemistry CHINA
| | - Ming Zhang
- Beijing University of Chemical Technology Chemistry and Chemical Engineering CHINA
| | - Zhi-Guo Zhang
- Beijing University of Chemical Technology Chemistry and Chemical Engineering CHINA
| | - Dongbing Zhao
- Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
5
|
Feng K, Guo H, Wang J, Shi Y, Wu Z, Su M, Zhang X, Son JH, Woo HY, Guo X. Cyano-Functionalized Bithiophene Imide-Based n-Type Polymer Semiconductors: Synthesis, Structure-Property Correlations, and Thermoelectric Performance. J Am Chem Soc 2021; 143:1539-1552. [PMID: 33445867 DOI: 10.1021/jacs.0c11608] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
n-Type polymers with deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels are essential for enabling n-type organic thin-film transistors (OTFTs) with high stability and n-type organic thermoelectrics (OTEs) with high doping efficiency and promising thermoelectric performance. Bithiophene imide (BTI) and its derivatives have been demonstrated as promising acceptor units for constructing high-performance n-type polymers. However, the electron-rich thiophene moiety in BTI leads to elevated LUMOs for the resultant polymers and hence limits their n-type performance and intrinsic stability. Herein, we addressed this issue by introducing strong electron-withdrawing cyano functionality on BTI and its derivatives. We have successfully overcome the synthetic challenges and developed a series of novel acceptor building blocks, CNI, CNTI, and CNDTI, which show substantially higher electron deficiencies than does BTI. On the basis of these novel building blocks, acceptor-acceptor type homopolymers and copolymers were successfully synthesized and featured greatly suppressed LUMOs (-3.64 to -4.11 eV) versus that (-3.48 eV) of the control polymer PBTI. Their deep-positioned LUMOs resulted in improved stability in OTFTs and more efficient n-doping in OTEs for the corresponding polymers with a highest electrical conductivity of 23.3 S cm-1 and a power factor of ∼10 μW m-1 K-2. The conductivity and power factor are among the highest values reported for solution-processed molecularly n-doped polymers. The new CNI, CNTI, and CNDTI offer a remarkable platform for constructing n-type polymers, and this study demonstrates that cyano-functionalization of BTI is a very effective strategy for developing polymers with deep-lying LUMOs for high-performance n-type organic electronic devices.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Mengyao Su
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jae Hoon Son
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Kini GP, Jeon SJ, Moon DK. Design Principles and Synergistic Effects of Chlorination on a Conjugated Backbone for Efficient Organic Photovoltaics: A Critical Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906175. [PMID: 32020712 DOI: 10.1002/adma.201906175] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Indexed: 05/20/2023]
Abstract
The pursuit of low-cost, flexible, and lightweight renewable power resources has led to outstanding advancements in organic solar cells (OSCs). Among the successful design principles developed for synthesizing efficient conjugated electron donor (ED) or acceptor (EA) units for OSCs, chlorination has recently emerged as a reliable approach, despite being neglected over the years. In fact, several recent studies have indicated that chlorination is more potent for large-scale production than the highly studied fluorination in several aspects, such as easy and low-cost synthesis of materials, lowering energy levels, easy tuning of molecular orientation, and morphology, thus realizing impressive power conversion efficiencies in OSCs up to 17%. Herein, an up-to-date summary of the current progress in photovoltaic results realized by incorporating a chlorinated ED or EA into OSCs is presented to recognize the benefits and drawbacks of this interesting substituent in photoactive materials. Furthermore, other aspects of chlorinated materials for application in all-small-molecule, semitransparent, tandem, ternary, single-component, and indoor OSCs are also presented. Consequently, a concise outlook is provided for future design and development of chlorinated ED or EA units, which will facilitate utilization of this approach to achieve the goal of low-cost and large-area OSCs.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
7
|
Yang K, Zhang X, Harbuzaru A, Wang L, Wang Y, Koh C, Guo H, Shi Y, Chen J, Sun H, Feng K, Ruiz Delgado MC, Woo HY, Ortiz RP, Guo X. Stable Organic Diradicals Based on Fused Quinoidal Oligothiophene Imides with High Electrical Conductivity. J Am Chem Soc 2020; 142:4329-4340. [DOI: 10.1021/jacs.9b12683] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Alexandra Harbuzaru
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Lei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Changwoo Koh
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jianhua Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - M. Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh CW, Zhang X, Sun H, Chen G, Feng X, Woo HY, Djurišić AB, He Z, Guo X. Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902781. [PMID: 31292989 DOI: 10.1002/adma.201902781] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/12/2019] [Indexed: 05/21/2023]
Abstract
Hole-transporting materials (HTMs) play a critical role in realizing efficient and stable perovskite solar cells (PVSCs). Considering their capability of enabling PVSCs with good device reproducibility and long-term stability, high-performance dopant-free small-molecule HTMs (SM-HTMs) are greatly desired. However, such dopant-free SM-HTMs are highly elusive, limiting the current record efficiencies of inverted PVSCs to around 19%. Here, two novel donor-acceptor-type SM-HTMs (MPA-BTI and MPA-BTTI) are devised, which synergistically integrate several design principles for high-performance HTMs, and exhibit comparable optoelectronic properties but distinct molecular configuration and film properties. Consequently, the dopant-free MPA-BTTI-based inverted PVSCs achieve a remarkable efficiency of 21.17% with negligible hysteresis and superior thermal stability and long-term stability under illumination, which breaks the long-time standing bottleneck in the development of dopant-free SM-HTMs for highly efficient inverted PVSCs. Such a breakthrough is attributed to the well-aligned energy levels, appropriate hole mobility, and most importantly, the excellent film morphology of the MPA-BTTI. The results underscore the effectiveness of the design tactics, providing a new avenue for developing high-performance dopant-free SM-HTMs in PVSCs.
Collapse
Affiliation(s)
- Yang Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
- Key Laboratory of Functional Polymer Materials and State Key Laboratory of Medicinal Chemical Biology, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Lei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Bao Tu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Tian Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Guocong Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Xiyuan Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | | | - Zhubing He
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
9
|
Wang J, Yin P, Wu Y, Liu G, Cui C, Shen P. Synthesis and optoelectronic property manipulation of conjugated polymer photovoltaic materials based on benzo[d]-dithieno[3,2-b;2′,3′-f]azepine. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Zhang H, Li T, Xiao Z, Lei Z, Ding L. Improving Photovoltaic Performance of a Fused-Ring Azepinedione Copolymer via a D-A-A Design. Macromol Rapid Commun 2018; 39:e1700882. [PMID: 29436046 DOI: 10.1002/marc.201700882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/17/2018] [Indexed: 11/09/2022]
Abstract
Two conjugated copolymer donors, PTTABDT and PBTTABDT, based on a fused-ring azepinedione acceptor unit, 5-(2-octyldodecyl)-4H-thieno[2',3':4,5]thieno[3,2-c]thieno[2',3':4,5]thieno[2,3-e]azepine-4,6(5H)-dione (TTA), are prepared. PTTABDT possesses a conventional donor-acceptor (D-A) structure with one TTA in the repeat unit, while PBTTABDT has a D-A-A structure with two TTAs in the repeat unit. Compared with PTTABDT, PBTTABDT shows a deeper highest occupied molecular orbital (HOMO) level, a narrower bandgap, and a higher hole mobility, and exhibits better performance in bulk heterojunction solar cells. Power conversion efficiencies of 6.18% and 7.81% are achieved from PTTABDT:PC71 BM and PBTTABDT:PC71 BM solar cells, respectively. The higher performance of PBTTABDT:PC71 BM solar cells results from the enhanced open-circuit voltage (V oc ) and short-circuit current density ( J sc ).
Collapse
Affiliation(s)
- Honghong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.,Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ting Li
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
11
|
Xie F, He D, Pan H, Jiang J, Ding L. Effect of Isomeric Structures on Photovoltaic Performance of D-A Copolymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/10/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Fangyuan Xie
- Key Laboratory for Macromolecular Science of Shaanxi Province; Shaanxi Key Laboratory for Advanced Energy Devices; School of Materials Science and Engineering; Shaanxi Normal University; Xi'an 710062 China
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Dan He
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Han Pan
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Jiaxing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province; Shaanxi Key Laboratory for Advanced Energy Devices; School of Materials Science and Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Liming Ding
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; National Center for Nanoscience and Technology; Beijing 100190 China
| |
Collapse
|
12
|
He D, Geng X, Ding L. The effect of fluorination on the photovoltaic performance of the D–A copolymers containing naphtho[2,3-c]thiophene-4,9-dione and bithiophene moieties. Polym Chem 2016. [DOI: 10.1039/c6py00883f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine improves the planarity of the polymer backbone via its lock-up function. Polymer PFNTDFBT shows a high mobility and its solar cells gave a PCE of 7.79%.
Collapse
Affiliation(s)
- Dan He
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xinjian Geng
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Liming Ding
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|