1
|
Wu J, Hua Z, Liu G. Supramolecular adhesives inspired from adhesive proteins and nucleic acids: molecular design, properties, and applications. SOFT MATTER 2024. [PMID: 39688920 DOI: 10.1039/d4sm01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Bioinspired supramolecular adhesives have been recently emerging as novel functional materials, which have shown a wide range of applications in wearable sensors and tissue engineering such as tissue adhesives and wound dressings. In this review, we summarize and discuss two main types of biologically inspired supramolecular adhesives from adhesive proteins and nucleic acids. The widely studied catechol-based adhesives, that originated from adhesive proteins of marine organisms such as mussels, and recently emerging nucleobase-containing supramolecular adhesives are both introduced and discussed. Both bioinspired adhesives from nucleic acids and adhesive proteins involve multiple supramolecular interactions such as hydrogen bonding, hydrophobic interactions, π-π stacking, and so on. Several major types of these bioinspired adhesives are summarized, respectively, including polymer-based, hydrogel-based, and other types of adhesives. The novel molecular design and adhesion properties are focused on and highlighted for each type of bioinspired adhesive. In addition, the potential applications of these bioinspired supramolecular adhesives in different realms including tissue engineering and biomedical devices are discussed. This review concludes with issues and challenges in the area of the bioinspired adhesives, hopefully promoting further developments and broader applications of novel supramolecular adhesives.
Collapse
Affiliation(s)
- Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
2
|
Yao N, Wu J, Liu G, Hua Z. Bioinspired and biomimetic nucleobase-containing polymers: the effect of selective multiple hydrogen bonds. Chem Sci 2024; 15:18698-18714. [PMID: 39568625 PMCID: PMC11575573 DOI: 10.1039/d4sc06720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Bioinspired and biomimetic nucleobase-containing polymers are a series of polydisperse nucleic acid analogs, mainly obtaining through highly efficient and scalable step-growth or chain polymerizations. The combination of pendant nucleobase groups and various backbones endows the polymers/materials with selective multiple H-bonds under distinct conditions, demonstrating the broad applicability of this new family of polymeric materials. In this perspective, we critically summarize recent advances of bioinspired and biomimetic nucleobase-containing polymers and materials in both solution and the bulk. Then, we discuss the effect of multiple H-bonds between complementary nucleobases on the structures and properties of the nucleobase-containing polymers and materials. Selective multiple H-bonds between complementary nucleobases are feasible to modulate the polymer sequence and self-assembly behaviour, achieve templated polymerization, tune nanostructure morphologies and functions, and selectively bind with nucleic acids in various solutions. Meanwhile, bioinspired and biomimetic nucleobase-containing polymers are capable of forming robust polymeric materials such as hydrogels, bioplastics, elastomers, adhesives, and coatings by optimizing the inter- and intramolecular multiple H-bonding interactions. Further, the conclusions and outlook for future development and challenges of bioinspired and biomimetic nucleobase-containing polymers are also presented. This perspective presents useful guidelines for fabricating novel bioinspired and biomimetic polymers and materials through rational design of multiple H-bonds nucleobase interactions.
Collapse
Affiliation(s)
- Nan Yao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei 230026 P. R. China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei 230026 P. R. China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
3
|
Zhang K, Wu Y, Chen S, Zhu J. Programmable Reconfiguration of Supramolecular Bottlebrush Block Copolymers: From Solution Self-Assembly to Co-Crystallization-Assistant Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202408730. [PMID: 39106102 DOI: 10.1002/anie.202408730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Achieving structural reconfiguration of supramolecular bottlebrush block copolymers toward topological engineering is of particular interest but challenging. Here, we address the creation of supramolecular architectures to discover how assembled topology influences the structured aggregates, combining hydrogen-bonded (H-bonded) bottlebrush block copolymers and electrostatic interaction induced polymer/inorganic eutectics. We first design H-bonding linear-brush block copolymer P(NBDAP-co-NBC)-b-P(NBPEO), bearing linear block P(NBDAP-co-NBC) (poly(norbornene-terminated diaminopyridine-co-norbornene-terminated hexane)) with pendant H-bonding DAP (diaminopyridine) motifs, and PEO (poly(ethylene oxide)) densely grafted P(NBPEO) brush block. Thanks to H-bonding association between DAP and thymine (Thy), incorporation of Thy-functionalized polystyrene (Thy-PS65) enables solution self-assembly and formation of H-bonded bottlebrush block copolymers, generating augmented nanospheres with increasing Thy-PS65 amount. Noteworthy that integration of inorganic cluster silicotungstic acid (STA) to P(NBC-co-NBDAP)-b-P(NBPEO), endows the formation of PEO/STA eutectic core. Therefore, co-crystallization-assistant self-assembly at the interfaces of polymeric, inorganic and supramolecular chemistry is realized, reflecting multi-stage morphology transformation from hexagonal platelets, needle-like, curved rod-like micelles, finally to end-to-end closed rings, by gradually increasing Thy-PS65 while fixing STA content. Interestingly, such solution self-assembly to co-crystallization-assistant self-assembly strategy not only endows unique nanostructure transition, also induce in-to-out reconfiguration of PS domains. These findings clearly provide unique methodology towards programmable fabrication of geometrical objects promising in smart materials.
Collapse
Affiliation(s)
- Kaixing Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| |
Collapse
|
4
|
Haque F, Thompson SW, Ishizuka F, Kuchel RP, Singh D, Sanjayan GJ, Zetterlund PB. Block Copolymer Self-assembly: Exploitation of Hydrogen Bonding for Nanoparticle Morphology Control via Incorporation of Triazine Based Comonomers by RAFT Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401129. [PMID: 38837298 DOI: 10.1002/smll.202401129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Synthesis of polymeric nanoparticles of controlled non-spherical morphology is of profound interest for a wide variety of potential applications. Self-assembly of amphiphilic diblock copolymers is an attractive bottom-up approach to prepare such nanoparticles. In the present work, RAFT polymerization is employed to synthesize a variety of poly(N,N-dimethylacrylamide)-b-poly[butyl acrylate-stat-GCB] copolymers, where GCB represents vinyl monomer containing triazine based Janus guanine-cytosine nucleobase motifs featuring multiple hydrogen bonding arrays. Hydrogen bonding between the hydrophobic blocks exert significant influence on the morphology of the resulting nanoparticles self-assembled in water. The Janus feature of the GCB moieties makes it possible to use a single polymer type in self-assembly, unlike previous work exploiting, e.g., thymine-containing polymer and adenine-containing polymer. Moreover, the strength of the hydrogen bonding interactions enables use of a low molar fraction of GCB units, thereby rendering it possible to use the present approach for copolymers based on common vinyl monomers for the development of advanced nanomaterials.
Collapse
Affiliation(s)
- Farah Haque
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dharmendra Singh
- Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Dore MD, Rafique MG, Yang TP, Zorman M, Platnich CM, Xu P, Trinh T, Rizzuto FJ, Cosa G, Li J, Guarné A, Sleiman HF. Heat-activated growth of metastable and length-defined DNA fibers expands traditional polymer assembly. Nat Commun 2024; 15:4384. [PMID: 38782917 PMCID: PMC11116425 DOI: 10.1038/s41467-024-48722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Biopolymers such as nucleic acids and proteins exhibit dynamic backbone folding, wherein site-specific intramolecular interactions determine overall structure. Proteins then hierarchically assemble into supramolecular polymers such as microtubules, that are robust yet dynamic, constantly growing or shortening to adjust to cellular needs. The combination of dynamic, energy-driven folding and growth with structural stiffness and length control is difficult to achieve in synthetic polymer self-assembly. Here we show that highly charged, monodisperse DNA-oligomers assemble via seeded growth into length-controlled supramolecular fibers during heating; when the temperature is lowered, these metastable fibers slowly disassemble. Furthermore, the specific molecular structures of oligomers that promote fiber formation contradict the typical theory of block copolymer self-assembly. Efficient curling and packing of the oligomers - or 'curlamers' - determine morphology, rather than hydrophobic to hydrophilic ratio. Addition of a small molecule stabilises the DNA fibers, enabling temporal control of polymer lifetime and underscoring their potential use in nucleic-acid delivery, stimuli-responsive biomaterials, and soft robotics.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | | | - Tianxiao Peter Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Marlo Zorman
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Pengfei Xu
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Tuan Trinh
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Felix J Rizzuto
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA
| | - Alba Guarné
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada.
| |
Collapse
|
6
|
Thomas M, Varlas S, Wilks TR, Fielden SDP, O'Reilly RK. Controlled node growth on the surface of polymersomes. Chem Sci 2024; 15:4396-4402. [PMID: 38516085 PMCID: PMC10952076 DOI: 10.1039/d3sc05915d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Incorporating nucleobases into synthetic polymers has proven to be a versatile method for controlling self-assembly. The formation of strong directional hydrogen bonds between complementary nucleobases provides a driving force that permits access to complex particle morphologies. Here, nucleobase pairing was used to direct the formation and lengthening of nodes on the outer surface of vesicles formed from polymers (polymersomes) functionalised with adenine in their membrane-forming domains. Insertion of a self-assembling short diblock copolymer containing thymine into the polymersome membranes caused an increase in steric crowding at the hydrophilic/hydrophobic interface, which was relieved by initial node formation and subsequent growth. Nano-objects were imaged by (cryo-)TEM, which permitted quantification of node coverage and length. The ability to control node growth on the surface of polymersomes provides a new platform to develop higher-order nanomaterials with tailorable properties.
Collapse
Affiliation(s)
- Marjolaine Thomas
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Stephen D P Fielden
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
7
|
Ilhami FB, Birhan YS, Cheng CC. Hydrogen-Bonding Interactions from Nucleobase-Decorated Supramolecular Polymer: Synthesis, Self-Assembly and Biomedical Applications. ACS Biomater Sci Eng 2024; 10:234-254. [PMID: 38103183 DOI: 10.1021/acsbiomaterials.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The fabrication of supramolecular materials for biomedical applications such as drug delivery, bioimaging, wound-dressing, adhesion materials, photodynamic/photothermal therapy, infection control (as antibacterial), etc. has grown tremendously, due to their unique properties, especially the formation of hydrogen bonding. Nevertheless, void space in the integration process, lack of feasibility in the construction of supramolecular materials of natural origin in living biological systems, potential toxicity, the need for complex synthesis protocols, and costly production process limits the actual application of nanomaterials for advanced biomedical applications. On the other hand, hydrogen bonding from nucleobases is one of the strategies that shed light on the blurred deployment of nanomaterials in medical applications, given the increasing reports of supramolecular polymers that promote advanced technologies. Herein, we review the extensive body of literature about supramolecular functional biomaterials based on nucleobase hydrogen bonding pertinent to different biomedical applications. It focuses on the fundamental understanding about the synthesis, nucleobase-decorated supramolecular architecture, and novel properties with special emphasis on the recent developments in the assembly of nanostructures via hydrogen-bonding interactions of nucleobase. Moreover, the challenges, plausible solutions, and prospects of the so-called hydrogen bonding interaction from nucleobase for the fabrication of functional biomaterials are outlined.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos 00000, Ethiopia
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
8
|
Wagh MA, Shinde DR, Gamidi RK, Sanjayan GJ. 2-Amino-5-methylene-pyrimidine-4,6-dione-based Janus G-C nucleobase as a versatile building block for self-assembly. Org Biomol Chem 2023; 21:6914-6918. [PMID: 37593940 DOI: 10.1039/d3ob01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This communication reports a nature-inspired Janus G-C nucleobase featuring two recognition sites: DDA (G mimic) and DAA (C mimic), which is capable of forming a linear tape-like supramolecular polymer structure. As demonstrated herein, the amino group of this self-assembling system can be further modified to yield a highly stable quadruple H-bonding system as well as a masked self-assembling system cleavable upon exposure to light.
Collapse
Affiliation(s)
- Mahendra A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Dinesh R Shinde
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
9
|
Faisal KS, Clulow AJ, MacWilliams SV, Gillam TA, Austin A, Krasowska M, Blencowe A. Microstructure-Thermal Property Relationships of Poly (Ethylene Glycol- b-Caprolactone) Copolymers and Their Micelles. Polymers (Basel) 2022; 14:polym14204365. [PMID: 36297943 PMCID: PMC9607102 DOI: 10.3390/polym14204365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 03/10/2023] Open
Abstract
The crystallinity of polymers strongly affects their properties. For block copolymers, whereby two crystallisable blocks are covalently tethered to one another, the molecular weight of the individual blocks and their relative weight fraction are important structural parameters that control their crystallisation. In the case of block copolymer micelles, these parameters can influence the crystallinity of the core, which has implications for drug encapsulation and release. Therefore, in this study, we aimed to determine how the microstructure of poly(ethylene glycol-b-caprolactone) (PEG-b-PCL) copolymers contributes to the crystallinity of their hydrophobic PCL micelle cores. Using a library of PEG-b-PCL copolymers with PEG number-average molecular weight (Mn) values of 2, 5, and 10 kDa and weight fractions of PCL (fPCL) ranging from 0.11 to 0.67, the thermal behaviour and morphology were studied in blends, bulk, and micelles using differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD), and Synchrotron wide-angle X-ray scattering (WAXS). Compared to PEG and PCL homopolymers, the block copolymers displayed reduced crystallinity in the bulk phase and the individual blocks had a large influence on the crystallisation of one another. The fPCL was determined to be the dominant contributor to the extent and order of crystallisation of the two blocks. When fPCL < 0.35, the initial crystallisation of PEG led to an amorphous PCL phase. At fPCL values between 0.35 and 0.65, PEG crystallisation was followed by PCL crystallisation, whereas this behaviour was reversed when fPCL > 0.65. For lyophilised PEG-b-PCL micelles, the crystallinity of the core increased with increasing fPCL, although the core was predominately amorphous for micelles with fPCL < 0.35. These findings contribute to understanding the relationships between copolymer microstructure and micelle core crystallinity that are important for the design and performance of micellar drug delivery systems, and the broader application of polymer micelles.
Collapse
Affiliation(s)
- Khandokar Sadique Faisal
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew J. Clulow
- BioSAXS Beamline, Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC 3168, Australia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Stephanie V. MacWilliams
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Todd A. Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ashlyn Austin
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Marta Krasowska
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence:
| |
Collapse
|
10
|
Yan Y, Fang X, Yao N, Gu H, Yang G, Hua Z. Bioinspired Hydrogen Bonds of Nucleobases Enable Programmable Morphological Transformations of Mixed Nanostructures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yangyang Yan
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinzi Fang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Nan Yao
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haojie Gu
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
11
|
Sikder A, Esen C, O'Reilly RK. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly. Acc Chem Res 2022; 55:1609-1619. [PMID: 35671460 PMCID: PMC9219111 DOI: 10.1021/acs.accounts.2c00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusThe design and fabrication of synthetic self-assembled systems that can mimic some biological features require exquisitely sophisticated components that make use of supramolecular interactions to attain enhanced structural and functional complexity. In nature, nucleobase interactions play a key role in biological functions in living organisms, including transcription and translation processes. Inspired by nature, scientists are progressively exploring nucleobase synthons to create a diverse range of functional systems with a plethora of nanostructures by virtue of molecular-recognition-directed assembly and flexible programmability of the base-pairing interactions. To that end, nucleobase-functionalized molecules and macromolecules are attracting great attention because of their versatile structures with smart and adaptive material properties such as stimuli responsiveness, interaction with external agents, and ability to repair structural defects. In this regard, a range of nucleobase-interaction-mediated hierarchical self-assembled systems have been developed to obtain biomimetic materials with unique properties. For example, a new "grafting to" strategy utilizing complementary nucleobase interactions has been demonstrated to temporarily control the functional group display on micellar surfaces. In a different approach, complementary nucleobase interactions have been explored to enable morphological transitions in functionalized diblock copolymer assembly. It has been demonstrated that complementary nucleobase interactions can drive the morphological transformation to produce highly anisotropic nanoparticles by controlling the assembly processes at multiple length scales. Furthermore, nucleobase-functionalized bottle brush polymers have been employed to generate stimuli-responsive hierarchical assembly. Finally, such interactions have been exploited to induce biomimetic segregation in polymer self-assembly, which has been employed as a template to synthesize polymers with narrow polydispersity. It is evident from these examples that the optimal design of molecular building blocks and precise positioning of the nucleobase functionality are essential for fabrication of complex supramolecular assemblies. While a considerable amount of research remains to be explored, our studies have demonstrated the potential of nucleobase-interaction-mediated supramolecular assembly to be a promising field of research enabling the development of biomimetic materials.This Account summarizes recent examples that employ nucleobase interactions to generate functional biomaterials by judicious design of the building blocks. We begin by discussing the molecular recognition properties of different nucleobases, followed by different strategies to employ nucleobase interactions in polymeric systems in order to achieve self-assembled nanomaterials with versatile properties. Moreover, some of their prospective biological/material applications such as enhanced drug encapsulation, superior adhesion, and fast self-healing properties facilitated by complementary nucleobase interactions are emphasized. Finally, we identify issues and challenges that are faced by this class of materials and propose future directions for the exploration of functional materials with the aim of promoting the development of nucleobase-functionalized systems to design the next generation of biomaterials.
Collapse
Affiliation(s)
- Amrita Sikder
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Cem Esen
- Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
12
|
Wu J, Lei H, Fang X, Wang B, Yang G, O’Reilly RK, Wang Z, Hua Z, Liu G. Instant Strong and Responsive Underwater Adhesion Manifested by Bioinspired Supramolecular Polymeric Adhesives. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiang Wu
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Handan Lei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinzi Fang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bao Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Zhongkai Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Lim C, Ramsey JD, Hwang D, Teixeira SCM, Poon CD, Strauss JD, Rosen EP, Sokolsky-Papkov M, Kabanov AV. Drug-Dependent Morphological Transitions in Spherical and Worm-Like Polymeric Micelles Define Stability and Pharmacological Performance of Micellar Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103552. [PMID: 34841670 DOI: 10.1002/smll.202103552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Significant advances in physicochemical properties of polymeric micelles enable optimization of therapeutic drug efficacy, supporting nanomedicine manufacturing and clinical translation. Yet, the effect of micelle morphology on pharmacological efficacy is not adequately addressed. This work addresses this gap by assessing pharmacological efficacy of polymeric micelles with spherical and worm-like morphologies. It is observed that poly(2-oxazoline)-based polymeric micelles can be elongated over time from a spherical structure to worm-like structure, with elongation influenced by several conditions, including the amount and type of drug loaded into the micelles. The role of different morphologies on pharmacological performance of drug loaded micelles against triple-negative breast cancer and pancreatic cancer tumor models is further evaluated. Spherical micelles accumulate rapidly in the tumor tissue while retaining large amounts of drug; worm-like micelles accumulate more slowly and only upon releasing significant amounts of drug. These findings suggest that the dynamic character of the drug-micelle structure and the micelle morphology play a critical role in pharmacological performance, and that spherical micelles are better suited for systemic delivery of anticancer drugs to tumors when drugs are loosely associated with the polymeric micelles.
Collapse
Affiliation(s)
- Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Chi-Duen Poon
- Research Computer Center University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua D Strauss
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elias P Rosen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
14
|
Arsenie LV, Semsarilar M, Brendel JC, Lacroix-Desmazes P, Ladmiral V, Catrouillet S. Supramolecular co-assembly of water-soluble nucleobase-containing copolymers: bioinspired synthetic platforms towards new biomimetic materials. Polym Chem 2022. [DOI: 10.1039/d2py00872f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents the development of new co-assembled copolymers architectures at physiological pH (pH=7.4) formed via H-bonds between complementary nucleobase-containing copolymers. Well-defined hydrophilic copolymers were synthesised by RAFT polymerisation: statistical...
Collapse
|
15
|
Lim C, Ramsey JD, Hwang D, Teixeira SCM, Poon CD, Strauss JD, Rosen EP, Sokolsky-Papkov M, Kabanov AV. Drug-Dependent Morphological Transitions in Spherical and Worm-Like Polymeric Micelles Define Stability and Pharmacological Performance of Micellar Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103552. [PMID: 34841670 DOI: 10.1101/2021.06.10.447962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/12/2021] [Indexed: 05/20/2023]
Abstract
Significant advances in physicochemical properties of polymeric micelles enable optimization of therapeutic drug efficacy, supporting nanomedicine manufacturing and clinical translation. Yet, the effect of micelle morphology on pharmacological efficacy is not adequately addressed. This work addresses this gap by assessing pharmacological efficacy of polymeric micelles with spherical and worm-like morphologies. It is observed that poly(2-oxazoline)-based polymeric micelles can be elongated over time from a spherical structure to worm-like structure, with elongation influenced by several conditions, including the amount and type of drug loaded into the micelles. The role of different morphologies on pharmacological performance of drug loaded micelles against triple-negative breast cancer and pancreatic cancer tumor models is further evaluated. Spherical micelles accumulate rapidly in the tumor tissue while retaining large amounts of drug; worm-like micelles accumulate more slowly and only upon releasing significant amounts of drug. These findings suggest that the dynamic character of the drug-micelle structure and the micelle morphology play a critical role in pharmacological performance, and that spherical micelles are better suited for systemic delivery of anticancer drugs to tumors when drugs are loosely associated with the polymeric micelles.
Collapse
Affiliation(s)
- Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Chi-Duen Poon
- Research Computer Center University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua D Strauss
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elias P Rosen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
16
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|
17
|
Arsenie LV, Ladmiral V, Lacroix-Desmazes P, Catrouillet S. Nucleobase-containing polymer architectures controlled by supramolecular interactions: the key to achieve biomimetic platforms with various morphologies. Polym Chem 2022. [DOI: 10.1039/d2py00920j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Challenges and opportunities in supramolecular self-assembly of synthetic nucleobase-containing copolymers.
Collapse
|
18
|
Sikder A, Xie Y, Thomas M, Derry MJ, O'Reilly RK. Precise control over supramolecular nanostructures via manipulation of H-bonding in π-amphiphiles. NANOSCALE 2021; 13:20111-20118. [PMID: 34846491 DOI: 10.1039/d1nr04882a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled supramolecular architectures are ubiquitous in nature. A synchronized combination of dynamic noncovalent interactions is the major driving force in forming unique structures with high-precision control over the self-assembly of supramolecular materials. Herein, we have achieved programmable nanostructures by introducing single/multiple H-bonding units in a supramolecular building block. A diverse range of nanostructures can be generated in aqueous medium by subtly tuning the structure of π-amphiphiles. 1D-cylindrical micelles, 2D-nanoribbons and hollow nanotubes are produced by systematically varying the number of H-bonding units (0-2) in structurally near identical π-amphiphiles. Spectroscopic measurements revealed the decisive role of H-bonding units for different modes of molecular packing. We have demonstrated that a competitive self-assembled state (a kinetically controlled aggregation state and a thermodynamically controlled aggregation state) can be generated by fine tuning the number of noncovalent forces present in the supramolecular building blocks. The luminescence properties of conjugated dithiomaleimide (DTM) provided insight into the relative hydrophobicity of the core in these nanostructures. In addition, fluorescence turn-off in the presence of thiophenol enabled us to probe the accessibility of the hydrophobic core in these assembled systems toward guest molecules. Therefore the DTM group provides an efficient tool to determine the relative hydrophobicity and accessibility of the core of various nanostructures which is very rarely studied in supramolecular assemblies.
Collapse
Affiliation(s)
- Amrita Sikder
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Marjolaine Thomas
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| |
Collapse
|
19
|
Lu H, Cai J, Zhang K. Synthetic Approaches for Copolymers Containing Nucleic Acids and Analogues: Challenges and Opportunities. Polym Chem 2021; 12:2193-2204. [PMID: 34394751 PMCID: PMC8356553 DOI: 10.1039/d0py01707h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A deep integration of nucleic acids with other classes of materials have become the basis of many useful technologies. Among these biohybrids, nucleic acid-containing copolymers has seen rapid development in both chemistry and application. This review focuses on the various synthetic approaches to access nucleic acid-polymer biohybrids spanning post-polymerization conjugation, nucleic acids in polymerization, solid-phase synthesis, and nucleoside/nucleobase-functionalized polymers. We highlight the challenges associated with working with nucleic acids with each approach and the ingenuity of the solutions, with the hope of lowering the entry barrier and inpsiring further investigations in this exciting area.
Collapse
Affiliation(s)
- Hao Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jiansong Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Li J, Chen J, Wu J, Lei H, Tian Y, Yang G, Wang Z, Hua Z. Enhancing and toughening plant oil-based polymeric materials through synergetic supramolecular and covalent interactions by introducing nucleobase-functionalized celluloses. Polym Chem 2021. [DOI: 10.1039/d1py00493j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Renewable plant oil-based polymeric materials were enhanced and toughened through complementary H-bonding interactions by introducing nucleobase-functionalized celluloses.
Collapse
Affiliation(s)
- Jianjun Li
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
| | - Jiaqi Chen
- Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Jiang Wu
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
| | - Handan Lei
- Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Yuting Tian
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
| | - Guang Yang
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
- Department of Materials Science and Engineering
| | - Zhongkai Wang
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
- Department of Materials Science and Engineering
| | - Zan Hua
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
- Department of Materials Science and Engineering
| |
Collapse
|
21
|
Varlas S, Hua Z, Jones JR, Thomas M, Foster JC, O’Reilly RK. Complementary Nucleobase Interactions Drive the Hierarchical Self-Assembly of Core–Shell Bottlebrush Block Copolymers toward Cylindrical Supramolecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Spyridon Varlas
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zan Hua
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Joseph R. Jones
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Marjolaine Thomas
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
22
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
del Prado A, González‐Rodríguez D, Wu Y. Functional Systems Derived from Nucleobase Self-assembly. ChemistryOpen 2020; 9:409-430. [PMID: 32257750 PMCID: PMC7110180 DOI: 10.1002/open.201900363] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Dynamic and reversible non-covalent interactions endow synthetic systems and materials with smart adaptive functions that allow them to response to diverse stimuli, interact with external agents, or repair structural defects. Inspired by the outstanding performance and selectivity of DNA in living systems, scientists are increasingly employing Watson-Crick nucleobase pairing to control the structure and properties of self-assembled materials. Two sets of complementary purine-pyrimidine pairs (guanine:cytosine and adenine:thymine(uracil)) are available that provide selective and directional H-bonding interactions, present multiple metal-coordination sites, and exhibit rich redox chemistry. In this review, we highlight several recent examples that profit from these features and employ nucleobase interactions in functional systems and materials, covering the fields of energy/electron transfer, charge transport, adaptive nanoparticles, porous materials, macromolecule self-assembly, or polymeric materials with adhesive or self-healing ability.
Collapse
Affiliation(s)
- Anselmo del Prado
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
| | - David González‐Rodríguez
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| | - Yi‐Lin Wu
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
24
|
Yan Y, Gao C, Li J, Zhang T, Yang G, Wang Z, Hua Z. Modulating Morphologies and Surface Properties of Nanoparticles from Cellulose-Grafted Bottlebrush Copolymers Using Complementary Hydrogen-Bonding between Nucleobases. Biomacromolecules 2020; 21:613-620. [PMID: 31841316 DOI: 10.1021/acs.biomac.9b01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we report the synthesis of a cellulose-grafted bottlebrush copolymer with nucleobases as hydrophobic moieties. Well-defined spherical micelles from this bottlebrush copolymer were fabricated via a solvent switch method. A morphological transition from spheres to worms was only observed to occur when a diblock copolymer with a complementary nucleobase functionality was introduced. Hydrophobic interaction is not capable of triggering the morphological transformation, and the diblock copolymer with the heterogeneous acrylamide nucleobase monomer can induce the morphological transition at higher A:T molar ratios, which might be caused by the weak H-bonding interaction. This supramolecular "grafting to" method enables the preparation of a series of nanoparticles with similar shapes and dimensions but distinct surface properties such as zeta potentials. Moreover, reversible morphological transitions between worm-like micelles and spheres can be achieved using a reversible collapsing and swelling of a thermoresponsive polymer. This work highlights that a supramolecular "grafting to" approach between complementary nucleobases can be utilized to tune morphologies and surface properties of nanoparticles.
Collapse
|
25
|
Maes L, Massana Roqeuro D, Pitet LM, Adriaensens P, Junkers T. Sequence-defined nucleobase containing oligomers via reversible addition–fragmentation chain transfer single monomer addition. Polym Chem 2020. [DOI: 10.1039/c9py01853k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleobase acrylate monomers have been synthesized and monodisperse tetramers with any order of bases are created via single monomer insertion reactions in a RAFT process.
Collapse
Affiliation(s)
- Lowie Maes
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Daniel Massana Roqeuro
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Louis M. Pitet
- Advanced Polymer Functionalization group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Peter Adriaensens
- Nuclear Magnetic Resonance Spectroscopy Group
- Institute for Materials Research (IMO-IMOMEC)
- B-3590 Diepenbeek
- Belgium
- IMEC vzw–Division IMOMEC
| | - Tanja Junkers
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
- School of Chemistry
| |
Collapse
|
26
|
Li J, Wang Z, Hua Z, Tang C. Supramolecular nucleobase-functionalized polymers: synthesis and potential biological applications. J Mater Chem B 2020; 8:1576-1588. [DOI: 10.1039/c9tb02393c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This Perspective article summarizes the synthesis of nucleobase functionalized polymers and highlights issues and challenges following their potential biological applications.
Collapse
Affiliation(s)
- Jianjun Li
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
- Department of Materials Science and Engineering
| | - Zan Hua
- Biomass Molecular Engineering Center
- Anhui Agricultural University
- Hefei
- China
- Department of Materials Science and Engineering
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry
- University of South Carolina
- USA
| |
Collapse
|
27
|
Hua Z, Jones JR, Thomas M, Arno MC, Souslov A, Wilks TR, O'Reilly RK. Anisotropic polymer nanoparticles with controlled dimensions from the morphological transformation of isotropic seeds. Nat Commun 2019; 10:5406. [PMID: 31776334 PMCID: PMC6881314 DOI: 10.1038/s41467-019-13263-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 11/17/2022] Open
Abstract
Understanding and controlling self-assembly processes at multiple length scales is vital if we are to design and create advanced materials. In particular, our ability to organise matter on the nanoscale has advanced considerably, but still lags far behind our skill in manipulating individual molecules. New tools allowing controlled nanoscale assembly are sorely needed, as well as the physical understanding of how they work. Here, we report such a method for the production of highly anisotropic nanoparticles with controlled dimensions based on a morphological transformation process (MORPH, for short) driven by the formation of supramolecular bonds. We present a minimal physical model for MORPH that suggests a general mechanism which is potentially applicable to a large number of polymer/nanoparticle systems. We envision MORPH becoming a valuable tool for controlling nanoscale self-assembly, and for the production of functional nanostructures for diverse applications.
Collapse
Affiliation(s)
- Zan Hua
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joseph R Jones
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marjolaine Thomas
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anton Souslov
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
28
|
Wilson MJ, Fenati RA, Williams EGL, Ellis AV. Synthesis of a deoxyguanosine monophosphate rich propyl methacrylate oligomer. NEW J CHEM 2018. [DOI: 10.1039/c8nj00989a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propyl methacrylate oligomers with pendant guanosine monophosphate nucleotides can self-assemble in the presence of monovalent cations.
Collapse
Affiliation(s)
- Michael J. Wilson
- Flinders Centre for Nanoscale Science and Technology
- Flinders University
- Bedford Park
- Australia
- School of Chemical and Biomedical Engineering
| | - Renzo A. Fenati
- Flinders Centre for Nanoscale Science and Technology
- Flinders University
- Bedford Park
- Australia
- School of Chemical and Biomedical Engineering
| | | | - Amanda V. Ellis
- School of Chemical and Biomedical Engineering
- University of Melbourne
- Victoria 3010
- Australia
| |
Collapse
|
29
|
Wang M, Choi B, Wei X, Feng A, Thang SH. Synthesis, self-assembly, and base-pairing of nucleobase end-functionalized block copolymers in aqueous solution. Polym Chem 2018. [DOI: 10.1039/c8py01201f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a novel strategy, nucleobase-containing copolymers are created for molecular recognition and nucleobase releasing.
Collapse
Affiliation(s)
- Mu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaohu Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - San H. Thang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
30
|
Yang H, Xi W. Nucleobase-Containing Polymers: Structure, Synthesis, and Applications. Polymers (Basel) 2017; 9:E666. [PMID: 30965964 PMCID: PMC6418729 DOI: 10.3390/polym9120666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023] Open
Abstract
Nucleobase interactions play a fundamental role in biological functions, including transcription and translation. Natural nucleic acids like DNA are also widely implemented in material realm such as DNA guided self-assembly of nanomaterials. Inspired by that, polymer chemists have contributed phenomenal endeavors to mimic both the structures and functions of natural nucleic acids in synthetic polymers. Similar sequence-dependent responses were observed and employed in the self-assembly of these nucleobase-containing polymers. Here, the structures, synthetic approaches, and applications of nucleobase-containing polymers are highlighted and a brief look is taken at the future development of these polymers.
Collapse
Affiliation(s)
- Haitao Yang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Weixian Xi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Orthopedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Harguindey A, Domaille DW, Fairbanks BD, Wagner J, Bowman CN, Cha JN. Synthesis and Assembly of Click-Nucleic-Acid-Containing PEG-PLGA Nanoparticles for DNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700743. [PMID: 28397966 DOI: 10.1002/adma.201700743] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Co-delivery of both chemotherapy drugs and siRNA from a single delivery vehicle can have a significant impact on cancer therapy due to the potential for overcoming issues such as drug resistance. However, the inherent chemical differences between charged nucleic acids and hydrophobic drugs have hindered entrapment of both components within a single carrier. While poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers have been used successfully for targeted delivery of chemotherapy drugs, loading of DNA or RNA has been poor. It is demonstrated that significant amounts of DNA can be encapsulated within PLGA-containing nanoparticles through the use of a new synthetic DNA analog, click nucleic acids (CNAs). First, triblock copolymers of PEG-CNA-PLGA are synthesized and then formulated into polymer nanoparticles from oil-in-water emulsions. The CNA-containing particles show high encapsulation of DNA complementary to the CNA sequence, whereas PEG-PLGA alone shows minimal DNA loading, and non-complementary DNA strands do not get encapsulated within the PEG-CNA-PLGA nanoparticles. Furthermore, the dye pyrene can be successfully co-loaded with DNA and lastly, a complex, larger DNA sequence that contains an overhang complementary to the CNA can also be encapsulated, demonstrating the potential utility of the CNA-containing particles as carriers for chemotherapy agents and gene silencers.
Collapse
Affiliation(s)
- Albert Harguindey
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Dylan W Domaille
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Justine Wagner
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| |
Collapse
|
32
|
Hua Z, Keogh R, Li Z, Wilks TR, Chen G, O’Reilly RK. Reversibly Manipulating the Surface Chemistry of Polymeric Nanostructures via a "Grafting To" Approach Mediated by Nucleobase Interactions. Macromolecules 2017; 50:3662-3670. [PMID: 28529382 PMCID: PMC5435456 DOI: 10.1021/acs.macromol.7b00286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2017] [Indexed: 12/13/2022]
Abstract
"Grafting to" polymeric nanostructures or surfaces is a simple and versatile approach to achieve functionalization. Herein, we describe the formation of mixed polymer-grafted nanoparticles through a supramolecular "grafting to" method that exploits multiple hydrogen-bonding interactions between the thymine (T)-containing cores of preformed micelles and the complementary nucleobase adenine (A) of added diblock copolymers. To demonstrate this new "grafting to" approach, mixed-corona polymeric nanoparticles with different sizes were prepared by the addition of a series of complementary diblock copolymers containing thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) to a preformed micelle with a different coronal forming block, poly(4-acryloylmorpholine) (PNAM). PNIPAM chains were distributed throughout the corona and facilitated a fast and fully reversible size change of the resulting mixed-corona micelles upon heating. Through the introduction of an environmentally sensitive fluorophore, the reversible changes in nanoparticle size and coronal composition could be easily probed. Furthermore, preparation of mixed-corona micelles also enabled ligands, such as d-mannose, to be concealed and displayed on the micelle surface. This supramolecular "grafting to" approach provides a straightforward route to fabricate highly functionalized mixed polymeric nanostructures or surfaces with potential applications in targeted diagnosis or therapy and responsive surfaces.
Collapse
Affiliation(s)
- Zan Hua
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Robert Keogh
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Zhen Li
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Thomas R. Wilks
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Guosong Chen
- The
State Key Laboratory of Molecular Engineering of Polymers and Department
of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
33
|
Das A, Lin S, Theato P. Supramolecularly Cross-Linked Nanogel by Merocyanine Pendent Copolymer. ACS Macro Lett 2017; 6:50-55. [PMID: 35651104 DOI: 10.1021/acsmacrolett.6b00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directional dipole-dipole interaction mediated antiparallel dimerization of merocyanine dye (MD) has been explored for maneuvering supramolecular assembly of MD-conjugated flexible macromolecules leading to a cross-linked nanogel. The MD-functionalized copolymer was synthesized by a newly developed organocatalytic transesterification strategy for postpolymerization functionalization of poly(pentafluorophenyl acrylate) (polyPFPA)-based reactive copolymer. Presence of ∼35% pendant MD attached to a coil-like polymer chain leads to spontaneous formation of highly emitting cross-linked nanogel with efficient container property and appreciable stability in toluene owing to strong dimerization propensity among the MD. Considering the significance of MD in the context of nonlinear optics and photovoltaics, these results not only enrich the toolbox for engineering macromolecular assembly, but also open up new possibilities for future organic materials.
Collapse
Affiliation(s)
- Anindita Das
- Institute for Technical and
Macromolecular Chemistry, University of Hamburg, Bundesstrasse
45, 20146 Hamburg, Germany
| | - Shaojian Lin
- Institute for Technical and
Macromolecular Chemistry, University of Hamburg, Bundesstrasse
45, 20146 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and
Macromolecular Chemistry, University of Hamburg, Bundesstrasse
45, 20146 Hamburg, Germany
| |
Collapse
|