1
|
Wang Z, Zhou M, Cao N, Wang X. Site-directed modification of multifunctional lignocellulose-degrading enzymes of straw based on homologous modeling. World J Microbiol Biotechnol 2023; 39:214. [PMID: 37256388 DOI: 10.1007/s11274-023-03663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Studying the straw lignocellulose strengthening mechanism during simultaneous degradation has important practical significance for improving resource utilization and reducing environmental pollution. In this paper, the degradation ability of four straw lignocellulose-degrading enzymes was evaluated by molecular docking and molecular dynamics. Using the significantly binds to straw lignocellulose-degrading enzyme as a template, a multifunctional lignocellulose-degrading enzyme 3CBH-1KS5-4XQD-1B85 was constructed based on amino acid recombination and homologous modeling. Five efficient degrading enzymes (3CBH-1, 3CBH-2, 3CBH-3, 3CBH-4, and 3CBH-5) were designed by site-directed mutagenesis of 3CBH-1KS5-4XQD-1B85 amino acid at position 346. Molecular dynamics showed that the degradation ability of 3CBH-1 was significant and it was 1.45 times higher than 3CBH-1KS5-4XQD-1B85. Moreover, the mechanism of enhanced degradability and the stability of the enzymes were explored. With the aid of Taguchi experiments, the suitable external environment for degrading straw was determined. In the presence of inhibitors (organic acids and phenolic compounds), the binding energy of 3CBH-1 (238.46 ± 30.96 kJ/mol) is 36.42% higher than that of 3CBH-1KS5-4XQD-1B85 (174.79 ± 20.35 kJ/mol) without external environmental stimulation. Based on homology modeling, this paper constructed a site-directed mutagenesis scheme of multifunctional enzymes, and the aim was to obtain multifunctional and efficient straw lignocellulose-degrading enzymes through protein engineering, which provided a feasible scheme for straw biodegradation.
Collapse
Affiliation(s)
- Zini Wang
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Mengying Zhou
- China Guangdong Nuclear Research Institute Limited Company, 1001 Shangbu Middle Road, Shenzhen, 518000, China
| | - Ning Cao
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xiaoli Wang
- College of Plant Science, Jilin University, 5333 Xian Road, Changchun, 130062, China.
| |
Collapse
|
2
|
Melodia D, Di Pietro Z, Cao C, Stenzel MH, Chapman R. Traceless pH-Sensitive Antibody Conjugation Inspired by Citraconic Anhydride. Biomacromolecules 2022; 23:5322-5329. [PMID: 36395470 DOI: 10.1021/acs.biomac.2c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We introduce a pH-sensitive amide bond, inspired by citraconic anhydride, for the reversible conjugation of polymers to the lysine residues of proteins and antibodies. The pH sensitivity arises from a conformation lock at the end of the polymer, which we introduce by means of a Diels-Alder reaction, that positions a carboxylic acid close to the amide after conjugation occurs. The amide is stable over weeks at pH 7.4 but sensitive to hydrolysis at pH 5.5 and below, returning the amine to its original state. The pH sensitivity can be tuned by positioning secondary amide groups nearby. We use this approach to PEGylate an antibody to human serum albumin at high dilution and demonstrate successful recovery of the activity after hydrolysis at pH 5.5. These results offer a convenient and traceless approach to protein and antibody functionalization.
Collapse
Affiliation(s)
- Daniele Melodia
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Zachary Di Pietro
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Cao
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | | | - Robert Chapman
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
3
|
Mesquita BS, Fens MHAM, Di Maggio A, Bosman EDC, Hennink WE, Heger M, Oliveira S. The Impact of Nanobody Density on the Targeting Efficiency of PEGylated Liposomes. Int J Mol Sci 2022; 23:ijms232314974. [PMID: 36499301 PMCID: PMC9741042 DOI: 10.3390/ijms232314974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Nanoparticles (NPs) are commonly modified with tumor-targeting moieties that recognize proteins overexpressed on the extracellular membrane to increase their specific interaction with target cells. Nanobodies (Nbs), the variable domain of heavy chain-only antibodies, are a robust targeting ligand due to their small size, superior stability, and strong binding affinity. For the clinical translation of targeted Nb-NPs, it is essential to understand how the number of Nbs per NP impacts the receptor recognition on cells. To study this, Nbs targeting the hepatocyte growth factor receptor (MET-Nbs) were conjugated to PEGylated liposomes at a density from 20 to 800 per liposome and their targeting efficiency was evaluated in vitro. MET-targeted liposomes (MET-TLs) associated more profoundly with MET-expressing cells than non-targeted liposomes (NTLs). MET-TLs with approximately 150-300 Nbs per liposome exhibited the highest association and specificity towards MET-expressing cells and retained their targeting capacity when pre-incubated with proteins from different sources. Furthermore, a MET-Nb density above 300 Nbs per liposome increased the interaction of MET-TLs with phagocytic cells by 2-fold in ex vivo human blood compared to NTLs. Overall, this study demonstrates that adjusting the MET-Nb density can increase the specificity of NPs towards their intended cellular target and reduce NP interaction with phagocytic cells.
Collapse
Affiliation(s)
- Bárbara S. Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alessia Di Maggio
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Esmeralda D. C. Bosman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314041, China
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.H.); (S.O.)
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.H.); (S.O.)
| |
Collapse
|
4
|
Yu H, Feng J, Zhong F, Wu Y. Chemical Modification for the "off-/on" Regulation of Enzyme Activity. Macromol Rapid Commun 2022; 43:e2200195. [PMID: 35482602 DOI: 10.1002/marc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches would greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiayi Feng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
5
|
Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2021; 51:128-152. [PMID: 34762084 DOI: 10.1039/d1cs00686j] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomacromolecular therapeutic agents, particularly proteins, antigens, enzymes, and nucleic acids are emerging as powerful candidates for the treatment of various diseases and the development of the recent vaccine based on mRNA highlights the enormous potential of this class of drugs for future medical applications. However, biomacromolecular therapeutic agents present an enormous delivery challenge compared to traditional small molecules due to both a high molecular weight and a sensitive structure. Hence, the translation of their inherent pharmaceutical capacity into functional therapies is often hindered by the limited performance of conventional delivery vehicles. Polymer drug delivery systems are a modular solution able to address those issues. In this review, we discuss recent developments in the design of polymer delivery systems specifically tailored to the delivery challenges of biomacromolecular therapeutic agents. In the future, only in combination with a multifaceted and highly tunable delivery system, biomacromolecular therapeutic agents will realize their promising potential for the treatment of diseases and for the future of human health.
Collapse
Affiliation(s)
- Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. .,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
6
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
8
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
9
|
|
10
|
Recombinant Peptide Production Platform Coupled with Site-Specific Albumin Conjugation Enables a Convenient Production of Long-Acting Therapeutic Peptide. Pharmaceutics 2020; 12:pharmaceutics12040364. [PMID: 32316169 PMCID: PMC7238188 DOI: 10.3390/pharmaceutics12040364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a platform for the production of a recombinant therapeutic peptide with an extended serum half-life involving the site-specific conjugation of human serum albumin (HSA). HSA has an exceptionally long serum half-life and can be used to extend the serum half-lives of therapeutic proteins and peptides. We used glucagon-like-peptide 1 (GLP-1) as a model peptide in the present study. A “clickable” non-natural amino acid—p-azido-l-phenylalanine (AzF)—was incorporated into three specific sites (V16, Y19, and F28) of a GLP-1 variant, followed by conjugation with HSA through strain-promoted azide–alkyne cycloaddition. All three HSA-conjugated GLP-1 variants (GLP1_16HSA, GLP1_19HSA, and GLP1_28HSA) exhibited comparable serum half-lives in vivo. However, the three GLP1_HSA variants had different in vitro biological activities and in vivo glucose-lowering effects, demonstrating the importance of site-specific HSA conjugation. The platform described herein could be used to develop other therapeutic peptides with extended serum half-lives.
Collapse
|
11
|
Taki M, Yamashita T, Yatabe K, Vogel V. Mechano-chromic protein-polymer hybrid hydrogel to visualize mechanical strain. SOFT MATTER 2019; 15:9388-9393. [PMID: 31609367 DOI: 10.1039/c9sm00380k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In a proof-of-concept study, a mechano-chromic hydrogel was synthesized here, via chemoenzymatic click conjugation of fluorophore-labeled fibronectin into a synthetic hydrogel co-polymers (i.e., poly-N-isopropylacrylamide/polyethylene glycol). The optical FRET response could be tuned by macroscopic stretch.
Collapse
Affiliation(s)
- Masumi Taki
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
12
|
Imada T, Moriya K, Uchiyama M, Inukai N, Hitotsuyanagi M, Masuda A, Suzuki T, Ayukawa S, Tagawa YI, Dohmae N, Kohara M, Yamamura M, Kiga D. A Highly Bioactive Lys-Deficient IFN Leads to a Site-Specific Di-PEGylated IFN with Equivalent Bioactivity to That of Unmodified IFN-α2b. ACS Synth Biol 2018; 7:2537-2546. [PMID: 30277749 DOI: 10.1021/acssynbio.8b00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although conjugation with polyethylene glycol (PEGylation) improves the pharmacokinetics of therapeutic proteins, it drastically decreases their bioactivity. Site-specific PEGylation counters the reduction in bioactivity, but developing PEGylated proteins with equivalent bioactivity to that of their unmodified counterparts remains challenging. This study aimed to generate PEGylated proteins with equivalent bioactivity to that of unmodified counterparts. Using interferon (IFN) as a model protein, a highly bioactive Lys-deficient protein variant generated using our unique directed evolution methods enables the design of a site-specific di-PEGylated protein. Antiviral activity of our di-PEGylated IFN was similar to that of unmodified IFN-α2b. The di-PEGylated IFN exhibited 3.0-fold greater antiviral activity than that of a commercial PEGylated IFN. Moreover, our di-PEGylated IFN showed higher in vitro and in vivo stability than those of unmodified IFN-α2b. Hence, we propose that highly bioactive Lys-deficient proteins solve the limitation of conventional PEGylation with respect to the reduction in bioactivity of PEGylated proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Akiko Masuda
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Shotaro Ayukawa
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| | | | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Michinori Kohara
- Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | | | - Daisuke Kiga
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| |
Collapse
|
13
|
Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018; 178:413-434. [DOI: 10.1016/j.biomaterials.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
|
14
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Kubyshkin V, Budisa N. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how? Biotechnol J 2017; 12. [PMID: 28671771 DOI: 10.1002/biot.201600097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Abstract
The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| | - Nediljko Budisa
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| |
Collapse
|
16
|
Kwon I, Yang B. Bioconjugation and Active Site Design of Enzymes Using Non-natural Amino Acids. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Inchan Kwon
- School
of Materials Science and Engineering (SMSE) and ‡Department of Biomedical Science
and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byungseop Yang
- School
of Materials Science and Engineering (SMSE) and ‡Department of Biomedical Science
and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
17
|
Bruins JJ, Westphal AH, Albada B, Wagner K, Bartels L, Spits H, van Berkel WJH, van Delft FL. Inducible, Site-Specific Protein Labeling by Tyrosine Oxidation-Strain-Promoted (4 + 2) Cycloaddition. Bioconjug Chem 2017; 28:1189-1193. [PMID: 28263569 PMCID: PMC5399473 DOI: 10.1021/acs.bioconjchem.7b00046] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genetically encoded tyrosine (Y-tag) can be utilized as a latent anchor for inducible and site-selective conjugation. Upon oxidation of tyrosine with mushroom tyrosinase, strain-promoted cycloaddition (SPOCQ) of the resulting 1,2-quinone with various bicyclo[6.1.0]nonyne (BCN) derivatives led to efficient conjugation. The method was applied for fluorophore labeling of laminarinase A and for the site-specific preparation of an antibody-drug conjugate.
Collapse
Affiliation(s)
| | | | | | - Koen Wagner
- AIMM Therapeutics , Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
| | - Lina Bartels
- AIMM Therapeutics , Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
| | - Hergen Spits
- AIMM Therapeutics , Meibergdreef 59, 1105 BA Amsterdam, The Netherlands
| | | | | |
Collapse
|
18
|
Ozer I, Chilkoti A. Site-Specific and Stoichiometric Stealth Polymer Conjugates of Therapeutic Peptides and Proteins. Bioconjug Chem 2017; 28:713-723. [PMID: 27998056 DOI: 10.1021/acs.bioconjchem.6b00652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As potent and selective therapeutic agents, peptides and proteins are an important class of drugs, but they typically have suboptimal pharmacokinetic profiles. One approach to solve this problem is their conjugation with "stealth" polymers. Conventional methods for conjugation of this class of polymers to peptides and proteins are typically carried out by reactions that have poor yield and provide limited control over the site of conjugation and the stoichiometry of the conjugate. To address these limitations, new chemical and biological approaches have been developed that provide new molecular tools in the bioconjugation toolbox to create stealth polymer conjugates of peptides and proteins with exquisite control over their properties. This review article highlights these recent advances in the synthesis of therapeutic peptide- and protein-stealth polymer conjugates.
Collapse
Affiliation(s)
- Imran Ozer
- Department of Biomedical Engineering, Duke University , 101 Science Drive, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University , 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|