1
|
Nagao M, Matsumoto H, Miura Y. Design of Glycopolymers for Controlling the Interactions with Lectins. Chem Asian J 2023; 18:e202300643. [PMID: 37622191 DOI: 10.1002/asia.202300643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Carbohydrates are involved in life activities through the interactions with their corresponding proteins (lectins). Pathogen infection and the regulation of cell activity are controlled by the binding between lectins and glycoconjugates on cell surfaces. A deeper understanding of the interactions of glycoconjugates has led to the development of therapeutic and preventive methods for infectious diseases. Glycopolymer is one of the classes of the materials present multiple carbohydrates. The properties of glycopolymers can be tuned through the molecular design of the polymer structures. This review focuses on research over the past decade on the design of glycopolymers with the aim of developing inhibitors against pathogens and manipulator of cellular functions.
Collapse
Affiliation(s)
- Masanori Nagao
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| | - Hikaru Matsumoto
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| | - Yoshiko Miura
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| |
Collapse
|
2
|
Li G, Ma W, Mo J, Cheng B, Shoda SI, Zhou D, Ye XS. Influenza Virus Precision Diagnosis and Continuous Purification Enabled by Neuraminidase-Resistant Glycopolymer-Coated Microbeads. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46260-46269. [PMID: 34547894 DOI: 10.1021/acsami.1c11561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid diagnosis and vaccine development are critical to prevent the threat posed by viruses. However, rapid tests, such as colloidal gold assays, yield false-negative results due to the low quantities of viruses; moreover, conventional virus purification, including ultracentrifugation and nanofiltration, is multistep and time-consuming, which limits laboratory research and commercial development of viral vaccines. A rapid virus enrichment and purification technique will improve clinical diagnosis sensitivity and simplify vaccine production. Hence, we developed the surface-glycosylated microbeads (glycobeads) featuring chemically synthetic glycoclusters and reversible linkers to selectively capture the influenza virus. The surface plasmon resonance (SPR) evaluation indicated broad spectrum affinity of S-linked glycosides to various influenza viruses. The magnetic glycobeads were integrated into clinical rapid diagnosis, leading to a 30-fold lower limit of detection. Additionally, the captured viruses can be released under physiological conditions, delivering purified viruses with >50% recovery and without decreasing their native infectivity. Notably, this glycobead platform will facilitate the sensitive detection and continuous one-step purification of the target virus that contributes to future vaccine production.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Wenxiao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Boyang Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
3
|
Nagao M, Kichize M, Hoshino Y, Miura Y. Influence of Monomer Structures for Polymeric Multivalent Ligands: Consideration of the Molecular Mobility of Glycopolymers. Biomacromolecules 2021; 22:3119-3127. [PMID: 34152744 DOI: 10.1021/acs.biomac.1c00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular mobility is important for interactions of biofunctional polymers with target molecules. Monomer structures for synthetic biofunctional polymers are usually selected based on their compatibility with polymerization systems, whereas the influence of monomer structures on the interaction with target molecules is hardly considered. In this report, we evaluate the correlation between the monomer structures of glycopolymers and their interactions with concanavalin A (ConA) with respect to the molecular mobility. Two types of glycopolymers bearing mannose are synthesized with acrylamide or acrylate monomers. Despite the similar structures, except for amide or ester bonds in the side chains, the acrylate-type glycopolymers exhibit stronger interaction with ConA both in the isothermal titration calorimetry measurement and in a hemagglutination inhibition assay. Characterization of the acrylate-type glycopolymers suggests that the higher binding constant arises from the higher molecular mobility of mannose units, which results from the rotational freedom of ester bonds in their side chains.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaya Kichize
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Seto H, Tono T, Nagaoka A, Yamamoto M, Hirohashi Y, Shinto H. Preparation and characterization of glycopolymers with biphenyl spacers via Suzuki coupling reaction. Org Biomol Chem 2021; 19:4474-4477. [PMID: 33949595 DOI: 10.1039/d1ob00617g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(vinylbiphenyl)s bearing glycoside ligands at the side chains were prepared using the Suzuku coupling reaction. Effects of glycoside reactant concentration, halide species, glycoside species, and catalyst species on the incorporation of glycoside ligand into the polymer were investigated. The obtained glycopolymers exhibited specific binding to proteins corresponding to the glycoside ligands. In addition, the biphenyl spacers formed by the Suzuki coupling reaction in the glycopolymer were fluorescent, whereas the polymer precursor was not.
Collapse
Affiliation(s)
- Hirokazu Seto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Takumi Tono
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Akiko Nagaoka
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Mai Yamamoto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yumiko Hirohashi
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Hiroyuki Shinto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
5
|
Comesse S, Alahyen I, Benhamou L, Dalla V, Taillier C. 20 Years of Forging N-Heterocycles from Acrylamides through Domino/Cascade Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1503-7932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractAcrylamides are versatile building blocks that are easily obtained from readily available starting materials. During the last 20 years, these valuable substrates bearing a nucleophilic nitrogen atom and an electrophilic double bond have proven to be efficient domino partners, leading to a wide variety of complex aza-heterocycles of synthetic relevance. In this non-exhaustive review, metal-free and metal-triggered reactions followed by an annulation will be presented; these two approaches allow good modulation of the reactivity of the polyvalent acrylamides.1 Introduction2 Metal-Free Annulations2.1 Domino Reactions Triggered by a Michael Addition2.2 Domino Reactions Triggered by an Aza-Michael Addition2.3 Domino Processes Triggered by an Acylation Reaction2.4 Domino Reactions Triggered by a Baylis–Hillman Reaction2.5 Cycloadditions and Domino Reactions2.6 Miscellaneous Domino Reactions3 Metal-Triggered/Mediated Annulations3.1 Zinc-Promoted Transformations3.2 Rhodium-Catalyzed Functionalization/Annulation Cascades3.3 Cobalt-Catalyzed Functionalization/Annulation Cascades3.4 Ruthenium-Catalyzed Functionalization/Annulation Cascades3.5 Iron-Catalyzed Functionalization/Annulation Cascades3.6 Palladium-Catalyzed Functionalization/Annulation Cascades3.7 Copper-Catalyzed Transformations3.8 Transition Metals Acting in Tandem in Domino Processes4 Radical Cascade Reactions5 Conclusion
Collapse
|
6
|
Nagao M, Matsubara T, Hoshino Y, Sato T, Miura Y. Synthesis of Various Glycopolymers Bearing Sialyllactose and the Effect of Their Molecular Mobility on Interaction with the Influenza Virus. Biomacromolecules 2019; 20:2763-2769. [DOI: 10.1021/acs.biomac.9b00515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Terada Y, Hoshino Y, Miura Y. Glycopolymers Mimicking GM1 Gangliosides: Cooperativity of Galactose and Neuraminic Acid for Cholera Toxin Recognition. Chem Asian J 2019; 14:1021-1027. [DOI: 10.1002/asia.201900053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Yuhei Terada
- Department of Chemical Systems and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Chemical Systems and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Systems and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
8
|
Nagao M, Fujiwara Y, Matsubara T, Hoshino Y, Sato T, Miura Y. Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus. Biomacromolecules 2017; 18:4385-4392. [DOI: 10.1021/acs.biomac.7b01426] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masanori Nagao
- Department
of Engineering, Graduate School of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yurina Fujiwara
- Department
of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Teruhiko Matsubara
- Department
of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department
of Engineering, Graduate School of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department
of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department
of Engineering, Graduate School of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|