1
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
2
|
Qin P, Yang HH, Zhao XX, Qu WJ, Yao H, Wei TB, Lin Q, Shi B, Zhang YM. A supramolecular polymer network constructed by pillar[5]arene-based host–guest interactions and its application in nitro explosive detection. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01118-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
4
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
5
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Hu JP, He JX, Fang H, Yang HH, Zhang Q, Lin Q, Yao H, Zhang YM, Wei TB, Qu WJ. A novel pillar[5]arene-based emission enhanced supramolecular sensor for dual-channel selective detection and separation of Hg2+. NEW J CHEM 2020. [DOI: 10.1039/d0nj02362k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We constructed a supramolecular sensor (APRA–G) via a host–guest inclusion interaction between a rhodamine hydrazide-functionalized pillar[5]arene (APRA) and a bipyridine salt guest (G), which formed a stable dimer.
Collapse
|
7
|
Jin X, Zhu L, Xue B, Zhu X, Yan D. Supramolecular nanoscale drug-delivery system with ordered structure. Natl Sci Rev 2019; 6:1128-1137. [PMID: 34691991 PMCID: PMC8291525 DOI: 10.1093/nsr/nwz018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/19/2023] Open
Abstract
Supramolecular chemistry provides a means to integrate multi-type molecules leading to a dynamic organization. The study of functional nanoscale drug-delivery systems based on supramolecular interactions is a recent trend. Much work has focused on the design of supramolecular building blocks and the engineering of supramolecular integration, with the goal of optimized delivery behavior and enhanced therapeutic effect. This review introduces recent advances in supramolecular designs of nanoscale drug delivery. Supramolecular affinity can act as a main driving force either in the self-assembly of carriers or in the loading of drugs. It is also possible to employ strong recognitions to achieve self-delivery of drugs. Due to dynamic controllable drug-release properties, the supramolecular nanoscale drug-delivery system provides a promising platform for precision medicine.
Collapse
Affiliation(s)
- Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Yu JJ, Liang WJ, Zhang Q, Li MM, Qu DH. Photo-Powered Collapse of Supramolecular Polymers Based on an Overcrowded Alkene Switch. Chem Asian J 2019; 14:3141-3144. [PMID: 31355530 DOI: 10.1002/asia.201900801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Indexed: 01/22/2023]
Abstract
A supramolecular polymer was constructed from a light-driven overcrowded alkene switch modified with two alkylated gallic acid amide pendants (MSP-1). Upon UV irradiation, stable MSP-1 isomerized into unstable MSP-2, which induced the effective collapse of well-defined cross-linked supramolecular polymers, and the reassembly can be realized by aging at low temperature.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Wen-Jing Liang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Ming-Ming Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| |
Collapse
|
9
|
Qi LH, Ding JD, Ma XQ, Guan XW, Zhu W, Yao H, Zhang YM, Wei TB, Lin Q. An azine-containing bispillar[5]arene-based multi-stimuli responsive supramolecular pseudopolyrotaxane gel for effective adsorption of rhodamine B. SOFT MATTER 2019; 15:6836-6841. [PMID: 31402364 DOI: 10.1039/c9sm01126a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An azine-containing bispillar[5]arene was designed and synthesized by the reaction of aldehyde functionalized-pillar[5]arene and hydrazine. Then, a novel bispillar[5]arene-based supramolecular pseudopolyrotaxane has been successfully prepared via host-guest interaction. Interestingly, by taking advantage of the host-guest interactions, π-π stacking interactions and hydrogen bonding interactions, the multi-stimuli-responsive gel-sol phase transitions of such a supramolecular pseudopolyrotaxane gel were successfully realized under different stimuli, such as acid, temperature, concentration, and competitive guests. Moreover, this supramolecular system could effectively adsorb dye molecule rhodamine B. It is worth noting that this supramolecular pseudopolyrotaxane gel prepared in cyclohexanol solution (BP5·G·C) could be used as an adsorbent material for adsorbing rhodamine B with adsorption efficiency of 98.4%. Meanwhile, the adsorption efficiency was 97.6% for supramolecular pseudopolyrotaxane gel prepared in DMSO-H2O (v : v, 8 : 2) binary solution (BP5·G·D), also indicating the superior adsorption effect of BP5·G·D toward the dye molecule rhodamine B.
Collapse
Affiliation(s)
- Li-Hua Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shurpik DN, Aleksandrova YI, Stoikov II. Macrocyclic Receptors Based on Monosubstituted Pillar[5]arene Containing a 3,3′-Iminodipropanoic Acid Fragment. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363218120101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Li H, Yang Y, Xu F, Liang T, Wen H, Tian W. Pillararene-based supramolecular polymers. Chem Commun (Camb) 2019; 55:271-285. [PMID: 30418439 DOI: 10.1039/c8cc08085b] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pillararenes, as a new type of macrocyclic hosts, possess columnar structures and electron-rich cavities. Pillararenes not only recognize suitable cations, but also bind many neutral molecules. Due to the easy modification of pillararenes, various functional groups can be conveniently attached to the rim of pillararenes to provide suitable interaction sites, and the modified pillararenes even bind anionic guests. Thus, pillararenes and their derivatives have presented intriguing and unique host-guest recognition nature in the past few years, which make them ideal building blocks for the preparation of supramolecular polymers. Pillararene-based supramolecular polymers (PSPs) not only possess many merits of traditional covalent polymers but also have many specific properties, such as self-reparability, degradability, and self-adaptation. This feature paper gives an overview of the preparation of PSPs and covers recent research advance and future trends of pillararene-based host-guest pairs, assembly methods, topological architectures, stimuli-responsiveness, and functional features. We expect that the review will be helpful to researchers working in the fields of supramolecular chemistry and polymer science.
Collapse
Affiliation(s)
- Hui Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Zhang YM, Li YF, Zhong KP, Qu WJ, Chen XP, Yao H, Wei TB, Lin Q. A novel pillar[5]arene-based supramolecular organic framework gel to achieve an ultrasensitive response by introducing the competition of cationπ and ππ interactions. SOFT MATTER 2018; 14:3624-3631. [PMID: 29687823 DOI: 10.1039/c8sm00426a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasensitive response properties are an intriguing concern for stimuli-responsive materials. Herein, we report a novel method to achieve an ultrasensitive response by introducing the competition of cationπ and ππ interactions into a pillar[5]arene-based supramolecular organic framework (SOF-AMP). SOF-AMP was constructed with a novel bis-naphthalimide functionalized pillar[5]arene, which was able to form a stable supramolecular gel (SOF-AMP-G) in cyclohexanol. Interestingly, SOF-AMP-G shows an ultrasensitive response to Fe3+ through the competition of cationπ and ππ interactions. Meanwhile, the Fe3+ coordinated SOF (MSOF-Fe) shows an ultrasensitive response to H2PO4-. SOF-AMP-G displayed yellow fluorescence whereas, after the addition of 0.5 equiv. of Fe3+ to SOF-AMP-G, the yellow fluorescence was quenched. The detection limit of SOF-AMP-G for Fe3+ is 7.54 × 10-9 M. More interestingly, the Fe3+ coordinated SOF gel (MSOF-Fe-G) could sense H2PO4- with a fluorescence "turn-on". The detection limit of MSOF-Fe-G for H2PO4- is 4.21 × 10-9 M. Simultaneously, the Fe3+ and H2PO4- responsive thin films based on these SOF gels were prepared. Moreover, these SOF gels could be used as ultrasensitive ion sensors, fluorescent display materials and sensitive logic gates.
Collapse
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang YM, Zhu W, Qu WJ, Zhong KP, Chen XP, Yao H, Wei TB, Lin Q. Competition of cation–π and exo-wall π–π interactions: a novel approach to achieve ultrasensitive response. Chem Commun (Camb) 2018; 54:4549-4552. [DOI: 10.1039/c8cc00814k] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel approach to achieve ultrasensitive response was successfully developed by rationally introducing the competition between cation–π and exo-wall π–π interactions into a pillar[5]arene-based supramolecular organogel (P5N-OG).
Collapse
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Wei Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Kai-Peng Zhong
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Peng Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
14
|
Zhang YM, Li YF, Zhong KP, Qu WJ, Yao H, Wei TB, Lin Q. A bis-naphthalimide functionalized pillar[5]arene-based supramolecular π-gel acts as a multi-stimuli-responsive material. NEW J CHEM 2018. [DOI: 10.1039/c8nj03583k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel approach for the design of multi-stimuli-responsive supramolecular functional materials was successfully developed by introducing the competition of π–π stacking and cation–π interactions into a pillar[5]arene-based supramolecular π-gel (MP5-G).
Collapse
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Yong-Fu Li
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Kai-Peng Zhong
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Wen-Juan Qu
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
15
|
Ding JD, Chen JF, Lin Q, Yao H, Zhang YM, Wei TB. A multi-stimuli responsive metallosupramolecular polypseudorotaxane gel constructed by self-assembly of a pillar[5]arene-based pseudo[3]rotaxane via zinc ion coordination and its application for highly sensitive fluorescence recognition of metal ions. Polym Chem 2018. [DOI: 10.1039/c8py01319e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel pillar[5]arene-based metallosupramolecular polypseudorotaxane gel has been successfully prepared.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
16
|
Shurpik DN, Sevastyanov DA, Evtyugin VG, Stoikov II. Supramolecular polymer based on aminated monosubstituted pillar[5]arene. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Lin Q, Zhong KP, Zhu JH, Ding L, Su JX, Yao H, Wei TB, Zhang YM. Iodine Controlled Pillar[5]arene-Based Multiresponsive Supramolecular Polymer for Fluorescence Detection of Cyanide, Mercury, and Cysteine. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01835] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qi Lin
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Kai-Peng Zhong
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jin-Hui Zhu
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Lan Ding
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jun-Xia Su
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Hong Yao
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Tai-Bao Wei
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - You-Ming Zhang
- Department Key Laboratory
of Eco-Environment-Related Polymer Materials, Ministry of Education
of China; Key Laboratory of Polymer Materials of Gansu Province; College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
18
|
Chen JF, Liu X, Ma JF, Han BB, Ding JD, Lin Q, Yao H, Zhang YM, Wei TB. A pillar[5]arene-based multiple-stimuli responsive metal-organic gel was constructed for facile removal of mercury ions. SOFT MATTER 2017; 13:5214-5218. [PMID: 28677714 DOI: 10.1039/c7sm01118k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A thioacetohydrazide functionalized pillar[5]arene was synthesized, which could further assemble into a linear supramolecular metal-organic polymer upon adding Zn2+. Furthermore, the obtained linear supramolecular metal-organic polymer could self-assemble to form a fluorescent supramolecular metal-organic gel at high concentration. When TBAOH was added to the viscous solution at high temperature, the obtained solution could not form a supramolecular metal-organic gel upon cooling. More importantly, when Hg2+ ions are added to the metal-organic gel, the strong blue fluorescence is clearly quenched, and this metal-organic gel (xerogel) could effectively remove Hg2+ from water. Simultaneously, a thin film based on the metal-organic gel was prepared, which was confirmed to be a convenient test kit for detecting Hg2+.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Q, Zhang P, Li Y, Tian L, Cheng M, Lu F, Lu X, Fan Q, Huang W. Neutral linear supramolecular polymers constructed by three different interactions. RSC Adv 2017. [DOI: 10.1039/c7ra05351g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neutral linear supramolecular polymers were constructed by the combination of quadruple hydrogen bonding, pillar[5]arene-based molecular recognition and π–π donor–acceptor interactions.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Peng Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Yuanyuan Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Lu Tian
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Ming Cheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| |
Collapse
|