1
|
Singh AK, Singh AK, Sharma SK, Sonkar VK, Singh VP. A highly selective coumarin-based chemosensor for dual sensing of Cu 2+ and Zn 2+ ions with logic gate integration and live cell imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4551-4560. [PMID: 38912555 DOI: 10.1039/d4ay00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In this paper, a coumarin-based Schiff base chemosensor has been synthesized and developed to detect Cu2+ and Zn2+ ions in nanomolar concentrations. The probe selectively distinguishes Cu2+ and Zn2+ from among several metal ions in DMF : H2O (7 : 3, v/v, pH 7.4) HEPES buffer. The structure of the probe and its sensing behavior were investigated by FT-IR, UV-vis, fluorescence, HRMS, and NMR analyses, along with X-ray crystallography and computational studies. CIH detects Zn2+ and Cu2+ using different strategies: CHEF-induced fluorescence enhancement and paramagnetic fluorescence quenching, respectively. Job's plots show a 1 : 1 binding interaction between CIH and Cu2+ or Zn2+ ions. The binding constant values for Cu2+ (1.237 × 105 M-1) and Zn2+ (1.24 × 104 M-1) suggest a better ability for Cu2+ to interact with CIH than Zn2+. An extremely high sensitivity of the probe was highlighted by its very low detection limits (LOD) of 5.36 nM for Cu2+ and 3.49 nM for Zn2+. The regeneration of the probe with the addition of EDTA in its complexes allows the formation of molecular logic gates. CIH has been successfully employed in mitotracking and intracellular detection of Zn2+ and Cu2+ in SiHa cells.
Collapse
Affiliation(s)
- Avanish Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Amit Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Shashi Kant Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vijay Kumar Sonkar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
2
|
Guo R, Wang G, Liu X, Yang X, Liu W, Liu W. A novel acylhydrazone Zn coordination polymer for the determination of picric acid. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Das A, Sharma P, Gomila RM, Frontera A, Verma AK, Sarma B, Bhattacharyya MK. Synthesis, structural topologies and anticancer evaluation of phenanthroline-based 2,6-pyridinedicarboxylato Cu(II) and Ni(II) compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Menšík M, Rais D, Thottappali MA, Güloğlu P, Toman P, Vohlídal J, Pfleger J. Kinetics of the Photoexcited States in Thin Films of Metallo-Supramolecular Polymers With Ditopic Thiophene-Bridged Terpyridine Ligands. Front Chem 2022; 9:766121. [PMID: 35127641 PMCID: PMC8812722 DOI: 10.3389/fchem.2021.766121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Managing the excited-state decay by a supramolecular structure is a crucial issue for organic photovoltaics. We show that in thin films of metallo-supramolecular polymers made of bis(terpyridine-4′-yl)terthiophenes and Zn2+ coupling ions, the photoexcited states generated by ultrashort laser pulses at the wavelength of 440 nm decay by the bi-molecular annihilation predominantly controlled by the Förster transfer between singlet states. During this bi-molecular annihilation of singlet states, intermediate hot triplet pairs are formed, which subsequently dissociate into long-living diffusing triplet states. It explains a significant shortening of the triplet state rise time with increasing pump fluence. The diffusion coefficient of triplets showed power-law time dependence, with its exponent proportional to the pump fluence, decreasing thus the diffusivity of triplets.
Collapse
Affiliation(s)
- Miroslav Menšík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - David Rais
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Muhammed Arshad Thottappali
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Pinar Güloğlu
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Petr Toman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jiří Vohlídal
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Pfleger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jiří Pfleger,
| |
Collapse
|
5
|
Zhang SY, Sun HY, Wang RG, Meng YS, Liu T, Zhu YY. Construction of spin-crossover dinuclear cobalt(II) compounds based on complementary terpyridine ligand pairing. Dalton Trans 2022; 51:9888-9893. [DOI: 10.1039/d2dt00436d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of multinuclear SCO complexes is appealing in which unique properties may be discovered due to the enhanced intramolecular and intermolecular interactions. In this work,.three dinuclear cobalt(II) complexes, named...
Collapse
|
6
|
Luo B, Pan Y, Meng Y, Liu Q, Yin J, Liu T, Zhu Y. Construction of Magneto‐Fluorescent Bifunctional Spin‐Crossover Fe(II) Complex from Pyrene‐Decorated Pybox Ligand. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bing‐Xue Luo
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yao Pan
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yin‐Shan Meng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Jun Yin
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yuan‐Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
7
|
Shurpik DN, Aleksandrova YI, Rodionov AA, Razina EA, Gafurov MR, Vakhitov IR, Evtugyn VG, Gerasimov AV, Kuzin YI, Evtugyn GA, Cragg PJ, Stoikov II. Metallo-Supramolecular Coordination Polymers Based on Amidopyridine Derivatives of Pillar[5]arene and Cu(II) and Pd(II) Cations: Synthesis and Recognition of Nitroaromatic Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2942-2953. [PMID: 33630597 DOI: 10.1021/acs.langmuir.0c03579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decasubstituted pillar[5]arenes containing amidopyridine fragments have been synthesized for the first time. As was shown by UV-vis spectroscopy, the pillar[5]arenes with p-amidopyridine fragments form supramolecular associates with Cu(II) and Pd(II) cations in methanol in a 2:1 ratio. Using a sol-gel approach these associates are transformed into metallo-supramolecular coordination polymers (supramolecular gels) which were characterized as amorphous powders by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The powders are able to selectively adsorb up to 46% of nitrophenols from water and were incorporated into an electrochemical sensor to selectively recognize them in aqueous acidic solution.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Yulia I Aleksandrova
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Alexander A Rodionov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Elena A Razina
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Marat R Gafurov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Iskander R Vakhitov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Alexander V Gerasimov
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Yurii I Kuzin
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Gennady A Evtugyn
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, United Kingdom
| | - Ivan I Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| |
Collapse
|
8
|
Recent Advances of Near-Infrared (NIR) Emissive Metal Complexes Bridged by Ligands with N- and/or O-Donor Sites. CRYSTALS 2021. [DOI: 10.3390/cryst11020155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Near-infrared (NIR) emissive metal complexes have shown potential applications in optical communication, chemosensors, bioimaging, and laser and organic light-emitting diodes (OLEDs) due to their structural tunability and luminescence stability. Among them, complexes with bridging ligands that exhibit unique emission behavior have attracted extensive interests in recent years. The target performance can be easily achieved by NIR light-emitting metal complexes with bridging ligands through molecular structure design. In this review, the luminescence mechanism and design strategies of NIR luminescent metal complexes with bridging ligands are described firstly, and then summarize the recent advance of NIR luminescent metal complexes with bridging ligands in the fields of electroluminescence and biosensing/bioimaging. Finally, the development trend of NIR luminescent metal complexes with bridging ligands are proposed, which shows an attractive prospect in the field of photophysical and photochemical materials.
Collapse
|
9
|
Chi J, Mu Y, Li Y, Shao P, Liu G, Cai B, Xu N, Chen Y. Polytorsional-amide/carboxylates-directed Cd( ii) coordination polymers exhibiting multi-functional sensing behaviors. RSC Adv 2021; 11:31756-31765. [PMID: 35496860 PMCID: PMC9041708 DOI: 10.1039/d1ra04411g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022] Open
Abstract
By rational assembly of polytorsional-amide [N,N′-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide (L)] and polytorsional-carboxylates [H2ADI = adipic acid, H2PIM = pimelic acid, H2SUB = suberic acid], three new Cd-based coordination polymers (CPs) C30H30CdN4O7 (1), C31H32CdN4O7 (2) and C31.03H30.55CdCl0.24N4O5.52 (3) were successfully synthesized. CPs 1–2 and 3 are 2D networks and a 3D framework, which all display 3,5-connected topologies with different structural details. The effects of carboxylates with different carbon chains on the structure of the complexes were studied. Fluorescence experiments show that CPs 1–3 have good multi-functional sensing ability for metal cations (Fe3+), anions (MnO4−, CrO42−, Cr2O72−) and organochlorine pesticides (2,6-dichloro-4-nitroamine) with good anti-interference and recyclable characteristics. The possible sensing mechanism is also investigated in detail. Three (3,5)-connected Cd(ii) coordination polymers induced by polytorsional-amide/carboxylates exhibiting controllable multifunctional fluorescent sensing activities.![]()
Collapse
Affiliation(s)
- Jie Chi
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yajun Mu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yan Li
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Pengpeng Shao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bin Cai
- School of Chemistry and Chemical Engineerng, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yongqiang Chen
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi, 030619, P. R. China
| |
Collapse
|
10
|
Zhang X, Zhang Y, Jiao S, Song X, Li S, Liu K, Wang L. Coordination polymers driven by 2,5-dibromoterephthalic acid and chelating co-ligands: Syntheses, structures and luminescent properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Zhang N, Li B, Wang X, Liu D, Han X, Bai F, Xing Y. High-efficiency fluorescent probe constructed by triazine polycarboxylic acid for detecting nitro compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
13
|
Construction of optical active metallo-supramolecular polymers from enantiopure bis-pybox ligands. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Gao WQ, Meng YS, Liu CH, Pan Y, Liu T, Zhu YY. Spin crossover and structural phase transition in homochiral and heterochiral Fe[(pybox)2]2+ complexes. Dalton Trans 2019; 48:6323-6327. [DOI: 10.1039/c8dt04893b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin crossover and structural phase transition were discovered in three pairs of homochiral and heterochiral [Fe(pybox)2]2+ diastereomers.
Collapse
Affiliation(s)
- Wan-Qing Gao
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Yao Pan
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
- State Key Laboratory of Fine Chemicals
| |
Collapse
|
15
|
Burrows KE, Kulmaczewski R, Cespedes O, Barrett SA, Halcrow MA. The speciation of homochiral and heterochiral diastereomers of homoleptic cobalt(II) and zinc(II) PyBox complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Ding Z, Li H, Gao W, Zhang Y, Liu C, Zhu Y. Detection of Picric Acid by Terpy-Based Metallo-Supramolecular Fluorescent Coordination Polymers in Aqueous Media. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhongyu Ding
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Hongqing Li
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Wanqing Gao
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Yiquan Zhang
- Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems (NSLSCS), School of Physical Science and Technology; Nanjing Normal University; Nanjing Jiangsu 210023 China
| | - Chunhua Liu
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| | - Yuanyuan Zhu
- School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui 230009 China
| |
Collapse
|
17
|
Sanmartín-Matalobos J, García-Deibe AM, Fondo M, Zarepour-Jevinani M, Domínguez-González MR, Bermejo-Barrera P. Exploration of an easily synthesized fluorescent probe for detecting copper in aqueous samples. Dalton Trans 2017; 46:15827-15835. [DOI: 10.1039/c7dt02872e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bonding behavior and spectral response studies of an easily synthesized fluorescent probe for the detection of Cu2+ ions and CuO NPs in aqueous samples.
Collapse
Affiliation(s)
- Jesús Sanmartín-Matalobos
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela
- Spain
| | - Ana M. García-Deibe
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela
- Spain
| | - Matilde Fondo
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela
- Spain
| | - Morteza Zarepour-Jevinani
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela
- Spain
| | - M. Raquel Domínguez-González
- Departamento de Química Analítica
- Facultad de Química
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela
- Spain
| | - Pilar Bermejo-Barrera
- Departamento de Química Analítica
- Facultad de Química
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela
- Spain
| |
Collapse
|
18
|
Zhao J, Liu B, Feng Z, Jin D, Dang W, Yang X, Zhou G, Wu Z, Wong WY. Coordination polymers based on bis-Zn II salphen complexes and functional ditopic ligands for efficient polymer light-emitting diodes (PLEDs). Polym Chem 2017. [DOI: 10.1039/c7py01074e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bis-ZnII salphen coordination polymers with functional ditopic ligands can exhibit higher EL efficiencies compared to their analogues.
Collapse
Affiliation(s)
- Jiang Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Department of Chemistry
- School of Science
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
| | - Boao Liu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Department of Chemistry
- School of Science
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
| | - Zhao Feng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Department of Chemistry
- School of Science
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
| | - Deyuan Jin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Department of Chemistry
- School of Science
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
| | - Wanping Dang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Department of Chemistry
- School of Science
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
| | - Xiaolong Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Department of Chemistry
- School of Science
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
| | - Guijiang Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Department of Chemistry
- School of Science
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education
- Faculty of Electronic and Information Engineering
- Xi'an Jiaotong University Xi'an 710049
- P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- P. R. China
- Institute of Molecular Functional Materials
| |
Collapse
|
19
|
Zhu YY, Li HQ, Ding ZY, Lü XJ, Zhao L, Meng YS, Liu T, Gao S. Spin transitions in a series of [Fe(pybox)2]2+ complexes modulated by ligand structures, counter anions, and solvents. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00417b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of mononuclear Fe(ii) compounds is synthesized based on pybox ligands. Their spin-crossover behaviours can be effectively mediated by ligand structures, counter anions, and solvents.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Hong-Qing Li
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Zhong-Yu Ding
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei 230009
- China
| | - Xiao-Jin Lü
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Tao Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|