1
|
Chen XH, Xu YQ, Huang MG, Dong ZB, Li JW, Liu YJ. Cobalt/Salicylaldehyde-Enabled C-H Alkoxylation of Benzamides with Secondary Alcohols under Solvothermal Conditions. J Org Chem 2024; 89:9011-9018. [PMID: 38847456 DOI: 10.1021/acs.joc.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
C-O bond formation via C-H alkoxylation remains a challenge, especially coupling with a secondary alcohol, due to its low activity and sterically encumbered property. Here, we report a general and effective cobalt-catalyzed oxidative cross-coupling of benzamides with secondary alcohols via C-H alkoxylation reaction under solvothermal conditions, enabled by a salicylaldehyde/cobalt complex. The protocol features easy operation without additives, broad substrate scope, and excellent functional tolerance. The applicability is proven by the gram-scale synthesis and modification of natural products.
Collapse
Affiliation(s)
- Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yi-Qing Xu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhi-Bing Dong
- School of Chemistry Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
2
|
8-Aminoquinoline-containing squaric acid congeners as polarity and viscosity probes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Ji H, Wang Z, Zhan H, Fang Z, Zhang Q, Li D. Copper-catalyzed benzylic C–H amidation of toluene derivatives with N-(8-quinolyl)amides through C(sp3)–H/N–H cross dehydrogenative coupling. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Rao K, Chai Z, Zhou P, Liu D, Sun Y, Yu F. Transition-metal-free approach to quinolines via direct oxidative cyclocondensation reaction of N,N-dimethyl enaminones with o-aminobenzyl alcohols. Front Chem 2022; 10:1008568. [PMID: 36212061 PMCID: PMC9532769 DOI: 10.3389/fchem.2022.1008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
A transition-metal-free method for the construction of 3-substituted or 3,4-disubstituted quinolines from readily available N,N-dimethyl enaminones and o-aminobenzyl alcohols is reported. The direct oxidative cyclocondensation reaction tolerates broad functional groups, allowing the efficient synthesis of various quinolines in moderate to excellent yields. The reaction involves a C (sp3)-O bond cleavage and a C=N bind and a C=C bond formation during the oxidative cyclization process, and the mechanism was proposed.
Collapse
|
5
|
Huang MG, Shi S, Li M, Liu YJ, Zeng MH. Salicylaldehyde-Promoted Cobalt-Catalyzed C-H/N-H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue. Org Lett 2021; 23:7094-7099. [PMID: 34449224 DOI: 10.1021/acs.orglett.1c02502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A cobalt-catalyzed annulation of the C(sp2)-H/N-H bond of indoloamides with alkynes assisted by 8-aminoquinoline is reported for the synthesis of six-membered indololactams. The use of salicylaldehyde as the ligand is crucial for this transformation. The protocol has a broad scope for both alkynes and indoles. Preparing an active Co complex illustrates that salicylaldehyde plays a key role in the C-H activation step. The synthetic applications are proven by the gram-scale reaction and one-step construction of the multicyclic 5-HT3 receptor antagonist.
Collapse
Affiliation(s)
- Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming-Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
6
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
7
|
Strategic evolution in transition metal-catalyzed directed C–H bond activation and future directions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213683] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Mingo MM, Rodríguez N, Arrayás RG, Carretero JC. Remote C(sp 3)–H functionalization via catalytic cyclometallation: beyond five-membered ring metallacycle intermediates. Org Chem Front 2021. [DOI: 10.1039/d1qo00389e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite impressive recent momentum gained in C(sp3)–H activation, achieving high regioselectivity in molecules containing different C–H bonds with similar high energy without abusing tailored substitution remains as one of the biggest challenges.
Collapse
Affiliation(s)
- Mario Martínez Mingo
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| | - Nuria Rodríguez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| |
Collapse
|
9
|
Sen C, Sarvaiya B, Sarkar S, Ghosh SC. Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C-H Activation. J Org Chem 2020; 85:15287-15304. [PMID: 33141591 DOI: 10.1021/acs.joc.0c02120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A room-temperature C-H bond functionalization of benzamides has been developed by merging a photocatalyst with a cobalt catalyst for the synthesis of isoindolone spirosuccinimides. The reaction proceeds in aerobic conditions and does not require any sacrificial external oxidants such as Ag(I) or Mn(III) salts. Visible light activates the photocatalyst, and it acts as an electron-transfer reagent and helps in the fundamental organometallic steps by modulating the oxidation state of the cobalt complex. This C-H bond functionalization and spirocyclization showed wide substrate scope and good functional group tolerance. A possible reaction mechanism was proposed from the experimental outcome, showing that C-H bond activation is irreversible and not the rate-determining step.
Collapse
Affiliation(s)
- Chiranjit Sen
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavesh Sarvaiya
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Sarkar
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Ohara N, Rej S, Chatani N. Rh(I)-catalyzed Addition of the ortho C-H Bond in Aryl Sulfonamides to Maleimides. CHEM LETT 2020. [DOI: 10.1246/cl.200353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nozomi Ohara
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Remote C–H Functionalization of 8-Aminoquinoline Ring. Top Curr Chem (Cham) 2020; 378:42. [DOI: 10.1007/s41061-020-00303-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
|
12
|
Liu Y, Zhao B. Step-Economical C–H Activation Reactions Directed by In Situ Amidation. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Owing to the inherent ability of amides to chelate transition-metal catalysts, amide-directed C–H activation reactions constitute a major tactic in directed C–H activation reactions. While the conventional procedures for these reactions usually involve prior preparation and purification of amide substrates before the C–H activation, the step economy is actually undermined by the operation of installing the directing group (DG) and related substrate purification. In this context, directed C–H activation via in situ amidation of the crude material provides a new protocol that can significantly enhance the step economy of amide-directed C–H activation. In this short review, the advances in C–H bond activation reactions mediated or initiated by in situ amidation are summarized and analyzed.1 Introduction2 In Situ Amidation in Aryl C–H Bond Activation3 In Situ Amidation in Alkyl C–H Bond Activation4 Annulation Reactions via Amidation-Mediated C–H Activation5 Remote C–H Activation Mediated by Amidation6 Conclusion
Collapse
Affiliation(s)
- Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
| | - Baoli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
- Institute of Applied Chemistry and Department of Chemistry, Shaoxing University
| |
Collapse
|
13
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
14
|
Kumar V, Banert K, Ray D, Saha B. An atom-economical and regioselective metal-free C-5 chalcogenation of 8-aminoquinolines under mild conditions. Org Biomol Chem 2019; 17:10245-10250. [PMID: 31793609 DOI: 10.1039/c9ob02235j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A general and simple metal-free protocol for expedient C-H functionalization leading to the regioselective generation of C-5 chalcogenated 8-aminoquinoline analogues in up to 90% yield at room temperature (25 °C) has been established. This methodology is an eco-friendly approach to the atom-economical utilization of diaryl/dialkyl chalcogenides for direct access to chalcogenated quinolines and is scalable to the gram scale without considerable decrease in the yield of the product. It represents a practical alternative to the existing metal-catalyzed functionalization of 8-aminoquinoline derivatives with broad functional group tolerance. The controlled experiments suggest that the reaction possibly proceeds through an ionic pathway at room temperature. Furthermore, the potentiality for the functionalization of free amines in chalcogenated-8-aminoquinolines provides an attractive perspective for further elaboration of the amine substituent through chemical manipulations. The applicability of the standardized method has been augmented through late-stage antimalarial drug diversification of primaquine analogues.
Collapse
Affiliation(s)
- Vipin Kumar
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Klaus Banert
- Chemnitz University of Technology, Organic Chemistry, Strasse der Nationen 62, 09111 Chemnitz, Germany
| | - Devalina Ray
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|
15
|
Monier M, Abdel‐Latif D, El‐Mekabaty A, Elattar KM. Reactivity and stereoselectivity of oxazolopyridines with a ring‐junction nitrogen atom. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohamed Monier
- Chemistry Department, Faculty of ScienceTaibah University Yanbu Al‐Bahr Kingdom of Saudi Arabia
- Chemistry Department, Faculty of ScienceMansoura University Mansoura Egypt
| | - Doaa Abdel‐Latif
- Chemistry Department, Faculty of ScienceTaibah University Yanbu Al‐Bahr Kingdom of Saudi Arabia
- Chemistry Department, Faculty of ScienceMansoura University Mansoura Egypt
| | - Ahmed El‐Mekabaty
- Chemistry Department, Faculty of ScienceMansoura University Mansoura Egypt
| | - Khaled M. Elattar
- Chemistry Department, Faculty of ScienceMansoura University Mansoura Egypt
| |
Collapse
|
16
|
Benzai A, Shi X, Derridj F, Roisnel T, Doucet H, Soulé JF. Late-Stage Diversification of Imidazole-Based Pharmaceuticals through Pd-Catalyzed Regioselective C–H Bond Arylations. J Org Chem 2019; 84:13135-13143. [DOI: 10.1021/acs.joc.9b01469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amal Benzai
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
- Laboratoire de Physique et Chimie des Matériaux (LPCM), UMMTO University, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | - Xinzhe Shi
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
| | - Fazia Derridj
- Laboratoire de Physique et Chimie des Matériaux (LPCM), UMMTO University, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | | | - Henri Doucet
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
| | | |
Collapse
|
17
|
Hu W, Teng F, Hu H, Luo S, Zhu Q. Pd-Catalyzed C(sp 2)-H Imidoylative Annulation: A General Approach To Construct Dibenzoox(di)azepines. J Org Chem 2019; 84:6524-6535. [PMID: 31050283 DOI: 10.1021/acs.joc.9b00683] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A general method to construct the scaffolds of dibenzooxazepine and dibenzodiazepine, through Pd-catalyzed isocyanide insertion and intramolecular C(sp2)-H activation, has been developed. This is the first example of seven-membered heterocycle formation by C-H imidoylative annulation.
Collapse
Affiliation(s)
- Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| |
Collapse
|
18
|
Gao TH, Wang CM, Tang KX, Xu YG, Sun LP. Amide-Oxazoline Directed ortho
-C-H Nitration Mediated by CuII. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tian-Hong Gao
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Chun-Meng Wang
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Kai-Xiang Tang
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Yun-Gen Xu
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| |
Collapse
|
19
|
Cong Z, Gao F, Liu H. Ni(ii)-catalyzed mono-selective ortho-arylation of unactivated aryl C–H bonds utilizing amino acids as a directing group. RSC Adv 2019; 9:10820-10824. [PMID: 35515296 PMCID: PMC9062466 DOI: 10.1039/c9ra00749k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
The nickel(ii)-catalyzed ortho-arylation of unactivated C–H bonds utilizing amino acids as directing groups with aryl iodides or bromides as coupling electrophiles is described.
Collapse
Affiliation(s)
- Zhanqing Cong
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Feng Gao
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Hong Liu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
20
|
Liu X, Zhang H, Yang F, Wang B. Ruthenium-catalyzed remote C5-sulfonation of N-alkyl-8-aminoquinolines. Org Biomol Chem 2019; 17:7564-7568. [DOI: 10.1039/c9ob01357a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ruthenium-catalyzed remote C–H sulfonation of 8-aminoquinolines with single C5-selectivity.
Collapse
Affiliation(s)
- Xuri Liu
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing
- China
| | - Han Zhang
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing
- China
| | - Fanzhi Yang
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing
- China
| | - Bo Wang
- School of Chemistry and Chemical Engineering
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Institute of Technology
- Beijing
- China
| |
Collapse
|
21
|
Yamazaki K, Kommagalla Y, Ano Y, Chatani N. A computational study of cobalt-catalyzed C–H iodination reactions using a bidentate directing group with molecular iodine. Org Chem Front 2019. [DOI: 10.1039/c8qo01286e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A computational methodology was used to collect detailed mechanistic information on the cobalt-catalyzed C–H iodination of aromatic amides with molecular iodine using an N,N′-bidentate directing group.
Collapse
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Yadagiri Kommagalla
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Yusuke Ano
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Naoto Chatani
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| |
Collapse
|
22
|
Yamazaki K, Obata A, Sasagawa A, Ano Y, Chatani N. Computational Mechanistic Study on the Nickel-Catalyzed C–H/N–H Oxidative Annulation of Aromatic Amides with Alkynes: The Role of the Nickel (0) Ate Complex. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Obata
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akane Sasagawa
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Yu Q, Yang Y, Wan JP, Liu Y. Copper-Catalyzed C5–H Sulfenylation of Unprotected 8-Aminoquinolines Using Sulfonyl Hydrazides. J Org Chem 2018; 83:11385-11391. [DOI: 10.1021/acs.joc.8b01658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qing Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yiming Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
24
|
Asamdi M, Shaikh MM, Chauhan PM, Chikhalia KH. Palladium-catalyzed [5+2] oxidative annulation of N-Arylhydrazones with alkynes through C H activation to synthesize Benzo[d][1,2]diazepines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Chatani N. The Use of a Rhodium Catalyst/8-Aminoquinoline Directing Group in the C-H Alkylation of Aromatic Amides with Alkenes: Possible Generation of a Carbene Intermediate from an Alkene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170316] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871
| |
Collapse
|
26
|
Bai F, Zhang S, Wei L, Liu Y. Transition-Metal-Free Indole C3 Sulfenylation by KIO3
Catalysis. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Feicheng Bai
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P. R. China
| | - Shikun Zhang
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P. R. China
| | - Li Wei
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P. R. China
| |
Collapse
|
27
|
Kommagalla Y, Yamazaki K, Yamaguchi T, Chatani N. Cobalt(ii)-catalyzed chelation-assisted C–H iodination of aromatic amides with I2. Chem Commun (Camb) 2018; 54:1359-1362. [DOI: 10.1039/c7cc08457a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An air stable and inexpensive cobalt-metal, mild and efficient catalytic system.
Collapse
Affiliation(s)
- Yadagiri Kommagalla
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| | - Ken Yamazaki
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| | - Takuma Yamaguchi
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| | - Naoto Chatani
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
28
|
Chen H, Ye JL, Huang PQ. Chemoselective direct reductive trifluoromethylation of amides: a flexible access to functionalized α-trifluoromethylamines. Org Chem Front 2018. [DOI: 10.1039/c7qo01031a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot method is reported for the direct transformation of secondary amides to α-trifluoromethylamines.
Collapse
Affiliation(s)
- Hang Chen
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jian-Liang Ye
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Pei-Qiang Huang
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
29
|
Du Y, Wei L, Liu Y. One-pot reactions for the synthesis of 5-sulfonyl quinolines via domino N
-acylation and remote C-H sulfonylation. HETEROATOM CHEMISTRY 2017. [DOI: 10.1002/hc.21401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi Du
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Li Wei
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang China
| |
Collapse
|
30
|
Obata A, Ano Y, Chatani N. Nickel-catalyzed C-H/N-H annulation of aromatic amides with alkynes in the absence of a specific chelation system. Chem Sci 2017; 8:6650-6655. [PMID: 28989692 PMCID: PMC5625264 DOI: 10.1039/c7sc01750b] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/24/2017] [Indexed: 11/21/2022] Open
Abstract
The Ni-catalyzed reaction of aromatic amides with alkynes in the presence of KOBu t involves C-H/N-H oxidative annulation to give 1(2H)-isoquinolinones. A key to the success of the reaction is the use of a catalytic amount of strong base, such as KOBu t . The reaction shows a high functional group compatibility. The reaction with unsymmetrical alkynes, such as 1-arylalkynes, gives the corresponding 1(2H)-isoquinolinones with a high level of regioselectivity. This discovery would lead to the development of Ni-catalyzed chelation-assisted C-H functionalization reactions without the need for a specific chelation system.
Collapse
Affiliation(s)
- Atsushi Obata
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
31
|
Liu Y, Zhang Y, Wan JP. Multicomponent Synthesis of Diverse o-Arylated Benzamides via o-Aminophenol (OAP) Directed C(sp2)-H Arylation. J Org Chem 2017; 82:8950-8957. [DOI: 10.1021/acs.joc.7b01375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunyun Liu
- College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yi Zhang
- College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
32
|
Shibata K, Natsui S, Chatani N. Rhodium-Catalyzed Alkenylation of C–H Bonds in Aromatic Amides with Alkynes. Org Lett 2017; 19:2234-2237. [DOI: 10.1021/acs.orglett.7b00709] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaname Shibata
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoko Natsui
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry,
Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Liu Y, Huang M, Wei L. Selective Mono- and Di-C(aryl)−H Sulfenylation of Benzamides by One-Pot Assembly of 8-Aminoquinoline, Benzoyl chlorides, and Thiophenols. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yunyun Liu
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Meiying Huang
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Li Wei
- College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| |
Collapse
|
34
|
Liu Y, Zhang Y, Cao X, Wan JP. Synthesis of β-arylated alkylamides via Pd-catalyzed one-pot installation of a directing group and C(sp(3))-H arylation. Beilstein J Org Chem 2016; 12:1122-6. [PMID: 27340500 PMCID: PMC4902048 DOI: 10.3762/bjoc.12.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
The synthesis of β-arylated alkylamides via alkyl C-H bond arylation has been realized by means of direct one-pot reactions of acyl chlorides, aryl iodides and 8-aminoquinoline. Depending on the structure of the starting materials, both single and double β-arylated alkylamides could be accessed.
Collapse
Affiliation(s)
- Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 P. R. China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 P. R. China
| | - Xiaoji Cao
- Research Center of Analysis and Measurement, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 P. R. China
| |
Collapse
|