1
|
Budnikov AS, Krylov IB, Shevchenko MI, Sokova LL, Liu Y, Yu B, Terent'ev AO. Synthesis of ω-functionalized ketones from strained cyclic alcohols by ring-opening and cross-recombination between alkyl and N-oxyl radicals. Org Biomol Chem 2024; 22:8755-8763. [PMID: 39385714 DOI: 10.1039/d4ob01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radical ring-opening oxyimidation of cyclobutanols and cyclopropanols with the formation of ω-functionalized ketones was discovered. The oxidative C-O coupling proceeds via the interception of a primary alkyl radical generated from a cyclic alcohol with a reactive radical generated in situ, which is an electron-deficient N-oxyl radical. The developed conditions allow for the balanced generation rates of carbon- and N-oxyl radicals, which are necessary for their selective cross-recombination. Thus, typical competitive dimerization processes of carbon-centered radicals, their intermolecular cyclization, and N-oxyl radical self-decay are suppressed. The method is applicable to a wide range of cyclobutanols and results in oxyimidated ketones in yields of up to 82%.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Lyubov' L Sokova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Hanazawa N, Kuriyama M, Yamamoto K, Onomura O. Synthesis of ω-Chloroalkyl Aryl Ketones via C-C Bond Cleavage of tert-Cycloalkanols with Tetramethylammonium Hypochlorite. Molecules 2024; 29:1874. [PMID: 38675694 PMCID: PMC11055113 DOI: 10.3390/molecules29081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
An oxidative C-C bond cleavage of tert-cycloalkanols with tetramethylammonium hypochlorite (TMAOCl) has been developed. TMAOCl is easy to prepare from tetramethylammonium hydroxide, and the combination of TMAOCl and AcOH effectively promoted the C-C bond cleavage in a two-phase system without additional phase-transfer reagents. Unstrained tert-cycloalkanols were transformed into ω-chloroalkyl aryl ketones in moderate to excellent yields under metal-free and mild reaction conditions.
Collapse
Affiliation(s)
| | | | | | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan (M.K.); (K.Y.)
| |
Collapse
|
3
|
He K, Mei Y, Jin N, Liu Y, Pan F. Visible light-promoted difluoromethylthiolation of cycloalkanols by C-C bond cleavage. Org Biomol Chem 2024; 22:1782-1787. [PMID: 38329275 DOI: 10.1039/d3ob02078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A mild and general methodology for the difluoromethylthiolation of cycloalkanols has been developed by employing N-difluoromethylthiophthalimide as the SCF2H radical source, in combination with an acridinium-derived organo-photosensitizer, under redox-neutral conditions. This reaction protocol demonstrates high efficiency, scalability, and mild reaction conditions, thus presenting a green approach for the rapid synthesis of distal difluoromethylthiolated alkyl ketones that are challenging to be synthesized through alternative means.
Collapse
Affiliation(s)
- Kehan He
- School of Science, Xichang University, Xichang 615000, P. R. China.
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Na Jin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Yutao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.
| |
Collapse
|
4
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
5
|
Chen Y, Hee S, Liu X, Das S, Hong D, Leung PH, Li Y, Li J, Liu J. ICl-Mediated Functional Group Interconversion from Methyl Homopropargyl Ether to α-Iodo-γ-chloroketone. J Org Chem 2022; 87:15129-15138. [PMID: 36331559 PMCID: PMC10174042 DOI: 10.1021/acs.joc.2c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An ICl-mediated highly chemo- and regioselective functional group interconversion from methyl homopropargyl ether to α-iodo-γ-chloro-ketone is reported. Density functional theory (DFT)-calculated reaction coordinate and potential energy surface support the high chemo-selectivity observed for the formation of α-iodo-γ-chloroketone over furan. The five-membered oxonium ring formation-ring opening mechanism is a potential template for the preparation of polyfunctionalized carbonyl compounds.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| | - Samual Hee
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States
| | - Xiaochen Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling734 013, India
| | - Dongsub Hong
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States
| | - Pak-Hing Leung
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Jiaming Li
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| |
Collapse
|
6
|
Wang B, Zhong H, Tian X. KO tBu-promoted Michael/aldol/ring-opening cascade reaction of cyclobutanones with chalcones. Chem Commun (Camb) 2022; 58:9222-9225. [PMID: 35899611 DOI: 10.1039/d2cc03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Michael/aldol/ring-opening cascade reaction of cyclobutanones with chalcones has been developed. This protocol employs inexpensive potassium tert-butoxide (KOtBu) as a promoter and enables an efficient synthesis of densely substituted cyclohex-3-ene-carboxylic acids in high yields with high diastereoselectivities, which are difficult to prepare through conventional approaches. The significant advantages of this methodology include transition-metal-free conditions, readily available starting materials, wide scope and high atom economy.
Collapse
Affiliation(s)
- Biao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Han Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Xu Tian
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
7
|
Yang Z, Yang D, Zhang J, Tan C, Li J, Wang S, Zhang H, Huang Z, Lei A. Electrophotochemical Ce-Catalyzed Ring-Opening Functionalization of Cycloalkanols under Redox-Neutral Conditions: Scope and Mechanism. J Am Chem Soc 2022; 144:13895-13902. [PMID: 35861667 DOI: 10.1021/jacs.2c05520] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selective cleavage and functionalization of C-C bonds in alcohols is gaining increasing interest in organic synthesis and biomass conversion. In particular, the development of redox-neutral catalytic methods with cheap catalysts and clean energy is of utmost interest. In this work, we report a versatile redox-neutral method for the ring-opening functionalization of cycloalkanols by electrophotochemical (EPC) cerium (Ce) catalysis. The EPC-Ce-enabled catalysis allows for cycloalkanols with different ring sizes to be cleaved while tolerating a broad range of functional groups. Notably, in the presence of chloride as a counteranion and electrolyte, this protocol selectively leads to the formation of C-CN, C-C, C-S, or C-oxime bonds instead of a C-halide bond after β-scission. A preliminary mechanistic investigation indicates that the redox-active Ce catalyst can be tuned by electro-oxidation and photo-reduction, thus avoiding the use of an external oxidant. Spectroscopic characterizations (cyclic voltammetry, UV-vis, electron paramagnetic resonance, and X-ray absorption fine structure) suggest a Ce(III)/Ce(IV) catalytic pathway for this transformation, in which a Ce(IV)-alkoxide is involved.
Collapse
Affiliation(s)
- Zhaoliang Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Jianye Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Chenyu Tan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Jiajun Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhiliang Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Zhang Q, Yuan W, Shi Y, Pan F. Organophotocatalytic ring opening/remote trifluoromethylselenolation of cycloalkanols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Feng T, Liu C, Wu Z, Wu X, Zhu C. Redox-neutral manganese-catalyzed synthesis of 1-pyrrolines. Chem Sci 2022; 13:2669-2673. [PMID: 35340851 PMCID: PMC8890122 DOI: 10.1039/d2sc00015f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
This report describes a manganese-catalyzed radical [3 + 2] cyclization of cyclopropanols and oxime ethers, leading to valuable multi-functional 1-pyrrolines. In this redox-neutral process, the oxime ethers function as internal oxidants and H-donors. The reaction involves sequential rupture of C-C, C-H and N-O bonds and proceeds under mild conditions. This intermolecular protocol provides an efficient approach for the synthesis of structurally diverse 1-pyrrolines.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Canxiang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
10
|
Lindroth R, Ondrejková A, Wallentin CJ. Visible-Light Mediated Oxidative Fragmentation of Ethers and Acetals by Means of Fe(III) Catalysis. Org Lett 2022; 24:1662-1667. [PMID: 35192351 PMCID: PMC8902804 DOI: 10.1021/acs.orglett.2c00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
A new method employing
iron(III) acetylacetonate along with visible
light is described to effect oxidative ring opening of cyclic ethers
and acetals with unparalleled efficiency. The method allows for a
photocatalytic radical chemistry approach to functionalize relatively
inert cyclic ethers into useful synthetic intermediates. The methodology
sheds further light on the use of underexplored iron complexes in
visible-light photochemical contexts and illustrates that simple Fe(III)
complexes can initiate redox processes from 4LMCT excited
states.
Collapse
Affiliation(s)
- Rickard Lindroth
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Alica Ondrejková
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Carl-Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Xue T, Zhang Z, Zeng R. Photoinduced Ligand-to-Metal Charge Transfer (LMCT) of Fe Alkoxide Enabled C-C Bond Cleavage and Amination of Unstrained Cyclic Alcohols. Org Lett 2022; 24:977-982. [PMID: 35029409 DOI: 10.1021/acs.orglett.1c04365] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report an alkoxy radical process for the C-C bond cleavage and functionalization of unstrained tertiary and secondary cyclic alcohols. In the absence of a chlorine atom, the readily available iron catalysts [Fe(OBu-t)3 or Fe(acac)3/t-BuONa] facilitate alkoxy radical formation via the direct ligand-to-metal charge transfer of Fe alkoxide and further enable the ring opening and amination of cyclic alcohols. The remote amino carbonyl compounds could be obtained with a broad scope in up to excellent yields under the mildly redox-neutral system. Light-driven electron transfer, alkoxy radical formation, and subsequent C-C bond cleavage via β-scission were the keys to the transformation.
Collapse
Affiliation(s)
- Ting Xue
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zongnan Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
12
|
Wang K, Zeng R. Photoinduced Fe-Catalyzed Bromination and Iodination of Unstrained Cyclic Alcohols. Org Chem Front 2022. [DOI: 10.1039/d2qo00709f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a photoinduced iron catalysis for the efficient C─C bond cleavage and bromination or iodination of unstrained tertiary cycloalkanols with NBS/NIS. The reaction features good functional group tolerance and...
Collapse
|
13
|
Zou JP, Li CK, Shoberu A. Silver-Catalyzed Radical Ring-Opening of Cycloalkanols for the Synthesis of distal acylphosphine oxides. Org Chem Front 2022. [DOI: 10.1039/d2qo00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel silver-catalyzed ring-opening approach for the regioselective synthesis of distal acylphosphine oxides is described. A variety of distal acylphosphine oxides were prepared from the reaction of tertiary cycloalkanols (4...
Collapse
|
14
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
15
|
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| | - Julian G. West
- Department of Chemistry, Rice University, 6500 Main St., Houston, Texas 77005, United States
| |
Collapse
|
16
|
Kinouchi H, Sugimoto K, Yamaoka Y, Takikawa H, Takasu K. Oxidative β-Cleavage of Fused Cyclobutanols Leading to Hydrofuran-Fused Polycyclic Aromatic Compounds. J Org Chem 2021; 86:12615-12622. [PMID: 34474562 DOI: 10.1021/acs.joc.1c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of aryl-fused bicyclo[4.2.0]octanols with an oxidant such as phenyliodine diacetate (PIDA) or hypochlorous acid gave dihydrofuran-containing polycyclic aromatic compounds by selective β-cleavage of the cyclobutanol moiety. Mechanistic studies suggest that the oxygen atom of the hydrofuran ring is incorporated from the hydroxy group of the substrate via intramolecular addition. The oxidative transformation should serve as a new method to prepare functionalized polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Hayate Kinouchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Sugimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Takikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Yamamoto K, Toguchi H, Kuriyama M, Watanabe S, Iwasaki F, Onomura O. Electrophotochemical Ring-Opening Bromination of tert-Cycloalkanols. J Org Chem 2021; 86:16177-16186. [PMID: 34461014 DOI: 10.1021/acs.joc.1c01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An electrophotochemical ring-opening bromination of unstrained tert-cycloalkanols has been developed. This electrophotochemical method enables the oxidative transformation of cycloalkanols with 5- to 7-membered rings into synthetically useful ω-bromoketones without the use of chemical oxidants or transition-metal catalysts. Alkoxy radical species would be key intermediates in the present transformation, which generate through homolysis of the O-Br bond in hypobromite intermediates under visible light irradiation.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroyuki Toguchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shin Watanabe
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Fumiaki Iwasaki
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
18
|
Liu S, Bai M, Xu PF, Sun QX, Duan XH, Guo LN. Copper-catalyzed radical ring-opening halogenation with HX. Chem Commun (Camb) 2021; 57:8652-8655. [PMID: 34373865 DOI: 10.1039/d1cc03013b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient copper-catalyzed radical ring-opening halogenation with HX (aq) is described. This protocol features redox-neutral conditions, green halogen sources, and a broad substrate scope, providing practical access to distally chlorinated, brominated and iodinated alkyl ketones and alkyl nitriles with moderate to good yields.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | |
Collapse
|
19
|
Zhang Z, Zhang G, Xiong N, Xue T, Zhang J, Bai L, Guo Q, Zeng R. Oxidative α-C-C Bond Cleavage of 2° and 3° Alcohols to Aromatic Acids with O 2 at Room Temperature via Iron Photocatalysis. Org Lett 2021; 23:2915-2920. [PMID: 33769053 DOI: 10.1021/acs.orglett.1c00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The selective α-C-C bond cleavage of unfunctionalized secondary (2°) and tertiary alcohols (3°) is essential for valorization of macromolecules and biopolymers. We developed a blue-light-driven iron catalysis for aerobic oxidation of 2° and 3° alcohols to acids via α-C-C bond cleavages at room temperature. The first example of oxygenation of the simple tertiary alcohols was reported. The iron catalyst and blue light play critical roles to enable the formation of highly reactive O radicals from alcohols and the consequent two α-C-C bond cleavages.
Collapse
|
20
|
Ratsch F, Strache JP, Schlundt W, Neudörfl J, Adler A, Aziz S, Goldfuss B, Schmalz H. Enantioselective Cleavage of Cyclobutanols Through Ir-Catalyzed C-C Bond Activation: Mechanistic and Synthetic Aspects. Chemistry 2021; 27:4640-4652. [PMID: 33314360 PMCID: PMC7986405 DOI: 10.1002/chem.202004843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The Ir-catalyzed conversion of prochiral tert-cyclobutanols to β-methyl-substituted ketones proceeds under comparably mild conditions in toluene (45-110 °C) and is particularly suited for the enantioselective desymmetrization of β-oxy-substituted substrates to give products with a quaternary chirality center with up to 95 % ee using DTBM-SegPhos as a chiral ligand. Deuteration experiments and kinetic isotope effect measurements revealed major mechanistic differences to related RhI -catalyzed transformations. Supported by DFT calculations we propose the initial formation of an IrIII hydride intermediate, which then undergoes a β-C elimination (C-C bond activation) prior to reductive C-H elimination. The computational model also allows the prediction of the stereochemical outcome. The Ir-catalyzed cyclobutanol cleavage is broadly applicable but fails for substrates bearing strongly coordinating groups. The method is of particular value for the stereo-controlled synthesis of substituted chromanes related to the tocopherols and other natural products.
Collapse
Affiliation(s)
- Friederike Ratsch
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Joss Pepe Strache
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Waldemar Schlundt
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | | | - Andreas Adler
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Sarwar Aziz
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of CologneGreinstraße 450939KölnGermany
| | | |
Collapse
|
21
|
Wang J, Liu X, Wu Z, Li F, Zhang ML, Mi Y, Wei J, Zhou Y, Liu L. Ag-Catalyzed ring-opening of tertiary cycloalkanols for C-H functionalization of cyclic aldimines. Chem Commun (Camb) 2021; 57:1506-1509. [PMID: 33443251 DOI: 10.1039/d0cc07181a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We firstly describe a silver-catalyzed direct C-H functionalization of cyclic aldimines with cyclopropanols and cyclobutanols via a radical-mediated C-C bond cleavage strategy. The desired products were generated in decent yields with wide substrate scope under mild reaction conditions. In addition, a gram-scale reaction and synthetic transformation of the product were performed.
Collapse
Affiliation(s)
- Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Xue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Ming-Liang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yiman Mi
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Junhao Wei
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China.
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China. and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
22
|
An Z, Liu Y, Sun Y, Yan R. TFA-Catalyzed [3+2] Spiroannulation of Cyclobutanols: A Route to Spiro[cyclobuta[a]indene-7,1'-cyclobutane] Skeletons. Chem Asian J 2020; 15:3812-3815. [PMID: 32997399 DOI: 10.1002/asia.202001048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Indexed: 12/15/2022]
Abstract
A straightforward method for the synthesis of spiro[cyclobuta[a]indene-7,1'-cyclobutane] derivatives from cyclobutanols has been developed via one-pot [3+2] spiroannulation. A series of new spiro[cyclobuta[a]indene-7,1'-cyclobutane] derivatives are facilely synthesized in good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yafeng Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750000, P. R. China
| | - Yanwei Sun
- Research Institute of Exploration & Development, Tuha Oilfield Company, Xinjiang, 830000, P. R. China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
23
|
Tsui E, Wang H, Knowles RR. Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem Sci 2020; 11:11124-11141. [PMID: 33384861 PMCID: PMC7747465 DOI: 10.1039/d0sc04542j] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alkoxy radicals have long been recognized as powerful synthetic intermediates with well-established reactivity patterns. Due to the high bond dissociation free energy of aliphatic alcohol O-H bonds, these radicals are difficult to access through direct homolysis, and conventional methods have instead relied on activation of O-functionalized precursors. Over the past decade, however, numerous catalytic methods for the direct generation of alkoxy radicals from simple alcohol starting materials have emerged and created opportunities for the development of new transformations. This minireview discusses recent advances in catalytic alkoxy radical generation, with particular emphasis on progress toward the direct activation of unfunctionalized alcohols enabled by transition metal and photoredox catalysis.
Collapse
Affiliation(s)
- Elaine Tsui
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Huaiju Wang
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Robert R Knowles
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| |
Collapse
|
24
|
Abstract
This article reviews synthetic transformations involving cleavage of a carbon-carbon bond of a four-membered ring, with a particular focus on the examples reported during the period from 2011 to the end of 2019. Most significant is the progress of catalytic reactions involving oxidative addition of carbon-carbon bonds onto transition metals or β-carbon elimination of transition metal alkoxides. When they are looked at from synthetic perspectives, they offer unique and efficient methods to build complex natural products and structures that are difficult to construct by conventional methods. On the other hand, β-scission of radical intermediates has also attracted increasing attention as an alternative elementary step to cleave carbon-carbon bonds. Its site-selectivity is often complementary to that of transition metal-catalyzed reactions. In addition, Lewis acid-mediated and thermally induced ring-opening of cyclobutanone derivatives has garnered renewed attention. On the whole, these examples demonstrate unique synthetic potentials of structurally strained four-membered ring compounds for the construction of organic skeletons.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Shi JL, Wang Y, Wang Z, Dou B, Wang J. Ring-opening iodination and bromination of unstrained cycloalkanols through β-scission of alkoxy radicals. Chem Commun (Camb) 2020; 56:5002-5005. [DOI: 10.1039/d0cc01720e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ring-opening iodination or bromination of unstrained cycloalkanols with NaI or NaBr and PhI(OAc)2 under visible light irradiation is developed.
Collapse
Affiliation(s)
- Jiang-Ling Shi
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yuankai Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Zixuan Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Bowen Dou
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
26
|
Allen BDW, Hareram MD, Seastram AC, McBride T, Wirth T, Browne DL, Morrill LC. Manganese-Catalyzed Electrochemical Deconstructive Chlorination of Cycloalkanols via Alkoxy Radicals. Org Lett 2019; 21:9241-9246. [PMID: 31687826 PMCID: PMC7007279 DOI: 10.1021/acs.orglett.9b03652] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A manganese-catalyzed
electrochemical deconstructive chlorination
of cycloalkanols has been developed. This electrochemical method provides
access to alkoxy radicals from alcohols and exhibits a broad substrate
scope, with various cyclopropanols and cyclobutanols converted into
synthetically useful β- and γ-chlorinated ketones (40
examples). Furthermore, the combination of recirculating flow electrochemistry
and continuous inline purification was employed to access products
on a gram scale.
Collapse
Affiliation(s)
- Benjamin D W Allen
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Mishra Deepak Hareram
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Alex C Seastram
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Tom McBride
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Thomas Wirth
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Duncan L Browne
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Louis C Morrill
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| |
Collapse
|
27
|
Meyer T, Yin Z, Wu XF. Manganese-catalyzed ring-opening carbonylation of cyclobutanol derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Wu X, Zhu C. Recent advances in alkoxy radical-promoted C–C and C–H bond functionalization starting from free alcohols. Chem Commun (Camb) 2019; 55:9747-9756. [DOI: 10.1039/c9cc04785a] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article summarizes our recent achievements in alkoxy radical-promoted C–C and C–H bond functionalization starting from free alcohols.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
29
|
Guo J, Xu X, Xing Q, Gao Z, Gou J, Yu B. Furfuryl Cation Induced Cascade Formal [3 + 2] Cycloaddition/Double Ring-Opening/Chlorination: An Approach to Chlorine-Containing Complex Triazoles. Org Lett 2018; 20:7410-7414. [PMID: 30412412 DOI: 10.1021/acs.orglett.8b03121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A TiCl4-promoted cascade formal [3 + 2] cycloaddition/double ring-opening/chlorination of 2-furylcyclobutanols with alkyl or aryl azides is described. This highly efficient transformation involves the formation/cleavage of several C-N, C-Cl, C-C, and C-O bonds in a single operation. It enables the quick construction of trisubstituted 1,2,3-triazoles with an ( E)-enone moiety and a 3-chloropropyl unit. The chlorinated products are readily transformed into other structurally diverse analogues.
Collapse
Affiliation(s)
- Jiawei Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical , Shaanxi Normal University , Xi'an 710062 , China
| | - Xiaoming Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical , Shaanxi Normal University , Xi'an 710062 , China
| | - Qingzhao Xing
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical , Shaanxi Normal University , Xi'an 710062 , China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical , Shaanxi Normal University , Xi'an 710062 , China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices , Shaanxi Normal University , Xi'an 710062 , China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical , Shaanxi Normal University , Xi'an 710062 , China
| |
Collapse
|
30
|
Wang D, Mao J, Zhu C. Visible light-promoted ring-opening functionalization of unstrained cycloalkanols via inert C-C bond scission. Chem Sci 2018; 9:5805-5809. [PMID: 30079191 PMCID: PMC6050598 DOI: 10.1039/c8sc01763h] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Described herein is a novel, useful, visible light-promoted ring-opening functionalization of unstrained cycloalkanols. Upon scission of an inert cyclic C-C σ-bond, a set of medium- and large-sized rings are readily brominated under mild reaction conditions to afford the corresponding distal bromo-substituted alkyl ketones that are hard to synthesize otherwise. The products are versatile building blocks, which are easily converted to other valuable molecules in one-step operation. This protocol is also applicable to the unprecedented ring-opening cyanation and alkynylation of unstrained cycloalkanols.
Collapse
Affiliation(s)
- Dongping Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province , College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou , Jiangsu 215123 , China .
| | - Jincheng Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province , College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou , Jiangsu 215123 , China .
- Key Laboratory of Synthetic Chemistry of Natural Substances , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
31
|
Zhao R, Yao Y, Zhu D, Chang D, Liu Y, Shi L. Visible-Light-Enhanced Ring Opening of Cycloalkanols Enabled by Brønsted Base-Tethered Acyloxy Radical Induced Hydrogen Atom Transfer-Electron Transfer. Org Lett 2018; 20:1228-1231. [DOI: 10.1021/acs.orglett.8b00161] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rong Zhao
- Shenzhen
Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuan Yao
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dan Zhu
- Shenzhen
Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Denghu Chang
- Shenzhen
Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yang Liu
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Lei Shi
- Shenzhen
Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
32
|
Wu X, Zhu C. Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage. CHEM REC 2018; 18:587-598. [DOI: 10.1002/tcr.201700090] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road, Suzhou Jiangsu 215123 China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
33
|
Ai W, Liu Y, Wang Q, Lu Z, Liu Q. Cu-Catalyzed Redox-Neutral Ring Cleavage of Cycloketone O-Acyl Oximes: Chemodivergent Access to Distal Oxygenated Nitriles. Org Lett 2018; 20:409-412. [DOI: 10.1021/acs.orglett.7b03707] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenying Ai
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaqian Liu
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Qian Wang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhonglin Lu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiang Liu
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Xu B, Wang D, Hu Y, Shen Q. Silver-catalyzed ring-opening difluoromethylthiolation/trifluoromethylthiolation of cycloalkanols with PhSO2SCF2H or PhSO2SCF3. Org Chem Front 2018. [DOI: 10.1039/c8qo00115d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silver-catalyzed ring-opening difluoromethylthiolation/trifluoromethylthiolation of cycloalkanols including cyclopropanols, cyclobutanols, cyclopentanols, cyclohexanols and cycloheptanols was described.
Collapse
Affiliation(s)
- Bin Xu
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Decai Wang
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Yonghong Hu
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy Sciences
- Chinese Academy of Sciences
| |
Collapse
|
35
|
Affiliation(s)
- Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| |
Collapse
|
36
|
Mao W, Zhu C. C–C Bond (Hetero)arylation of Ring-Fused Benzocyclobutenols and Application in the Assembly of Polycyclic Aromatic Hydrocarbons. J Org Chem 2017; 82:9133-9143. [DOI: 10.1021/acs.joc.7b01727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenbin Mao
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
37
|
Wang M, Wu Z, Zhu C. Ring-opening selenation of cyclobutanols: synthesis of γ-selenylated alkyl ketones through C–C bond cleavage. Org Chem Front 2017. [DOI: 10.1039/c6qo00744a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient, practical, and operationally simple manganese-mediated ring-opening selenation of cyclobutanols is disclosed.
Collapse
Affiliation(s)
- Mingyang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|