1
|
Li S, Zhang Q, Wang Y, Lin B, Li D, Hua H, Hu X. β-Carboline alkaloids from the roots of Peganum harmala L. Chin J Nat Med 2024; 22:171-177. [PMID: 38342569 DOI: 10.1016/s1875-5364(24)60583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Indexed: 02/13/2024]
Abstract
This study reports the isolation of four new β-carboline alkaloids (1-4) and six previously identified alkaloids (5-10) from the roots of Peganum harmala L. Among these compounds, 1 and 2 were characterized as rare β-carboline-quinazoline dimers exhibiting axial chirality. Compound 3 possessed a unique 6/5/6/7 tetracyclic ring system with an azepine ring, and compound 4 was a novel annomontine β-carboline. The structures of these compounds were elucidated by spectroscopic data and quantum mechanical calculations. The biosynthetic pathways of 1-3 were proposed. Additionally, the cytotoxicity of some isolates against four cancer cell lines (HL-60, A549, MDA-MB-231, and DU145) was evaluated. Notably, compound 4 exhibited significant cytotoxicity against HL-60, A549, and DU145 cells with IC50 values of 12.39, 12.80, and 30.65 μmol·L-1, respectively. Furthermore, compound 2 demonstrated selective cytotoxicity against HL-60 cells with an IC50 value of 17.32 μmol·L-1.
Collapse
Affiliation(s)
- Shengge Li
- Henan Key Laboratory of Zhang Zhongjing Formulate and Herbs for Immunoregulation, Zhang Zhongjing Traditional School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Qin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuetong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xu Hu
- Henan Key Laboratory of Zhang Zhongjing Formulate and Herbs for Immunoregulation, Zhang Zhongjing Traditional School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China.
| |
Collapse
|
2
|
Li LN. Peganum harmala L.: A Review of Botany, Traditional Use, Phytochemistry, Pharmacology, Quality Marker, and Toxicity. Comb Chem High Throughput Screen 2024; 27:797-822. [PMID: 37350001 DOI: 10.2174/1386207326666230622164243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Peganum harmala L. is a perennial herb of Peganum in Zygophyllaceae family. It has been used as a national medicinal herb with the efficacy of strengthening muscle, warming stomach, dispelling cold, and removing dampness in Chinese folk. Clinically, it is mainly used to treat diseases such as weak muscles and veins, joint pain, cough and phlegm, dizziness, headache, and irregular menstruation. METHODS The relevant information about P. harmala L. in this review is based on online databases, including Elsevier, Willy, Web of Science, PubMed, ScienceDirect, SciFinder, SpringLink, Google Scholar, Baidu Scholar, ACS publications, SciHub, Scopus, and CNKI. The other information was acquired from ancient books and classical works about P. harmala L. RESULTS P. harmala L. is an important medicinal plant with a variety of traditional uses according to the theory of Chinese medicine. Phytochemical research revealed that P. harmala L. contained alkaloids, volatile oils, flavonoids, triterpenoids, coumarins, lignins, anthraquinones. Modern studies showed P. harmala L. possessed multiple bioactivities, including anti-cancer, neuroprotective, anti-bacterial, anti-inflammatory, hypoglycemic, anti-hypertensive, anti-asthmatic, and insecticidal activities. Furthermore, the contents of the quality marker and toxicity of P. harmala L. were summarized and analyzed in this review. CONCLUSION The botany, traditional use, phytochemistry, pharmacology, quality marker, and toxicity of P. harmala L. were reviewed in this paper. It will not only provide an important clue for further studying P. harmala L., but also supply an important theoretical basis and valuable reference for in-depth research and exploitations of this plant in the future.
Collapse
Affiliation(s)
- Ling-Na Li
- Department of Pharmacy and Biotechnology, Zibo Vocational Institute, Zibo, China
| |
Collapse
|
3
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Shang XF, Morris-Natschke SL, Liu YQ, Li XH, Zhang JY, Lee KH. Biology of quinoline and quinazoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 88:1-47. [PMID: 35305754 DOI: 10.1016/bs.alkal.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted scientific and popular interest worldwide since the 19th century. More than 600 compounds have been isolated from nature to date. To build on our two prior reviews, we reexamined the promising molecules described in previous reports and provided updated literature on novel quinoline and quinazoline alkaloids isolated over the past 5 years. This chapter reviews and discusses 205 molecules with a broad range of bioactivities, including antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, and other effects. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China; School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China.
| | - Xiu-Hui Li
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China.
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Li SG, Hu X, Zhang Q, Zan YH, Wang KB, Jiang CY, Xue JJ, Liu YX, Lin B, Jing YK, Li DH, Hua HM. (±)-Pheharmines A–B, two pairs of racemic alkaloids with a morpholino[4,3,2- hi]β-carboline core, from the roots of Peganum harmala. Org Biomol Chem 2022; 20:8528-8532. [DOI: 10.1039/d2ob01608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two pairs of unprecedented β-carboline-phenylpropanoid alkaloids, (±)-pheharmines A–B (1–4), characterized by a morpholino[4,3,2-hi]β-carboline core with two chiral centers, were isolated from the roots of Peganum harmala.
Collapse
Affiliation(s)
- Sheng-Ge Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Henan Key Laboratory of Zhang Zhongjing Formulate and Herbs for Immunoregulation, Zhang Zhongjing Traditional School of Chinese Medicine of Nanyang Institute of Technology, Nanyang 473004, P. R. China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Henan Key Laboratory of Zhang Zhongjing Formulate and Herbs for Immunoregulation, Zhang Zhongjing Traditional School of Chinese Medicine of Nanyang Institute of Technology, Nanyang 473004, P. R. China
| | - Qin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yan-Hui Zan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Kai-Bo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chun-Yu Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jing-Jing Xue
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yong-Xiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Lin
- School of Pharmaceutical Engineering, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yong-Kui Jing
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
7
|
Liu Z, Wang M, Tian M, Yuan L, Yu B, Qu B, An T, Feng Y. Pyrrole alkaloids from Solanum rostratum and their chemical defense function against Henosepilachna vigintioctomaculata. Fitoterapia 2021; 155:105031. [PMID: 34509535 DOI: 10.1016/j.fitote.2021.105031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Three pairs of novel enantiomeric pyrrole alkaloids (1a/1b, 2a/2b, 3a/3b) were isolated from the leaves of Solanum rostratum and their structures were determined via NMR analyses and ECD calculation. All the enantiomers displayed different levels of antifeedant and growth-inhibitory activities against Henosepilachna vigintioctomaculata (a noxious herbivore for Solanaceae), especially 1a and 2a. Interestingly, the results showed enantioselectivity, in which that the pyrrole alkaloids with R configuration at C-2' showed stronger chemical defense function than their enantiomers.
Collapse
Affiliation(s)
- Zhixiang Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Meiqi Wang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Maoxiong Tian
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Linlin Yuan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Baimiao Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Bo Qu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Tong An
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Yulong Feng
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
8
|
Peganum spp.: A Comprehensive Review on Bioactivities and Health-Enhancing Effects and Their Potential for the Formulation of Functional Foods and Pharmaceutical Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5900422. [PMID: 34257813 PMCID: PMC8260309 DOI: 10.1155/2021/5900422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.
Collapse
|
9
|
Jalali A, Dabaghian F, Zarshenas MM. Alkaloids of Peganum harmala: Anticancer Biomarkers with Promising Outcomes. Curr Pharm Des 2021; 27:185-196. [PMID: 33238864 DOI: 10.2174/1381612826666201125103941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious and growing global health issue worldwide. In the cancerous cells, the normal cell cycle has been disrupted via a series of irreversible changes. Recently, the investigations on herbal medicine and clarifying the phytochemicals potential in treat cancer has been increased. The combination of phytochemicals with conventional cancer treatment approaches can improve outcomes via advancing cell death, restraining cell proliferation and invasion, sensitizing cancerous cells, and promoting the immune system. Therefore, phytochemicals can be introduced as relevant complementary medicaments in cancer therapy. Peganum harmala L. (Zygophyllaceae) as a valuable medicinal herb, possesses various alkaloid ingredient. OBJECTIVE Pointing to the importance of new avenues for cancer management and P. harmala convincing effect in this field, this review strived to collect a frame to epitome possible scopes to develop novel medicines in cancer treatment. METHODS Keywords "Peganum harmala" and cancer, or chemotherapy, or anti-neoplasm were searched through the "Scopus" database up to 29th of February 2020. Papers linking to agriculture, chemistry, environmental, and genetics sciences were omitted and, papers centered on cancer were selected. RESULTS AND DISCUSSION In the current study, 42 related papers to cancer treatment and 22 papers on alkaloid bioactive components are collected from 72 papers. The β-carboline alkaloids derived from P. harmala, especially harmine, demonstrate notable anticancer properties by targeting apoptosis, autophagy, abnormal cell proliferation, angiogenesis, metastasis, and cytotoxicity. Based on the collected information, P. harmala holds significant anticancer activity. Considering the mechanism of the various anticancer drugs and their acting similarity to P. harmala, the alkaloids derived from this herb, particularly harmine, can introduce as a novel anticancer medicine solely or in adjuvant cancer therapy.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dabaghian
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Beato A, Gori A, Boucherle B, Peuchmaur M, Haudecoeur R. β-Carboline as a Privileged Scaffold for Multitarget Strategies in Alzheimer's Disease Therapy. J Med Chem 2021; 64:1392-1422. [PMID: 33528252 DOI: 10.1021/acs.jmedchem.0c01887] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural β-carboline alkaloids display similarities with neurotransmitters that can be favorably exploited to design bioactive and bioavailable drugs for Alzheimer's disease (AD) therapy. Several AD targets are currently and intensively being investigated, divided in different hypotheses: mainly the cholinergic, the amyloid β (Aβ), and the Tau hypotheses. To date, only symptomatic treatments are available involving acetylcholinesterase and NMDA inhibitors. On the basis of plethoric single-target structure-activity relationship studies, the β-carboline scaffold was identified as a powerful tool for fostering activity and molecular interactions with a wide range of AD-related targets. This knowledge can undoubtedly be used to design multitarget-directed ligands, a highly relevant strategy preferred in the context of multifactorial pathology with intricate etiology such as AD. In this review, we first individually discuss the AD targets of the β-carbolines, and then we focus on the multitarget strategies dedicated to the deliberate design of new efficient scaffolds.
Collapse
Affiliation(s)
| | - Anthonin Gori
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France.,CHANEL Parfums Beauté, F-93500 Pantin, France
| | | | | | | |
Collapse
|
11
|
Miao X, Zhang X, Yuan Y, Zhang Y, Gao J, Kang N, Liu X, Wu J, Liu Y, Tan P. The toxicity assessment of extract of Peganum harmala L. seeds in Caenorhabditis elegans. BMC Complement Med Ther 2020; 20:256. [PMID: 32807143 PMCID: PMC7433056 DOI: 10.1186/s12906-020-03051-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peganum harmala L. is a medicinal herb extensively used in traditional Chinese medicine (TCM). So far, relevant reports on the toxicity of Peganum harmala L. seeds (PHS) are hardly available. Especially, we still know little about the in vivo mechanism for PHS toxicity. This study aims to evaluate the toxicity effects of PHS in Caenorhabditis elegans (C. elegans), investigate the possible mechanism of the toxicity effects of PHS, and provide reference for the pharmacological research of PHS. METHODS In the present study, the C. elegans was exposed to 0.25, 0.50, 1.00 mg/mL of PHS in nematode growth medium (NGM) at 22 °C in the presence of food. Lethality, lifespan, growth, reproduction, and locomotion behavior assays were performed to evaluate the toxicity effects of PHS in C. elegans. We then determined the mechanism of the toxicity effect of PHS by quantitative real-time polymerase chain reaction (qRT-PCR), acetylcholinesterase (AChE) activity assay, and oxidative stress resistance assays. The main components of PHS were detected by high performance liquid chromatography (HPLC). RESULTS Compared with the control group, the lethality of C. elegans was significantly increased when they were exposed to the ethanol extract of PHS at 0.25, 0.50 and 1.00 mg/mL (P < 0.01), and the mean lifespan was significantly decreased (P < 0.01). We also observed that PHS exposure could induce the toxicity on body length, brood size, and locomotion behavior. CONCLUSION Our study shows that the ethanol extract of PHS exerts obvious toxic effects on C. elegans, which would provide new ideas and methods for the biological evaluation of the toxicity of Chinese medicinal materials.
Collapse
Affiliation(s)
- Xiangzhen Miao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Xiao Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Yanyan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Yali Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Jian Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Nianxin Kang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Xinkui Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Jiarui Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Yonggang Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Peng Tan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
12
|
Shang XF, Morris-Natschke SL, Yang GZ, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Zhang JY, Lee KH. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev 2018; 38:1614-1660. [PMID: 29485730 DOI: 10.1002/med.21492] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
To follow-up on our prior Part I review, this Part II review summarizes and provides updated literature on novel quinoline and quinazoline alkaloids isolated during the period of 2009-2016, together with the biological activity and the mechanisms of action of these classes of natural products. Over 200 molecules with a broad range of biological activities, including antitumor, antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, hepatoprotective, antioxidant, anti-asthma, antitussive, and other activities, are discussed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China.,School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining, P.R. China
| | - Xiao-Shan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ji-Yu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Wang KB, Hu X, Li SG, Li XY, Li DH, Bai J, Pei YH, Li ZL, Hua HM. Racemic indole alkaloids from the seeds of Peganum harmala. Fitoterapia 2018; 125:155-160. [PMID: 29355750 DOI: 10.1016/j.fitote.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Five pairs of new 2-oxoindole alkaloids, (±)-peganumalines A-E (1-5), and a new indole alkaloid, peganumaline F (6), along with two known analogues, were isolated from the seeds of Peganum harmala. Their structures and absolute configurations were elucidated through spectroscopic analyses and quantum chemistry calculations. Notably, (±)-peganumalines A (1) represent a pair of rare 2-oxoindole dimeric alkaloid enantiomer with the hitherto unknown carbon skeleton. All isolates were tested for antiproliferative and antibacterial activities.
Collapse
Affiliation(s)
- Kai-Bo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Sheng-Ge Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xin-Yu Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue-Hu Pei
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
14
|
Liu X, Li M, Tan S, Wang C, Fan S, Huang C. Harmine is an inflammatory inhibitor through the suppression of NF-κB signaling. Biochem Biophys Res Commun 2017; 489:332-338. [DOI: 10.1016/j.bbrc.2017.05.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
|
15
|
Li S, Cheng X, Wang C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:127-162. [PMID: 28359849 DOI: 10.1016/j.jep.2017.03.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Peganum have a long history as a Chinese traditional medicine for the treatment of cough, hypertension, diabetes, asthma, jaundice, colic, lumbago, and many other human ailments. Additionally, the plants can be used as an amulet against evil-eye, dye and so on, which have become increasingly popular in Asia, Iran, Northwest India, and North Africa. AIM OF THE REVIEW The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interaction of the genus Peganum in order to assess the ethnopharmacological use and to explore therapeutic potentials and future opportunities for research. MATERIALS AND METHODS Information on studies of the genus Peganum was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pudmed, Web of Science, CNKI and EMBASE) and libraries. Additionally, information was also obtained from some local books, PhD and MS's dissertations. RESULTS The genus Peganum has played an important role in traditional Chinese medicine. The main bioactive metabolites of the genus include alkaloids, flavonoids, volatile oils, etc. Scientific studies on extracts and formulations revealed a wide range of pharmacological activities, such as cholinesterase and monoamine oxidase inhibitory activities, antitumor, anti-hypertension, anticoagulant, antidiabetic, antimicrobial, insecticidal, antiparasidal, anti-leishmaniasis, antioxidant, and anti-inflammatory. CONCLUSIONS Based on this review, there is some evidence for extracts' pharmacological effects on Alzheimer's and Parkinson's diseases, cancer, diabetes, hypertension. Some indications from ethnomedicine have been confirmed by pharmacological effects, such as the cholinesterase, monoamine oxidase and DNA topoisomerase inhibitory activities, hypoglycemic and vasodilation effects of this genus. The available literature showed that most of the activities of the genus Peganum can be attributed to the active alkaloids. Data regarding many aspects of the genus such as mechanisms of actions, metabolism, pharmacokinetics, toxicology, potential drug interactions with standard-of-care medications is still limited which call for additional studies particularly in humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China.
| |
Collapse
|
16
|
Ayoob I, Hazari YM, Lone SH, Shakeel-u-Rehman, Khuroo MA, Fazili KM, Bhat KA. Phytochemical and Cytotoxic Evaluation of Peganum Harmala: Structure Activity Relationship Studies of Harmine. ChemistrySelect 2017. [DOI: 10.1002/slct.201700232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Iram Ayoob
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Younis M. Hazari
- Department of Biotechnology; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Shabir H. Lone
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Shakeel-u-Rehman
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Mohammad A. Khuroo
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Khalid M. Fazili
- Department of Biotechnology; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Khursheed A. Bhat
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| |
Collapse
|