1
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
2
|
Zhang T, Xia Y, Xie YD, Du HJ, Shi ZQ, Hu HL, Zhang H, Guo ZC, Li G. Superprotonic conductivity of ketoenamine covalent-organic frameworks grafted by imidazole-based units. J Colloid Interface Sci 2024; 665:554-563. [PMID: 38552572 DOI: 10.1016/j.jcis.2024.03.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a β-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds. TpTta was then post-modified by inserting imidazole (Im) and histamine (His) molecules, yielding the corresponding COFs, Im@TpTta and His@TpTta, respectively. As a result, their proton conductivities were surveyed under changeable temperatures (30-100 °C) and relative humidities (68-98 %), revealing a degree of temperature and humidity dependence. Impressively, under identical conditions, the optimum proton conductivities of the two post-modified COFs are 1.14 × 10-2 (Im@TpTta) and 3.45 × 10-3 S/cm (His@TpTta), which are significantly greater than that of the pristine COF, TpTta (2.57 × 10-5 S/cm). Finally, their proton conduction mechanisms were hypothesized based on the computed activation energy values, water vapor adsorption values, and structural properties of these COFs. Additionally, the excellent electrochemical stability of the produced COFs was expressed, as well as the prospective application value.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China; Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Yu Xia
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Ya-Dian Xie
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Hai-Jun Du
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China.
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Zhong-Cheng Guo
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Chowdhury S, Sharma A, Das PP, Rathi P, Siril PF. Fine-tuning covalent organic frameworks for structure-activity correlation via adsorption and catalytic studies. J Colloid Interface Sci 2024; 665:988-998. [PMID: 38574587 DOI: 10.1016/j.jcis.2024.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
In applications utilizing Covalent Organic Frameworks (COFs) for adsorption, the interplay between crystallinity (vis-à-vis surface area) and active sites still remains ambiguous. To address this, the present study introduces three isoreticular COFs-COP-N18 (covalent organic polymer with short-range order), COF-N18 (COF having long-range order), and COF-N27 (semicrystalline COF with pyridyl heteroatoms)-to explore this duality. Through systematic variations in structural order, pore volume, and pore-wall nitrogen content, we aim to establish a structure-activity relationship (SAR) for these COFs via adsorption and catalysis, using CO2 and I2 as probes. Our investigation highlights the positive influence of crystallinity, surface area, and pore volume in adsorption as well as catalysis. However, the presence of heteroatoms manifests complex behavior in CO2 adsorption and CO2 cycloaddition reactions with epoxides. COF-N18 and COF-N27 showed comparable CO2 uptake capacities at different temperatures (273, 293, and 313 K) and ∼1 bar pressure. Additionally, CO2 cycloaddition reactions were performed with substrates possessing different polarities (epichlorohydrin, 1,2-epoxydodecane) to elucidate the role of COF surface polarity. Further investigation into iodine adsorption was performed to understand the impact of COF structural features on the modes of adsorption and adsorption kinetics. Improvements in COF-crystallinity results in faster average iodine uptake rate at 80% (K80% = 1.79 g/h) by COF-N18. Whereas, heteroatom doping slows down iodine adsorption kinetics (0.35 g/h) by prolonging the adsorption process up to 72 h. Overall, this study advances our understanding of COFs as adsorbents and catalysts, providing key insights into their SAR while emphasizing structural fine-tuning as a key factor for impactful environmental applications.
Collapse
Affiliation(s)
- Sumanta Chowdhury
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India.
| | - Abhishek Sharma
- School of Physics and CRANN Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Partha Pratim Das
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Preeti Rathi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India
| | - Prem Felix Siril
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India.
| |
Collapse
|
4
|
Singh C, Kim JY, Park NJ, Kim CU, Yadav RK, Baeg JO. Solar Carboxylation Using CO 2: Interfacially Synthesized Flexible Covalent Organic Frameworks Film as a Photocatalyst for Highly Selective Solar Carboxylation of Arylamines with CO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31085-31097. [PMID: 38837183 DOI: 10.1021/acsami.4c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Carbon dioxide (CO2) conversion into value-added chemicals/fuels by utilizing solar energy is a sustainable way to mitigate our dependence on fossil fuels and stimulate a carbon-neutral economy. However, the efficient and affordable conversion of CO2 is still an ongoing challenge. Here, we report an interfacially synthesized visible-light-active Ni(II)-integrated covalent organic frameworks (TaTpBpy-Ni COFs) film as a photocatalyst for efficient CO2 conversion into carboxylic acid under ambient conditions. Notably, the TaTpBpy-Ni COFs film showed excellent photocatalytic activity for the carboxylation of various arylamines with CO2 to the corresponding arylcarboxylic acid via C-N bond activation under solar-light irradiation. Moreover, this carboxylation protocol exhibits mild reaction conditions and good functional group tolerance without the necessity of using stoichiometric metallic reductants. This work shows a benchmark example of not only the interfacially synthesized COFs film used as a photocatalyst for solar-light energy utilization but also the selective solar chemical production system of arylcarboxylic acid directly from CO2.
Collapse
Affiliation(s)
- Chandani Singh
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Jae Young Kim
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - No-Joong Park
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Chul Ung Kim
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Rajesh Kumar Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273016, India
| | - Jin-Ook Baeg
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| |
Collapse
|
5
|
Karthik CS, Skorjanc T, Shetty D. Fluorescent covalent organic frameworks - promising bioimaging materials. MATERIALS HORIZONS 2024; 11:2077-2094. [PMID: 38436072 DOI: 10.1039/d3mh01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Fluorescent covalent organic frameworks (COFs) have emerged as promising candidates for imaging living cells due to their unique properties and adjustable fluorescence. In this mini-review, we provide an overview of recent advancements in fluorescent COFs for bioimaging applications. We discuss the strategies used to design COFs with desirable properties such as high photostability, excellent biocompatibility, and pH sensitivity. Additionally, we explore the various ways in which fluorescent COFs are utilized in bioimaging, including cellular imaging, targeting specific organelles, and tracking biomolecules. We delve into their applications in sensing intracellular pH, reactive oxygen species (ROS), and specific biomarkers. Furthermore, we examine how functionalization techniques enhance the targeting and imaging capabilities of fluorescent COFs. Finally, we discuss the challenges and prospects in the field of fluorescent COFs for bioimaging in living cells, urging further research in this exciting area.
Collapse
Affiliation(s)
- Chimatahalli Santhakumar Karthik
- Department of Chemistry, SJCE, JSS Science and Technology University, Karnataka, 570 006, Mysore, India
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Tina Skorjanc
- The Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270, Ajdovscina, Slovenia
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Rajput SK, Mothika VS. Powders to Thin Films: Advances in Conjugated Microporous Polymer Chemical Sensors. Macromol Rapid Commun 2024; 45:e2300730. [PMID: 38407503 DOI: 10.1002/marc.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.
Collapse
Affiliation(s)
- Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Venkata Suresh Mothika
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| |
Collapse
|
7
|
Wu J, Wang Z, Zhang S, Yang Q, Li Z, Zang X, Zhao X, Shang N, Khaorapapong N, Xu X, Yamauchi Y. Inorganic-Organic Nanoarchitectonics: MXene/Covalent Organic Framework Heterostructure for Superior Microextraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305730. [PMID: 37902412 DOI: 10.1002/smll.202305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/26/2023] [Indexed: 10/31/2023]
Abstract
One of the difficulties limiting covalent organic frameworks (COFs) from becoming excellent adsorbents is their stacking/aggregation architectures owing to poor morphology/structure control during the synthesis process. Herein, an inorganic-organic nanoarchitectonics strategy to synthesize the MXene/COF heterostructure (Ti3 C2 Tx /TAPT-TFP) is developed by the assembly of β-ketoenamine-linked COF on the Ti3 C2 Tx MXene nanosheets. The as-prepared Ti3 C2 Tx /TAPT-TFP retains the 2D architecture and high adsorption capacity of MXenes as well as large specific surface area and hierarchical porous structure of COFs. As a proof of concept, the potential of Ti3 C2 Tx /TAPT-TFP for solid-phase microextraction (SPME) of trace organochlorine pesticides (OCPs) is investigated. The Ti3 C2 Tx /TAPT-TFP based SPME method achieves low limits of detection (0.036-0.126 ng g-1 ), wide linearity ranges (0.12-20.0 ng g-1 ), and acceptable repeatabilities for preconcentrating trace OCPs from fruit and vegetable samples. This study offers insights into the potential of constructing COF or MXene-based heterostructures for the microextraction of environmental pollutants.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhuo Wang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Qian Yang
- College of Public Health, Hebei University, Baoding, Hebei, 071002, China
| | - Zhi Li
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaohuan Zang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaoxian Zhao
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Ningzhao Shang
- Department of Chemistry, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen, 40002, Thailand
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Zhao L, Tang X, Ni X, Zhang J, Ineza Urujeni G, Wang D, He H, Dramou P. Efficient and Selective Adsorption of cis-Diols via the Suzuki-Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1884-1891. [PMID: 38190755 DOI: 10.1021/acs.langmuir.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a functional group (boronic acid) was modified onto a covalent organic framework (COF) using the Suzuki-Miyaura cross-coupling reaction to obtain a phenylboronic acid-functionalized covalent organic framework (BrCOF-PBA). This product was used as a selective adsorbent and largely as an efficient solid-phase extractant of flavonoids containing cis-diol structures like quercetin (QUE). Five or six-membered cyclic esters generated from the COF were characterized, and some physicochemical studies were performed, resulting in excellent chemical stability and crystallinity, high specific surface area, stable pore structure, and regular pore size. Unique selectivity of BrCOF-PBA was observed toward QUE and exhibited a huge adsorption capacity (213.96 mg g-1) in a relatively short time (90 min). In contrast, the adsorption properties of morin (MOR) and kaempferol (KAE) with a certain degree of chemical similarity to QUE were only 27.62 and 21.76 mg g-1, respectively. BrCOF-PBA also demonstrated good reusability and robustness, making it an attractive composite material for further analytical applicability.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | | | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Yang L, Chen Z, Cao Q, Liao H, Gao J, Zhang L, Wei W, Li H, Lu J. Structural Regulation of Photocatalyst to Optimize Hydroxyl Radical Production Pathways for Highly Efficient Photocatalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306758. [PMID: 37865887 DOI: 10.1002/adma.202306758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ring-opening of phenol in wastewater is the pivotal step in photocatalytic degradation. The highly selective generation of catalytical active species (•OH) to facilitate this process presents a significant scientific challenge. Therefore, a novel approach for designing photocatalysts with single-atom containment in metal-covalent organic frameworks (M-COFs) is proposed. The selection of imine-linked COFs containing abundant N and O-chelate sites provides a solid foundation for anchoring metal atom. These dispersed metal atom possess rapid accumulation and transfer capabilities for photogenerated electrons, while the periodic π-conjugated structure in 2D-COFs establishes an effective platform. Additionally, the Lewis acid properties of imine bonds in COFs can enhance the adsorption capacity toward gases with Lewis base properties, such as O2 and N2 . It is demonstrated that the Pd2+ @Tp-TAPT, designed based on this concept, exhibits efficient oxygen adsorption and follows the reaction pathway of O2 →•O2 - →H2 O2 →•OH with high selectivity, thereby achieving completely degradation of refractory phenol through photocatalysis within 10 min. It is anticipated that the selective generation of catalytic active species via advanced material design concepts will serve as a significant reference for achieving precise material catalysis in the future.
Collapse
Affiliation(s)
- Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengxi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huarong Liao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Long Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
10
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
11
|
Jouha J, Li F, Xiong H. A fluorescence biosensor based on DNA aptamers-COF for highly selective detection of ATP and thrombin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122615. [PMID: 36933442 DOI: 10.1016/j.saa.2023.122615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Due to their distinctive physical, chemical, electrical, and optical properties as well as their prospective uses, 2D covalent organic framework (COF) have attracted much attention. Herein, TaTPA-COF was effectively synthesized from the condensation of TTA and TFPA using a facile solvothermal method and characterized by SEM image, FT-IR spectra, and PXRD pattern. The generated bulk TaTPA-COF materials combined with DNA aptamers are utilized as the acceptor (quencher) for the highly sensitive and selective detection of adenosine 5'-triphosphate (ATP) and thrombin, with a novel fluorescence biosensing platform and a proof-of-concept application.
Collapse
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Fengli Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
12
|
Fully Flexible Covalent Organic Frameworks for Fluorescence Sensing 2,4,6-Trinitrophenol and p-Nitrophenol. Polymers (Basel) 2023; 15:polym15030653. [PMID: 36771953 PMCID: PMC9919289 DOI: 10.3390/polym15030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Nitrophenols are important nitroaromatic compounds, both important environmental pollutants and dangerous explosives, posing a devastating danger and pollution threat to humans. It is vital to detect efficiently trace nitrophenols in the environment. In this contribution, a series of fully flexible cyclotriphosphazene-based COFs (FFCP COFs: HDADE, HBAPB, and HBPDA), prepared with both a flexible knot and flexible linkers of different lengths, were used for sensing 2,4,6-trinitrophenol (TNP) and p-nitrophenol (p-NP) in real time with excellent sensitivity and selectivity. The quenching constants of HDADE by TNP, HBAPB, and HBPDA by p-NP are 6.29 × 104, 2.17 × 105, and 2.48 × 105 L·mol-1, respectively. The LODs of TNP and p-NP are 1.19 × 10-11, 6.91 × 10-12, and 6.05 × 10-12 mol·L-1. Their sensitivities increase with the linker length, which is better than the corresponding COFs composed of rigid linkers. There is only a photoinduced electron transfer mechanism in the fluorescence quenching of HBPDA by p-NP. Meanwhile, the mechanisms of photoinduced charge transfer and resonance energy transfer exist in the fluorescence quenching of HDADE by TNP and the fluorescence quenching of HBAPB by p-NP.
Collapse
|
13
|
Das N, Paul R, Chatterjee R, Shinde DB, Lai Z, Bhaumik A, Mondal J. Tuning of Microenvironment in Covalent Organic Framework via Fluorination Strategy promotes Selective CO 2 Capture. Chem Asian J 2023; 18:e202200970. [PMID: 36373678 DOI: 10.1002/asia.202200970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Herein, we have designed and synthesized two heteroatom (N, O) rich covalent organic frameworks (COF), PD-COF and TF-COF, respectively, to demonstrate their relative effect on CO2 adsorption capacity and also CO2 /N2 selectivity. Compared to the non-fluorinated PD-COF (BET surface area 805 m2 g-1 , total pore volume 0.3647 ccg-1 ), a decrease in BET surface area and also pore volume have been observed for fluorinated TF-COF due to the incorporation of fluorine to the porous framework (BET surface area 451 m2 g-1 , total pore volume 0.2978 ccg-1 ). This fact leads to an enormous decrease in the CO2 adsorption capacity and CO2 /N2 selectivity of TF-COF, though it shows stronger affinity towards CO2 with a Qst of 37.76 KJ/mol. The more CO2 adsorption capacity by PD-COF can be attributed to the large specific surface area with considerable amount of micropore volume compared to the TF-COF. Further, PD-COF exhibited CO2 /N2 selectivity of 16.8, higher than that of TF-COF (CO2 /N2 selectivity 13.4).
Collapse
Affiliation(s)
- Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rupak Chatterjee
- School of Materials Science, I, ndian Association for the Cultivation of Science, 2A and B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Digambar Balaji Shinde
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Asim Bhaumik
- School of Materials Science, I, ndian Association for the Cultivation of Science, 2A and B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Das S, Hazra Chowdhury I, Hazra Chowdhury A, Singh N, Sarkar M, Islam SM. Metal-Free Covalent Organic Framework for Facile Production of Solar Fuel via CO 2 Reduction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal741235, India
| | - Ipsita Hazra Chowdhury
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh208016, India
| | - Arpita Hazra Chowdhury
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh208016, India
| | - Netrapal Singh
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal462026, India
| | - Mitali Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal741235, India
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal741235, India
| |
Collapse
|
15
|
Determination of water in organic solvents and raw food products by fluorescence quenching of a crystalline vinyl-functionalized COF. Mikrochim Acta 2022; 189:361. [PMID: 36044086 DOI: 10.1007/s00604-022-05432-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 10/14/2022]
Abstract
Covalent organic frameworks (COFs) with good chemical stability, flexible chemical functionalization, tunable pore sizes, and high specific surface areas have been increasingly employed in the field of fluorescence sensing. In this work, a crystalline vinyl-functionalized COF TzDa-V was facilely prepared through a room-temperature synthetic method via condensation reaction between 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline (Tz) and 2,5-diallyloxyterephthalaldehyde (Da-V). The intermolecular charge transfer (ICT) effect endowed the TzDa-V with fluorescence characteristic, and it was sensitive to trace water and can be quenched due to the disruption of ICT process by water. On this base, the prepared COF TzDa-V with excellent chemical/thermal stability was applied to sensing of trace water in common organic solvents such as DMF, acetone, THF, and ethyl acetate with rapid response (less than 10 s), satisfactory sensing range (0.5-18% water in DMF, 0.5-15% water in acetone, 0.5-16% water in THF, 0.5-5% in ethyl acetate, v/v), and high sensitivity. The limits of detection for water in DMF, acetone, THF, and ethyl acetate were 0.0497%, 0.0590%, 0.0502%, and 0.0766% (v/v), respectively. The proposed probe was successfully used for the detection of trace water in food products such as salt and sugar. The COF TzDa-V would be a good candidate for application in water sensing.
Collapse
|
16
|
Mane ST, Kanase DG, Mohite S. Role of aromatic ring spacer in homo‐coupled conjugated microporous polymers in selective
CO
2
separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sachin Tanaji Mane
- Department of Chemistry Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya Sangli Maharashtra India
| | - D. G. Kanase
- Department of Chemistry Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya Sangli Maharashtra India
| | - Suhas Mohite
- Department of Chemistry Bharati Vidyapeeth Deemed University, Yashwantrao Mohite College Pune Maharashtra India
| |
Collapse
|
17
|
Das SK, Roy S, Das A, Chowdhury A, Chatterjee N, Bhaumik A. A conjugated 2D covalent organic framework as a drug delivery vehicle towards triple negative breast cancer malignancy. NANOSCALE ADVANCES 2022; 4:2313-2320. [PMID: 36133695 PMCID: PMC9417737 DOI: 10.1039/d2na00103a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 06/05/2023]
Abstract
Cancer, one of the deadliest diseases for both sexes, has always demanded updated treatment strategies with time. Breast cancer is responsible for the highest mortality rate among females worldwide and requires treatment with advanced regimens due to the higher probability of breast cancer cells to develop drug cytotoxicity followed by resistance. Covalent organic framework (COF) materials with ordered nanoscale porosity can serve as drug delivery vehicles due to their biocompatible nature and large internal void spaces. In this research work, we have employed a novel biocompatible COF, TRIPTA, as a drug delivery carrier towards breast cancer cells. It served as a drug delivery vehicle for cisplatin in triple negative breast cancer (TNBC) cells. We have checked the potency of TRIPTA in combating the proliferation of metastatic TNBC cells. Our results revealed that cisplatin loaded over TRIPTA-COF exhibited a greater impact on the CD44+/CD24- cancer stem cell niche of breast cancer. Retarded migration of cancer cells has also been observed with the dual treatment of TRIPTA and cisplatin compared to that of cisplatin alone. Epithelial-mesenchymal transition (EMT) has also been minimized by the combinatorial treatment of cisplatin carried by the carrier material in comparison to cisplatin alone. The epithelial marker E-cadherin is significantly increased in cells treated with cisplatin together with the carrier COF, and the expression of mesenchymal markers such as N-cadherin is lower. The transcriptional factor Snail has been observed under the same treatment. The carrier material is also internalized by the cancer cells in a time-dependent manner, suggesting that the organic carrier can serve as a specific drug delivery vehicle. Our experimental results suggested that TRIPTA-COF can serve as a potent nanocarrier for cisplatin, showing higher detrimental effects on the proliferation and migration of TNBC cells by increasing the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Sraddhya Roy
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Ananya Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Nabanita Chatterjee
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
18
|
Zhang S, Liu D, Wang G. Covalent Organic Frameworks for Chemical and Biological Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082586. [PMID: 35458784 PMCID: PMC9029239 DOI: 10.3390/molecules27082586] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with polygonal porosity and highly ordered structures. The most prominent feature of the COFs is their excellent crystallinity and highly ordered modifiable one-dimensional pores. Since the first report of them in 2005, COFs with various structures were successfully synthesized and their applications in a wide range of fields including gas storage, pollution removal, catalysis, and optoelectronics explored. In the meantime, COFs also exhibited good performance in chemical and biological sensing, because their highly ordered modifiable pores allowed the selective adsorption of the analytes, and the interaction between the analytes and the COFs’ skeletons may lead to a detectable change in the optical or electrical properties of the COFs. In this review, we firstly demonstrate the basic principles of COFs-based chemical and biological sensing, then briefly summarize the applications of COFs in sensing some substances of practical value, including some gases, ions, organic compounds, and biomolecules. Finally, we discuss the trends and the challenges of COFs-based chemical and biological sensing.
Collapse
Affiliation(s)
- Shiji Zhang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
- Correspondence: (D.L.); (G.W.)
| | - Guangtong Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150080, China
- Correspondence: (D.L.); (G.W.)
| |
Collapse
|
19
|
Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on the recent (2015–2021) literature data, the authors analyze the mutual dependence of crystallinity/amorphism and specific surface area and porosity in covalent triazine frameworks (CTFs), taking into account thermodynamic and kinetic control in the synthesis of these 2D nanosheets. CTFs have now become a promising new class of high-performance porous organic materials. They can be recycled and reused easily, and thus have great potential as sustainable materials. For 2D CTFs, numerous examples are given to support the known rule that the structure and properties of any material with a given composition depend on the conditions of its synthesis. The review may be useful for elder students, postgraduate students, engineers and research fellows dealing with chemical synthesis and modern nanotechnologies based on 2D covalent triazine frameworks.
Collapse
|
20
|
Wang S, Li H, Huang H, Cao X, Chen X, Cao D. Porous organic polymers as a platform for sensing applications. Chem Soc Rev 2022; 51:2031-2080. [PMID: 35226024 DOI: 10.1039/d2cs00059h] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sensing analysis is significantly important for human health and environmental safety, and has gained increasing concern. As a promising material, porous organic polymers (POPs) have drawn widespread attention due to the availability of plentiful building blocks and their tunable structures, porosity and functions. Moreover, the permanent porous nature could provide a micro-environment to interact with guest molecules, rendering POPs attractive for application in the sensing field. In this review, we give a comprehensive overview of POPs as a platform for sensing applications. POP-based sensors are mainly divided into five categories, including fluorescence turn-on sensors, fluorescence turn-off sensors, ratiometric fluorescent sensors, colorimetric sensors and chemiresistive sensors, and their various sensing applications in detecting explosives, metal ions, anions, small molecules, biological molecules, pH changes, enantiomers, latent fingerprints and thermosensation are summarized. The different structure-based POPs and their corresponding synthetic strategies as well as the related sensing mechanisms mainly including energy transfer, donor-acceptor electron transfer, absorption competition quenching and inner filter effect are also involved in the discussion. Finally, the future outlook and perspective are addressed briefly.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huanan Huang
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiaohua Cao
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiudong Chen
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
21
|
Synthesis of New S-Triazine Bishydrazino and Bishydrazido-Based Polymers and Their Application in Flame-Retardant Polypropylene Composites. Polymers (Basel) 2022; 14:polym14040784. [PMID: 35215696 PMCID: PMC8876278 DOI: 10.3390/polym14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
In this study six new s-triazine bishydrazino and bishydrazido-based polymers were synthesized via condensation of bishydrazino s-triazine derivatives with terephthaldehyde or via nucleophilic substitution of dichloro-s-triazine derivatives with terephthalic acid hydrazide. The synthesized polymers were characterized by different techniques. The new polymers displayed good thermal behavior with great values in terms of limited oxygen indexed (LOI) 27.50%, 30.12% for polymers 5b,c (bishydrazino-s-triazine based polymers) and 27.23%, 29.86%, 30.85% for polymers 7a–c (bishydrazido-s-triazine based polymers) at 800 °C. Based on the LOI values, these polymers could be classified as flame retardant and self-extinguishing materials. The thermal results also revealed that the type of substituent groups on the triazine core has a considerable impact on their thermal behavior. Accordingly, the prepared polymers were mixed with ammonium polyphosphate (APP) in different proportions to form an intumescent flame-retardant (IFRs) system and were introduced into polypropylene (PP) to improve the flame-retardancy of the composites. The best results were obtained with a mass ratio of APP: 5a–c or 7a–c of 2:1, according to the vertical burning study (UL-94). In addition, the presence of 25% “weight ratio” of IFR in the composite showed great impact and passed UL-94 V-0 and V-1 tests.
Collapse
|
22
|
Song X, Wang R, Wang X, Han H, Qiao Z, Sun X, Ji W. An amine-functionalized olefin-linked covalent organic framework used for the solid-phase microextraction of legacy and emerging per- and polyfluoroalkyl substances in fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127226. [PMID: 34555760 DOI: 10.1016/j.jhazmat.2021.127226] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the environmental persistence and various health problems associated with per- and polyfluoroalkyl substances (PFASs), they have come under increased public scrutiny. However, the efficient extraction of PFASs from complex media remains challenging. Herein, an olefin-linked covalent organic framework (COF-CN) has been prepared via a Knoevenagel condensation reaction, followed by reduction using LiAlH4 to form an amine-functionalized COF (COF-NH2). The characterization results demonstrated that the crystal structure was maintained during the post-modification step. Isothermal and kinetic adsorption studies showed the higher affinity of COF-NH2 toward PFASs. Based on density functional theory, the adsorption mechanism of the stable six-member-ring structure formed between COF-NH2 and PFASs via hydrogen bonding was tentatively revealed. After optimizing the solid-phase microextraction parameters, legacy and emerging PFASs were efficiently extracted from fish using the COF-NH2 coating, followed by detection using ultra-performance liquid chromatography-tandem mass spectrometry. The method exhibited ideal linearity, low limits of quantification, excellent precision, and high relative recoveries. Finally, the bioconcentration kinetics for goldfish was studied, which can provide a feasible platform for investigating the accumulate ion and toxicity of PFASs.
Collapse
Affiliation(s)
- Xin Song
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haoyue Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhaoyu Qiao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaowei Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
23
|
Gong K, Li C, Zhang D, Lu H, Wang Y, Li H, Zhang H. Sulfonic acid functionalized covalent organic frameworks as efficient catalyst for the one-pot tandem reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Šutalo P, Pisačić M, Biljan I, Kodrin I. Benzene and triazine-based porous organic polymers with azo, azoxy and azodioxy linkages: a computational study. CrystEngComm 2022. [DOI: 10.1039/d2ce00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational study of azoxy and azodioxy-based 2D layered structures revealed their potential for the selective binding of CO2 over N2.
Collapse
Affiliation(s)
- Petar Šutalo
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Mateja Pisačić
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Biljan
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Kodrin
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Ma J, Shu T, Sun Y, Zhou X, Ren C, Su L, Zhang X. Luminescent Covalent Organic Frameworks for Biosensing and Bioimaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103516. [PMID: 34605177 DOI: 10.1002/smll.202103516] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Luminescent covalent organic frameworks (LCOFs) have attracted significant attention due to their tunability of structures and photophysical properties at molecular level. LCOFs are built to highly ordered and periodic 2D or 3D framework structures through covalently assembling with various luminophore building blocks. Recently, the advantages of LCOFs including predesigned properties of structure, unique photoluminescence, hypotoxicity and good biocompatibility and tumor penetration, broaden their applications in biorelated fields, such as biosensing, bioimaging, and drug delivery. A specific review that analyses the advances of LCOFs in the field of biosensing and bioimaging is thus urged to emerge. Here the construction of LCOFs is reviewed first. The synthetic chemistry of LCOFs highlights the key role of chemical linkages, which not only concrete the building blocks but also affect the optical properties and even can act as the responsive sites for potential sensing applications. How to brighten LCOFs are clarified through description of structure managements. The ability to utilize the luminescence of LCOFs for applications in biosensing and bioimaging is discussed using state-of-the-art examples of varied practical goals. A prospect finally addresses opportunities and challenges the development of LCOFs facing from chemistry, physics to the applications, according to their current progress.
Collapse
Affiliation(s)
- Jianxin Ma
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Tong Shu
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Yanping Sun
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiang Zhou
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| | - Chenyu Ren
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lei Su
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| | - Xueji Zhang
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
26
|
Han X, Zhang Y, Dong Y, Zhao J, Ming S, Zhang J. Effect of the cross-linker length of thiophene units on photocatalytic hydrogen production of triazine-based conjugated microporous polymers. RSC Adv 2021; 12:708-718. [PMID: 35425110 PMCID: PMC8978623 DOI: 10.1039/d1ra07916f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Conjugated microporous polymers (CMPs) have been investigated in the field of photocatalytic hydrogen production because of their extended π-conjugation, tunable chemical structure and excellent thermal stability. Herein, we construct three CMPs based on thiophenes and triazine, and prove the effect of cross-linker length on photocatalytic activity of CMPs. BTPT-CMP1 exhibits blue-shifted optical absorption compared to BTPT-CMP2 and BTPT-CMP3 with long cross-linkers, however, possesses higher photocurrent because of the large specific surface area and small interface charge transfer resistance of BTPT-CMP1. It was found that BTPT-CMP1 (5561.87 μmol g-1 h-1) with short cross-linkers exhibits better photocatalytic performance compared to BTPT-CMP2 (1840.86 μmol g-1 h-1) and BTPT-CMP3 (1600.48 μmol g-1 h-1). Also, BTPT-CMP1 possesses a higher hydrogen evolution rate than most reported 1,3,5-triazine based conjugated polymers. These results demonstrate that the cross-linker length has great influence on the photocatalytic properties of conjugated microporous polymers, which offers theoretical direction for designing high-performance CMPs.
Collapse
Affiliation(s)
- Xiao Han
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - YunYun Dong
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University Liaocheng 252059 PR China
| | - Shouli Ming
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - Junhong Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| |
Collapse
|
27
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
28
|
Synthesis, and Molecular Structure Investigations of a New s-Triazine Derivatives Incorporating Pyrazole/Piperidine/Aniline Moieties. CRYSTALS 2021. [DOI: 10.3390/cryst11121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, we synthesized two new s-triazine incorporates pyrazole/piperidine/aniline moieties. Molecular structure investigations in the light of X-ray crystallography combined with Hirshfeld and DFT calculations were presented. Intermolecular interactions controlling the molecular packing of 4-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenyl-6-(piperidin-1-yl)-1,3,5-triazin-2-amine; 5a and N-(4-bromophenyl)-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)-1,3,5-triazin-2-amine; 5b were analyzed using Hirshfeld calculations. The most dominant interactions are the H...H, N...H and H...C contacts in both compounds. The N...H and H...C interactions in 5a and the N...H, Br...H and H...H interactions in 5b are the most important. In addition, DFT calculations were used to compute the molecular structures of 5a and 5b; then, their electronic properties, as well as the 1H- and 13C-NMR spectra, were predicted. Both compounds are polar where 5a (1.018 Debye) has lower dipole moment than 5b (4.249 Debye). The NMR chemical shifts were calculated and very good correlations between the calculated and experimental data were obtained (R2 = 0.938–0.997).
Collapse
|
29
|
Guo H, Sun L, Yang M, Wang M, Wu N, Zhang T, Zhang J, Yang F, Yang W. A novel electrochemical sensor based on TAPT-TFP-COF/COOH-MWCNT for simultaneous detection of dopamine and paracetamol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4994-5002. [PMID: 34633400 DOI: 10.1039/d1ay01537k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a covalent organic framework (COF) TAPT-TFP-COF containing a triazine ring was prepared by a typical Schiff base condensation reaction of 1,3,5-tris-(4-aminophenyl)triazine (TAPT) and 1,3,5-triformyl phloroglucinol (TFP). The TAPT-TFP-COF and carboxyl-functionalized multi-wall carbon nanotubes (COOH-MWCNTs) were drip-coated on glassy carbon electrode respectively to develop a novel and simple electrochemical sensor in order to simultaneously detect dopamine (DA) and paracetamol (PA). COOH-MWCNTs interconnected the TAPT-TFP-COF and acted as bridges between the COF particles, which had a good synergistic effect and accelerated electron transfer. Under optimal conditions, linear responses were obtained over the concentration range 1-190 μM for DA and PA with limits of detection (LOD) of 0.14 μM and 0.19 μM, respectively. Furthermore, the fabricated sensor possesses outstanding repeatability and high selectivity, and can be applied for the determination of DA and PA in dopamine injection and acetaminophen drugs with satisfactory recoveries.
Collapse
Affiliation(s)
- Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Lei Sun
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Meng Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Mingyue Wang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Ning Wu
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Tingting Zhang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Junye Zhang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Fan Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
30
|
A direct Z-scheme BiOBr/TzDa COF heterojunction photocatalyst with enhanced performance on visible-light driven removal of organic dye and Cr(VI). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Designed azo-linked conjugated microporous polymers for CO2 uptake and removal applications. JOURNAL OF POLYMER RESEARCH 2021. [PMCID: PMC8540882 DOI: 10.1007/s10965-021-02803-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent decade, conjugated microporous polymers (CMPs) were treated as one of the superior porous materials for CO2 uptake. Herein, we prepared two azo-linked CMPs namely: azo-carbazole (Azo-Cz) and azo-phenothiazine (Azo-Tz) from the reduction of the corresponding nitro monomers using sodium borohydride (NaBH4). The obtained polymers were well characterized using many spectroscopic techniques. According to TGA and BET analyses, our CMPs owned good specific surface areas (reaching 315 m2 g–1), and a significant thermal stability. It is also possessed pore sizes of 0.79 and 1.18 nm, respectively, and a reasonable char yields (max. 46 %). Based on CO2 uptake measurements, the CO2 adsorption capacities of these CMPs were very good: up to 40 and 94 mg g–1 at the experiment temperatures 298 and 273 K, respectively. The great CO2 uptake is due to high surface areas that facilitate powerful interactions with CO2 molecules.
Collapse
|
32
|
Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213957] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Osman SM, Alasmary FA, Kenawy E, Aly ESA, Khattab SN, El-Faham A. Synthesis, characterization and comparative thermal degradation kinetics of s-Triazine based polymers. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02667-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Cui L, Shen J, Li CC, Cui PP, Luo X, Wang X, Zhang CY. Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Anal Chem 2021; 93:10310-10316. [PMID: 34260216 DOI: 10.1021/acs.analchem.1c01797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA methyltransferases may function as important biomarkers of cancers and genetic diseases. Herein, we develop a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical (PEC) biosensor on the basis of p-type covalent organic polymers (COPs) for the signal-on measurement of M.SssI methyltransferase (M.SssI MTase). The cathodic PEC biosensor is constructed by the in situ growth of p-type COP films onto a glass coated with indium tin oxide and the subsequent assembly of biotin- and HS-labeled double-stranded DNA (dsDNA) probes onto the COP film via biotin-streptavidin interaction. The dsDNA probe contains the recognition sequence of M.SssI MTase. The COP thin films possess a porous ultrathin nanosheet structure with abundant active sites, facilitating the generation of a high photocurrent compared with the hydrothermally synthesized ones. The presence of DNA methyltransferases can prevent the digestion of restriction endonuclease HpaII, consequently inducing the introduction of gold nanoparticles (AuNPs) to the dsDNA probes via the S-Au bond and the intercalation of rhodamine B (RhB) into the DNA grooves to produce a high photocurrent due to the dye-photosensitized enhancement and AuNP-mediated surface plasmon resonance. However, in the absence of M.SssI MTase, HpaII digests the dsDNA probes, and neither AuNPs nor RhB can be introduced onto the electrode surface, leading to a low photocurrent. This cathodic PEC biosensor possesses high sensitivity and good selectivity, and it can screen the inhibitors and detect M.SssI MTase in serum as well.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Jingzhu Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pei-Pei Cui
- Shandong Provincial Key Laboratory of Biophysics, Shandong Universities Key Laboratory of Functional Biological Resources Utilization and Development, College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
35
|
Ji X, Wu S, Song D, Chen S, Chen Q, Gao E, Xu J, Zhu X, Zhu M. A water‐stable luminescent sensor based on Cd
2+
coordination polymer for detecting nitroimidazole antibiotics in water. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoxi Ji
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Dongxue Song
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shiyu Chen
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Qing Chen
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Jin Xu
- R & D registration department Jiangsu Huayang Pharmaceutical Co., Ltd Suqian China
| | - Xiaopeng Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education) Shenyang University Chemical Technology Shenyang China
| |
Collapse
|
36
|
Hazra A, Mondal U, Mandal S, Banerjee P. Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials. Dalton Trans 2021; 50:8657-8670. [PMID: 34060577 DOI: 10.1039/d1dt00705j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular luminescent frameworks with conjugated architectures exhibits interesting photophysical properties with phenomenal chemical and thermal stability. This has instigated global researchers towards its extensive application in toxic analyte detection and the formulation of anti-counterfeit materials. In correlation with this present scenario, luminescent metal-organic frameworks (LMOFs), possessing tailorable structural and functional properties and exceptional physicochemical features, have been categorized as emerging 'smart materials'. Interestingly, LMOFs have assisted in the rapid development of an effectual sensing platform and swift fabrication of anti-counterfeit materials on desirable substrates with the aid of 'Inkjet Printing', which is a viable, low-cost, and high-resolution technology. Inkjet printing is an excellent material deposition technique in the modern era owing to its easy settling over flexible substrates, simplistic emergence of large area image patterns with improved throughput, minimal cost, explicit resolution, and least waste generation. The present review provides state-of-the-art progress on LMOFs based (i) luminescent security ink fabrication with static and dynamic multinodal luminescent materials and (ii) sensory device formulation for the easy and instantaneous recognition of hazardous analytes through the 'Inkjet Printing' technology. This techno-chemical integration will be certainly beneficial to prevent the growth of counterfeit materials and monitor the bioaccumulation of hazardous analytes in our ecological system.
Collapse
Affiliation(s)
- Abhijit Hazra
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Udayan Mondal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sukdeb Mandal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
37
|
Wu N, Guo H, Wang X, Sun L, Zhang T, Peng L, Yang W. A water-stable lanthanide-MOF as a highly sensitive and selective luminescence sensor for detection of Fe3+ and benzaldehyde. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Chatterjee R, Bhanja P, Bhaumik A. The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Trans 2021; 50:4765-4771. [PMID: 33877175 DOI: 10.1039/d1dt00544h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the rapid advancements in synthetic strategies, the field of heterogeneous catalysis has expanded enormously over the last few decades, and today it is one of the foremost areas in energy and environmental research. Various templating and non-templating routes for designing porous nanomaterial-based catalysts starting from precursor building blocks are highlighted here. CO2 and biomass are two major abundant resources that can be utilized as feedstocks for various heterogeneous catalytic processes. These are described in brief, together with environmental clean-up applications and future perspectives for addressing environmental issues.
Collapse
Affiliation(s)
- Rupak Chatterjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | |
Collapse
|
39
|
Machado TF, Serra MES, Murtinho D, Valente AJM, Naushad M. Covalent Organic Frameworks: Synthesis, Properties and Applications-An Overview. Polymers (Basel) 2021; 13:970. [PMID: 33809960 PMCID: PMC8004293 DOI: 10.3390/polym13060970] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Covalent Organic Frameworks (COFs) are an exciting new class of microporous polymers with unprecedented properties in organic material chemistry. They are generally built from rigid, geometrically defined organic building blocks resulting in robust, covalently bonded crystalline networks that extend in two or three dimensions. By strategically combining monomers with specific structures and properties, synthesized COF materials can be fine-tuned and controlled at the atomic level, with unparalleled precision on intrapore chemical environment; moreover, the unusually high pore accessibility allows for easy post-synthetic pore wall modification after the COF is synthesized. Overall, COFs combine high, permanent porosity and surface area with high thermal and chemical stability, crystallinity and customizability, making them ideal candidates for a myriad of promising new solutions in a vast number of scientific fields, with widely varying applications such as gas adsorption and storage, pollutant removal, degradation and separation, advanced filtration, heterogeneous catalysis, chemical sensing, biomedical applications, energy storage and production and a vast array of optoelectronic solutions. This review attempts to give a brief insight on COF history, the overall strategies and techniques for rational COF synthesis and post-synthetic functionalization, as well as a glance at the exponentially growing field of COF research, summarizing their main properties and introducing the numerous technological and industrial state of the art applications, with noteworthy examples found in the literature.
Collapse
Affiliation(s)
- Tiago F. Machado
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - M. Elisa Silva Serra
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Artur J. M. Valente
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Mu. Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
40
|
Song S, Shi Y, Liu N, Liu F. C[double bond, length as m-dash]N linked covalent organic framework for the efficient adsorption of iodine in vapor and solution. RSC Adv 2021; 11:10512-10523. [PMID: 35423582 PMCID: PMC8695655 DOI: 10.1039/d0ra10587b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/07/2021] [Indexed: 01/21/2023] Open
Abstract
Volatile nuclear wastes, such as iodine, have received worldwide attention because it poses risks to public safety and pollutes the environment. The efficient capture of radioactive iodine is of vital importance for the safe utilization of nuclear power. Herein, we report a series of stable covalent organic framework (COF) materials with high efficiency to capture radioactive iodine species. Results indicated that all COFs showed high iodine adsorption, which reached up to 5.82 g g-1 in vapor and 99.9 mg g-1 in solution, suggesting that all COFs can be an effective potential adsorbent for the removal of iodine. Furthermore, all COFs are renewable due to the excellent recycling performance. Moreover, all COFs are suitable for large-scale synthesis at room temperature, which have potential for practical applications. Theoretical calculations were also performed to analyze the relationship between iodine molecules and COFs, offering mechanisms underlying the potent adsorption abilities of COFs.
Collapse
Affiliation(s)
- Sanan Song
- College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Yue Shi
- Gynecology and Oncology Department of the Second Hospital of Jilin University Ziqiang Street 218 Changchun 130000 China
| | - Ning Liu
- Gynecology and Oncology Department of the Second Hospital of Jilin University Ziqiang Street 218 Changchun 130000 China
| | - Fengqi Liu
- College of Chemistry, Jilin University Changchun Jilin 130012 China
| |
Collapse
|
41
|
Elancheziyan M, Senthilkumar S. Redox-active gold nanoparticle-encapsulated poly(amidoamine) dendrimer for electrochemical sensing of 4-aminophenol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
WANG Z, WANG W, ZHANG S, WANG C, WANG Z. [Advances in construction of triazine-based porous organic polymers and their applications in solid phase microextraction]. Se Pu 2021; 39:125-129. [PMID: 34227344 PMCID: PMC9274846 DOI: 10.3724/sp.j.1123.2020.07036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/28/2022] Open
Abstract
The large surface area, adjustable pore structure, good thermal and chemical stabilities, and abundant π-electron systems make triazine-based porous organic polymers (TPOPs) as promising porous materials for gas storage, catalysis, energy conversion and adsorption. Recently, TPOPs have aroused ever-increasing interest and are considered as one of the research highlights in solid phase microextraction (SPME) and other sample pretreatment techniques. This minireview summarizes the recent advancements in the synthesis of TPOPs and their applications in SPME. The application prospects of the TPOPs in SPME and other sample pretreatment techniques are also presented.
Collapse
Affiliation(s)
- Zhuo WANG
- 河北农业大学理学院化学系, 河北 保定 071001
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Wenjin WANG
- 河北农业大学理学院化学系, 河北 保定 071001
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuaihua ZHANG
- 河北农业大学理学院化学系, 河北 保定 071001
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun WANG
- 河北农业大学理学院化学系, 河北 保定 071001
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi WANG
- 河北农业大学理学院化学系, 河北 保定 071001
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
43
|
Li K, Wong NK, Strauss MJ, Evans AM, Matsumoto M, Dichtel WR, Adronov A. Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted Cycloaddition. J Am Chem Soc 2021; 143:649-656. [DOI: 10.1021/jacs.0c11811] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kelvin Li
- Department of Chemistry and Chemical Biology, and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Naomi K. Wong
- Department of Chemistry and Chemical Biology, and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Michael J. Strauss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin M. Evans
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michio Matsumoto
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
44
|
Chatterjee S, Bhanja P, Ghosh D, Kumar P, Kanti Das S, Dalapati S, Bhaumik A. Metformin-Templated Nanoporous ZnO and Covalent Organic Framework Heterojunction Photoanode for Photoelectrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:408-416. [PMID: 33052003 DOI: 10.1002/cssc.202002136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Photoelectrochemical water-splitting offers unique opportunity in the utilization of abundant solar light energy and water resources to produce hydrogen (renewable energy) and oxygen (clean environment) in the presence of a semiconductor photoanode. Zinc oxide (ZnO), a wide bandgap semiconductor is found to crystallize predominantly in the hexagonal wurtzite phase. Herein, we first report a new crystalline triclinic phase of ZnO by using N-rich antidiabetic drug metformin as a template via hydrothermal synthesis with self-assembled nanorod-like particle morphology. We have fabricated a heterojunction nanocomposite charge carrier photoanode by coupling this porous ZnO with a covalent organic framework, which displayed highly enhanced photocurrent density of 0.62 mA/cm2 at 0.2 V vs. RHE in photoelectrochemical water oxidation and excellent photon-to-current conversion efficiency at near-neutral pH vis-à-vis bulk ZnO. This enhancement of the photocurrent for the porous ZnO/COF nanocomposite material over the corresponding bulk ZnO could be attributed to the visible light energy absorption by COF and subsequent efficient charge-carrier mobility via porous ZnO surface.
Collapse
Affiliation(s)
- Sauvik Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Piyali Bhanja
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Dibyendu Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Praveen Kumar
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sasanka Dalapati
- School of Technology, Department of Materials Science, Central University of Tamil Nadu (CUTN), Neelakudi, Thiruvarur, Tamil Nadu, 610005, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
45
|
Asad M, Wang S, Wang QY, Li LK, Anwar MI, Younas A, Zang SQ. Aqueous media ultra-sensitive detection of antibiotics via highly stable luminescent 3D Cadmium-based MOF. NEW J CHEM 2021. [DOI: 10.1039/d1nj04413c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel Cd-based MOF shows high sensitivity (Ksv ∼ 106 M−1) and selectivity (μM level) towards antibiotics was presented.
Collapse
Affiliation(s)
- Muhammad Asad
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Muhammad Imran Anwar
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Ayesha Younas
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
46
|
Kanti Das S, Ghosh A, Bhattacharjee S, Chowdhury A, Mitra P, Bhaumik A. A new 2D lanthanum based microporous MOF for efficient synthesis of cyclic carbonates through CO 2 fixation. NEW J CHEM 2021. [DOI: 10.1039/d1nj00601k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report a new microporous La-MOF La-5-SIP-MOF through solvothermal reaction and it showed high catalytic activity for the synthesis of cyclic carbonates from epoxides via the CO2 fixation reaction at room temperature.
Collapse
Affiliation(s)
- Sabuj Kanti Das
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- 2A & 2B Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Anirban Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- 2A & 2B Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Sudip Bhattacharjee
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- 2A & 2B Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Avik Chowdhury
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- 2A & 2B Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Partha Mitra
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- 2A & 2B Raja S. C. Mullick Road
- Kolkata 700 032
- India
| | - Asim Bhaumik
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- 2A & 2B Raja S. C. Mullick Road
- Kolkata 700 032
- India
| |
Collapse
|
47
|
Li Z, Zhu X, Gao E, Wu S, Zhang Y, Zhu M. Bifunctional luminescent Eu metal–organic framework for sensing nitroaromatic pollutants and Fe
3+
ion with high sensitivity and selectivity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhipeng Li
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Xiaopeng Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| |
Collapse
|
48
|
Ji W, Guo YS, Xie HM, Wang X, Jiang X, Guo DS. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122793. [PMID: 32361142 DOI: 10.1016/j.jhazmat.2020.122793] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 05/23/2023]
Abstract
To synthesize covalent organic framework (COF) via irreversible reactions is more challenging than by reversible ones. In this work, microwave-assisted synthesis is used to facilitate the nucleophilic substitution of 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile with 2,3,6,7,10,11-hexahydroxy triphenylene. The dioxin-linked COF, named TH-COF, was efficiently synthesized with extraordinarily large surface area of 1254 m2 g-1. With its high crystallinity, excellent thermal and chemical stabilities, TH-COF is used as the coating for the solid-phase micro-extraction (SPME) of perfluorinated alkyl substances (PFASs). The adsorptive mechanism was evaluated with adsorption isotherm and kinetic adsorption. Adsorption energies are calculated based on the density functional theory. Following SPME with TH-COF-coated fibers, PFASs were eluted using 1 mL of 0.6% trifluoroacetic acid/methanol and analyzed through the ultra-performance liquid chromatography equipped with triple quadrupole mass spectrometer (UPLC-MS/MS). When applied to spiked real water samples, this method demonstrates good linearity (0.01-1000 ng L-1) with R2 ≥ 0.9945. The TH-COF-SPME-UPLC-MS/MS technique provides low limits of detection (0.0020-0.0045 ng L-1), excellent precision (≤ 7.9%), and good fiber-to-fiber reproducibility (≤ 7.1%). The TH-COF-coated fibers can be reused at least 20 times without the loss of extraction performance. In addition, the relative recoveries from spiked real water samples are 89.5%-105%.
Collapse
Affiliation(s)
- Wenhua Ji
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Yu-Shuang Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Hui-Min Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Xin Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Dian-Shun Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
49
|
Wang Y, Shu Z, Zeng X, Kuang W, Huang J. Fabrication of O-enriched HyperCross-Linked Polymers and Their Adsorption of Aniline from Aqueous Solution. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Zhe Shu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Xu Zeng
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Wei Kuang
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| |
Collapse
|
50
|
Mondal S, Mohanty B, Nurhuda M, Dalapati S, Jana R, Addicoat M, Datta A, Jena BK, Bhaumik A. A Thiadiazole-Based Covalent Organic Framework: A Metal-Free Electrocatalyst toward Oxygen Evolution Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05470] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, India
| | - Bishnupad Mohanty
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Maryam Nurhuda
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Sasanka Dalapati
- Institute of Chemical Technology-Indian Oil Odisha Campus (ICT-IOC), Bhubaneswar, Odisha 751013, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, India
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, India
| | - Bikash Kumar Jena
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, India
| |
Collapse
|