1
|
Khosropour H, Keramat M, Laiwattanapaisal W. A dual action electrochemical molecularly imprinted aptasensor for ultra-trace detection of carbendazim. Biosens Bioelectron 2024; 243:115754. [PMID: 37857063 DOI: 10.1016/j.bios.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Carbendazim is often used in agriculture to prevent crop diseases, even though it has been associated with health concerns. To ensure the safety of food products and comply with environmental regulations, an ultrasensitive method for carbendazim determination must be developed. In this study, a new electrochemical molecularly imprinted polymer-aptasensor based on hemin-Al-metal organic framework@gold nanoparticles (H-Al-MOF@AuNPs) was developed for sensitive and selective carbendazim detection. Hemin linked to the surface of the Al-metal organic framework also possesses outstanding peroxidase-like qualities that can electrocatalyse the reduction of H2O2. Thus, H-Al-MOF functions as an in-situ probe. Additionally, AuNPs offer many binding sites to load carbendazim aptamers and create an imprinted polymer-aptasensing interface. Dopamine is the chemical functional monomer in the electropolymerised film, while carbendazim is the template molecule. Thus, compared to the molecularly imprinted polymer or aptasensor alone, the molecularly imprinted polymer-aptasensor showed greater selectivity due to the synergistic action of the polymer and carbendazim aptamer towards carbendazim. A decrease in peak current was observed by differential pulse voltammetry (DPV) and chronoamperometry (CA) as the concentration of carbendazim increased. This possibly resulted from carbendazim connecting to the carbendazim aptamer and simultaneously blocking the imprinted polymer cavities on the surface of the modified electrode, which reduced the transfer of electrons. Signals were observed for hemin DPV and H2O2 catalytic reduction CA. DPV and CA showed that the linear ranges for carbendazim were 0.3 fmol L-1-10 pmol L-1 and 0.7 fmol L-1-10 pmol L-1, respectively, with limits of detection of 80 and 300 amol L-1. Satisfactory recoveries were obtained with tap water, apple juice, and tomato juice samples, demonstrating that the proposed sensor has potential for food and environmental analysis.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mansoureh Keramat
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water is the key element that defines and individualizes our planet. Relative to body weight, water represents 70% or more for the majority of all species on Earth. Taking care of water as a whole is equivalent with taking care of the entire biodiversity or the whole of humanity itself. Water quality is becoming an increasingly important component of terrestrial life, hence intensive work is being conducted to develop sensors for detecting contaminants and assessing water quality and characteristics. Our bibliometric analysis is focused on water quality sensors based on carbon nanotubes and highlights the most important objectives and achievements of researchers in recent years. Due to important measurement characteristics such as sensitivity and selectivity, or low detection limit and linearity, up to the ability to measure water properties, including detection of heavy metal content or the presence of persistent organic compounds, carbon nanotube (CNT) sensors, taking advantage of available nanotechnologies, are becoming increasingly attractive. The conducted bibliometric analysis creates a visual, more efficient keystones mapping. CNT sensors can be integrated into an inexpensive real-time monitoring data acquisition system as an alternative for classical expensive and time-consuming offline water quality monitoring. The conducted bibliometric analysis reveals all connections and maps all the results in this water quality CNT sensors research field and gives a perspective on the approached methods on this specific type of sensor. Finally, challenges related to integration of other trends that have been used and proven to be valuable in the field of other sensor types and capable to contribute to the development (and outlook) for future new configurations that will undoubtedly emerge are presented.
Collapse
|
3
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Capelari TB, de Cássia Mendonça J, da Rocha LR, Prete MC, Angelis PN, Camargo LP, Dall'Antonia LH, Tarley CRT. Synthesis of novel poly(methacrylic acid)/β-cyclodextrin dual grafted MWCNT-based nanocomposite and its use as electrochemical sensing platform for highly selective determination of cocaine. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Marques GL, Rocha LR, Prete MC, Gorla FA, Moscardi dos Santos D, Segatelli MG, Teixeira Tarley CR. Development of Electrochemical Platform Based on Molecularly Imprinted Poly(methacrylic acid) Grafted on Iniferter‐modified Carbon Nanotubes for 17β‐Estradiol Determination in Water Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.202060270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gabriel Lopes Marques
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Luana Rianne Rocha
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Maiyara Carolyne Prete
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Felipe Augusto Gorla
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
- Campus Assis Chateaubriand Instituto Federal do Paraná Avenida Cívica 475, Centro Cívico Assis Chateaubriand PR, CEP 85935–000 Brazil
| | - Dayana Moscardi dos Santos
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - Mariana Gava Segatelli
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
| | - César Ricardo Teixeira Tarley
- Departamento de Química Universidade Estadual de Londrina Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR, CEP 86051-990 Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica Universidade Estadual de Campinas (UNICAMP) Instituto de Química Departamento de Química Analítica, Cidade Universitária Zeferino Vaz s/n, CEP 13083–970 Campinas SP Brazil
| |
Collapse
|
6
|
Edward Sekhosana K, Nkhahle R, Nyokong T. Analytical Detection and Electrocatalysis of Paracetamol in Aqueous Media Using Rare‐Earth Double‐Decker Phthalocyaninato Chelates as Electrochemically Active Materials. ChemistrySelect 2020. [DOI: 10.1002/slct.202002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kutloano Edward Sekhosana
- Nanotechnology and Water Sustainability (NanoWS) Research Unit, College of ScienceEngineering and Technology (CSET), University of South Africa, Corner of Christiaan De Wet and Pioneer Avenue, Florida Roodepoort 1709 South Africa
- Institute for Nanotechnology and InnovationDepartment of Chemistry, Rhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Reitumetse Nkhahle
- Institute for Nanotechnology and InnovationDepartment of Chemistry, Rhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology and InnovationDepartment of Chemistry, Rhodes University PO Box 94 Grahamstown, 6140 South Africa
| |
Collapse
|
7
|
Kaya SI, Karabulut TC, Kurbanoglu S, Ozkan SA. Chemically Modified Electrodes in Electrochemical Drug Analysis. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304140433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrode modification is a technique performed with different chemical and physical methods
using various materials, such as polymers, nanomaterials and biological agents in order to enhance
sensitivity, selectivity, stability and response of sensors. Modification provides the detection of small
amounts of analyte in a complex media with very low limit of detection values. Electrochemical methods
are well suited for drug analysis, and they are all-purpose techniques widely used in environmental
studies, industrial fields, and pharmaceutical and biomedical analyses. In this review, chemically modified
electrodes are discussed in terms of modification techniques and agents, and recent studies related
to chemically modified electrodes in electrochemical drug analysis are summarized.
Collapse
Affiliation(s)
- Sariye I. Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tutku C. Karabulut
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinç Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
|
9
|
Radi AE, Wahdan T, El-Basiony A. Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180501100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described. </P><P> Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given. </P><P> Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform. </P><P> Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.</P>
Collapse
Affiliation(s)
- Abd-Egawad Radi
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| | - Tarek Wahdan
- Department of Chemistry, Faculty of Science, Suez Canal University, El-Arish, Egypt
| | - Amir El-Basiony
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| |
Collapse
|
10
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
11
|
Tan K, Ma Q, Luo J, Xu S, Zhu Y, Wei W, Liu X, Gu Y. Water-dispersible molecularly imprinted nanohybrids via co-assembly of carbon nanotubes with amphiphilic copolymer and photocrosslinking for highly sensitive and selective paracetamol detection. Biosens Bioelectron 2018; 117:713-719. [DOI: 10.1016/j.bios.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/18/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
|
12
|
Du W, Sun M, Guo P, Chang C, Fu Q. Molecularly imprinted membrane extraction combined with high-performance liquid chromatography for selective analysis of cloxacillin from shrimp samples. Food Chem 2018; 259:73-80. [DOI: 10.1016/j.foodchem.2018.03.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 11/15/2022]
|
13
|
Du W, Zhang B, Guo P, Chen G, Chang C, Fu Q. Facile preparation of magnetic molecularly imprinted polymers for the selective extraction and determination of dexamethasone in skincare cosmetics using HPLC. J Sep Sci 2018. [DOI: 10.1002/jssc.201701195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Du
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
- Shaanxi Institute for Food and Drug Control; Xi'an P. R. China
| | - Bilin Zhang
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Pengqi Guo
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Guoning Chen
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Chun Chang
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| | - Qiang Fu
- School of Pharmacy; Xi'an Jiaotong University; Xi'an P. R. China
| |
Collapse
|
14
|
Muñoz J, Baeza M. Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Review. ELECTROANAL 2017. [DOI: 10.1002/elan.201700087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jose Muñoz
- Molecular Nanoscience and Organic Materials Group, Institut de Ciència de; Materials de Barcelona (ICMAB-CSIC) Carrer dels Til⋅lers; 08193 Bellaterra (Cerdanyola del Vallès), Barcelona Spain
| | - Mireia Baeza
- Departament de Química, Facultat de Ciències; Universitat Autònoma de Barcelona, Carrer dels Til⋅lers, Edifici C-Entrada Nord; 08193 Bellaterra (Cerdanyola del Vallès), Barcelona Spain
| |
Collapse
|
15
|
Tarley CRT, Diniz KM, Cajamarca Suquila FA, Segatelli MG. Study on the performance of micro-flow injection preconcentration method on-line coupled to thermospray flame furnace AAS using MWCNTs wrapped with polyvinylpyridine nanocomposites as adsorbent. RSC Adv 2017. [DOI: 10.1039/c7ra01220a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An adsorbent nanocomposite based on multi-walled carbon nanotubes and polyvinylpyridine is used in the development of a micro-flow injection preconcentration method coupled to TS-FF-AAS for the determination of very low levels of Cd.
Collapse
Affiliation(s)
| | - Kristiany Moreira Diniz
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| | | | - Mariana Gava Segatelli
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| |
Collapse
|
16
|
Li Y, Chen Y, Huang L, Lou B, Chen G. Creating BHb-imprinted magnetic nanoparticles with multiple binding sites. Analyst 2017; 142:302-309. [DOI: 10.1039/c6an02121b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kind of protein imprinted over magnetic Fe3O4@Au multifunctional nanoparticles (NPs) with multiple binding sites was synthesized and investigated.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Chemistry and Chemical Engineering
- Minjiang University
- Fuzhou
- China
| | - Yiting Chen
- Department of Chemistry and Chemical Engineering
- Minjiang University
- Fuzhou
- China
| | - Lu Huang
- Department of Chemistry and Chemical Engineering
- Minjiang University
- Fuzhou
- China
| | - BenYong Lou
- Department of Chemistry and Chemical Engineering
- Minjiang University
- Fuzhou
- China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety (Fuzhou University)
- Fuzhou
- China
| |
Collapse
|
17
|
Yoshikawa M, Tharpa K, Dima ŞO. Molecularly Imprinted Membranes: Past, Present, and Future. Chem Rev 2016; 116:11500-11528. [PMID: 27610706 DOI: 10.1021/acs.chemrev.6b00098] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
More than 80 years ago, artificial materials with molecular recognition sites emerged. The application of molecular imprinting to membrane separation has been studied since 1962. Especially after 1990, such research has been intensively conducted by membranologists and molecular imprinters to understand the advantages of each technique with the aim of constructing an ideal membrane, which is still an active area of research. The present review aims to be a substantial, comprehensive, authoritative, critical, and general-interest review, placed at the cross section of two broad, interconnected, practical, and extremely dynamic fields, namely, the fields of membrane separation and molecularly imprinted polymers. This review describes the recent discoveries that appeared after repeated and fertile collisions between these two fields in the past three years, to which are added the worthy acknowledgments of pioneering discoveries and a look into the future of molecularly imprinted membranes. The review begins with a general introduction in membrane separation, followed by a short theoretical section regarding the basic principles of mass transport through a membrane. Following these general aspects on membrane separation, two principles of obtaining polymeric materials with molecular recognition properties are reviewed, namely, molecular imprinting and alternative molecular imprinting, followed the methods of obtaining and practical applications for the particular case of molecularly imprinted membranes. The review continues with insights into molecularly imprinted nanofiber membranes as a promising, highly optimized type of membrane that could provide a relatively high throughput without a simultaneous unwanted reduction in permselectivity. Finally, potential applications of molecularly imprinted membranes in a variety of fields are highlighted, and a look into the future of membrane separations is offered.
Collapse
Affiliation(s)
- Masakazu Yoshikawa
- Department of Biomolecular Engineering, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
| | - Kalsang Tharpa
- Department of Chemistry, University of Mysore, Manasagangotri , Mysore 570 006, India
| | - Ştefan-Ovidiu Dima
- Faculty of Applied Chemistry and Materials Science, Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest , 1-7 Gheorghe Polizu, 011061 Bucharest, Romania.,Bioresources Department, INCDCP-ICECHIM Bucharest , 202 Splaiul Independentei, CP 35-174, 060021 Bucharest, Romania
| |
Collapse
|
18
|
Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X. Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21028-21038. [PMID: 27463123 DOI: 10.1021/acsami.6b05440] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel kind of water-dispersible molecularly imprinted electroactive nanoparticles was prepared combining macromolecular self-assembly with molecularly imprinting technique employing paracetamol (PCM) as template molecule. An amphiphilic electroactive copolymer (P(NVC-EHA-AA), PNEA) containing carbazole group was first synthesized through a one-pot free radical copolymerization. The coassembly of the electroactive copolymers with the template molecules (PCM) in aqueous solution generated nanoparticles embedded with PCM, leading to the formation of molecularly imprinted electroactive nanoparticles (MIENPs). A robust MIP film was formed on the surface of electrode by electrodeposition of MIENPs and subsequent electropolymerization of the carbazole units in MIENPs. After the extraction of PCM molecules, a MIP sensor was successfully constructed. It should be noted that electropolymerization of the electroactive units in MIENPs creates cross-conjugated polymer network, which not only locks the recognition sites but also significantly accelerates the electron transfer and thus enhances the response signal of the MIP sensor. These advantages endowed the MIP sensor with good selectivity and high sensitivity for PCM detection. The MIP sensor could recognize PCM from its possible interfering substances with good selectivity. Under the optimal conditions, two linear ranges from 1 μM to 0.1 mM and 0.1 to 10 mM with a detection limit of 0.3 μM were obtained for PCM detection. The MIP sensor also showed good stability and repeatability, which has been successfully used to analyze PCM in tablets and human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Jing Luo
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Qiang Ma
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Wei Wei
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Ye Zhu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Ren Liu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| |
Collapse
|