1
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
2
|
Zhao X, Di J, Luo D, Vaishnav Y, Kamal, Nuralieva N, Verma D, Verma P, Verma S. Recent developments of P-glycoprotein inhibitors and its structure-activity relationship (SAR) studies. Bioorg Chem 2024; 143:106997. [PMID: 38029569 DOI: 10.1016/j.bioorg.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Nargiza Nuralieva
- School of Education, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Deepti Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Payal Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shekhar Verma
- University College of Pharmacy Raipur, Chhattisgarh Swami Vivekananda Technical University, Newai, Bhilai 491107, Chhattisgarh, India.
| |
Collapse
|
3
|
Feyzizadeh M, Barfar A, Nouri Z, Sarfraz M, Zakeri-Milani P, Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opin Drug Discov 2022; 17:1013-1027. [PMID: 35996765 DOI: 10.1080/17460441.2022.2112666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The argument around cancer therapy is an old one. Using chemotherapeutic drugs, as one of the most effective strategies in treatment of malignancies, is restricted by various issues that progress during therapy and avoid achieving clinical endpoints. Multidrug resistance (MDR), frequently mediated by ATP-binding cassette (ABC) transporters, is one of the most recognized obstacles in the success of pharmacological anticancer approaches. These transporters efflux diverse drugs to extracellular environment, causing MDR and responsiveness of tumor cells to chemotherapy diminishes. AREAS COVERED Several strategies have been used to overcome MDR phenomenon. Succession in this field requires complete knowledge about features and mechanism of ABC transporters. In this review, conventional synthetic and natural inhibitors are discussed first and then novel approaches including RNA, monoclonal antibodies, nanobiotechnology, and structural modification techniques are represented. EXPERT OPINION With increasing frequency of MDR in cancer cells, it is essential to develop new drugs to inhibit MDR. Using knowledge acquired about ABC transporter's structure, rational design of inhibitors is possible. Also, some herbal products have shown to be potential lead compounds in drug discovery for reversal of MDR.
Collapse
Affiliation(s)
- Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Barfar
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
4
|
Li YS, Mao S, Zhao DS, Wang CC, Zu D, Yang X, Liu GJ, Wang SJ, Zhang B, Bao XZ, Ye XY, Wei B, Cui ZN, Chen JW, Wang H. Rational design of phenyl thiophene (pyridine) derivatives that overcome P-glycoprotein mediated MDR in MCF-7/ADR cell. Bioorg Chem 2021; 114:105075. [PMID: 34217975 DOI: 10.1016/j.bioorg.2021.105075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Ya-Sheng Li
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shen Mao
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Can-Can Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dan Zu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xi Yang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gui-Jun Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Bo Zhang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Ze Bao
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin-Yi Ye
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Del-ta Region, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Faheem, Karan Kumar B, Venkata Gowri Chandra Sekhar K, Chander S, Kunjiappan S, Murugesan S. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opin Drug Discov 2021; 16:1119-1147. [PMID: 33908322 DOI: 10.1080/17460441.2021.1916464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Cancer is a dreadful disorder that is emerging as one of the leading causes of mortality across the globe. The complex tumor environment, supplemented with drawbacks of the existing drugs, has made it a global health concern. The Tetrahydroisoquinoline (THIQ) ring holds an important position in medicinal chemistry due to its wide range of pharmacological properties. Several THIQ based natural products have been previously explored for their antitumor properties, making it a vital scaffold for anticancer drug design.Areas covered: This review article addresses the potential of THIQ as anticancer agents. Various medicinal chemistry strategies employed for the design and development of THIQ analogs as inhibitors or modulators of relevant anticancer targets have been discussed in detail. Moreover, the common strategies employed for the synthesis of the core scaffold are also highlighted.Expert opinion: Evidently, THIQs have tremendous potential in anticancer drug design. Some of these analogs exhibited potent activity against various cancer molecular targets. However, there are some drawbacks, such as selectivity that need addressing. The synthetic ease for constructing the core scaffold complimented with its reactivity makes it ideal for further structure-activity relationship studies. For these reasons, THIQ is a privileged scaffold for the design and development of novel anticancer agents.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | | | - Subhash Chander
- Amity Institute of Phytomedicine and Phytochemistry, Amity University Uttar Pradesh, Noida, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| |
Collapse
|
6
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Qiu Q, Shi W, Zhao S, Zhu Y, Ding Z, Zhou S, Kairuki M, Huang W, Qian H. Discovery to solve multidrug resistance: Design, synthesis, and biological evaluation of novel agents. Arch Pharm (Weinheim) 2019; 352:e1900127. [DOI: 10.1002/ardp.201900127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Qianqian Qiu
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers’ University Yancheng China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, Center of Drug DiscoveryChina Pharmaceutical University Nanjing China
| | - Shiyuan Zhao
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers’ University Yancheng China
| | - Yan Zhu
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers’ University Yancheng China
| | - Zhengquan Ding
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers’ University Yancheng China
| | - Shaoyang Zhou
- School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers’ University Yancheng China
| | - Mutta Kairuki
- State Key Laboratory of Natural Medicines, Center of Drug DiscoveryChina Pharmaceutical University Nanjing China
| | - Wenlong Huang
- State Key Laboratory of Natural Medicines, Center of Drug DiscoveryChina Pharmaceutical University Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseaseChina Pharmaceutical University Nanjing China
| | - Hai Qian
- State Key Laboratory of Natural Medicines, Center of Drug DiscoveryChina Pharmaceutical University Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic DiseaseChina Pharmaceutical University Nanjing China
| |
Collapse
|
9
|
Xu JH, Fan YL, Zhou J. Quinolone-Triazole Hybrids and their Biological Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3234] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun-Hao Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| | - Jin Zhou
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province; Zhejiang Police College; Hangzhou People's Republic of China
| |
Collapse
|
10
|
Ghaleb H, Li H, Kairuki M, Qiu Q, Bi X, Liu C, Liao C, Li J, Hezam K, Huang W, Qian H. Design, synthesis and evaluation of a novel series of inhibitors reversing P-glycoprotein-mediated multidrug resistance. Chem Biol Drug Des 2018; 92:1708-1716. [DOI: 10.1111/cbdd.13338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/18/2018] [Accepted: 04/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Hesham Ghaleb
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Huilan Li
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Mutta Kairuki
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Qianqian Qiu
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Xinzhou Bi
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Chunxia Liu
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Chen Liao
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Jieming Li
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Kamal Hezam
- Antibody Engineering Laboratory; School of Life Science and Technology; China Pharmaceutical University; Nanjing China
| | - Wenlong Huang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing China
| | - Hai Qian
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing China
| |
Collapse
|
11
|
Synthesis and biological evaluation of novel aliphatic acid-conjugated antimicrobial peptides as potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability. Amino Acids 2017; 49:1831-1841. [PMID: 28831625 DOI: 10.1007/s00726-017-2482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/16/2017] [Indexed: 02/02/2023]
Abstract
Compared with traditional anti-tumor drugs, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. BP100 is a multifunctional membrane-active peptide with high antimicrobial activity. Taking BP100 as a lead peptide, we designed and synthesized a series of aliphatic chain-conjugated peptides through solid-phase synthesis. Biological evaluation revealed that these peptides exhibited better anti-cancer activity than BP100. Further investigations revealed that these peptides could disrupt the cell membrane and trigger the cytochrome C release into cytoplasm, which ultimately resulted in apoptosis. Meanwhile, these peptides also exhibited effective anti-tumor activity against multidrug resistant cells and had multidrug resistance-reversing effect. Additionally, conjugation of aliphatic acid to those peptides could enhance their stability in plasma. In conclusion, aliphatic acid-modified peptides might be promising anti-tumor agents for cancer therapy.
Collapse
|
12
|
Zhang B, Shi W, Li J, Liao C, Yang L, Huang W, Qian H. Synthesis and biological evaluation of novel peptides based on antimicrobial peptides as potential agents with antitumor and multidrug resistance-reversing activities. Chem Biol Drug Des 2017; 90:972-980. [DOI: 10.1111/cbdd.13023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Bo Zhang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Wei Shi
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Jieming Li
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Chen Liao
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Limei Yang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Wenlong Huang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing China
| | - Hai Qian
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing China
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of novel peptides as potential agents with anti-tumor and multidrug resistance-reversing activities. Amino Acids 2017; 49:1355-1364. [DOI: 10.1007/s00726-017-2434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
|