1
|
Ali AA, Al-Othman A, Al-Sayah MH. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022; 351:476-503. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
With cancer research shifting focus to achieving multifunctionality in cancer treatment strategies, hybrid nanogels are making a rapid rise to the spotlight as novel, multifunctional, stimuli-responsive, and biocompatible cancer therapeutic strategies. They can possess cancer cell-specific cytotoxic effects themselves, carry drugs or enzymes that can produce cytotoxic effects, improve imaging modalities, and target tumor cells over normal cells. Hybrid nanogels bring together a wide range of desirable properties for cancer treatment such as stimuli-responsiveness, efficient loading and protection of molecules such as drugs or enzymes, and effective crossing of cellular barriers among other properties. Despite their promising abilities, hybrid nanogels are still far from being used in the clinic, and their available data remains relatively limited. However, many studies can be done to facilitate this clinical transition. This review is critically summarizing and analyzing the recent information and progress on the use of hybrid nanogels particularly inorganic nanoparticle-based and organic nanoparticle-based hybrid nanogels in the field of oncology and future directions to aid in transferring those results to the clinic. This work concludes that the future of hybrid nanogels is greatly impacted by therapeutic and non-therapeutic factors. Therapeutic factors include the lack of hemocompatibility studies, acute and chronic toxicological studies, and information on agglomeration capability and extent, tumor heterogeneity, interaction with proteins in physiological fluids, endocytosis-exocytosis, and toxicity of the nanogels' breakdown products. Non-therapeutic factors include the lack of clear regulatory guidelines and standardized assays, limitations of animal models, and difficulties associated with good manufacture practices (GMP).
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Wang ST, Zhang H, Xuan S, Nykypanchuk D, Zhang Y, Freychet G, Ocko BM, Zuckermann RN, Todorova N, Gang O. Compact Peptoid Molecular Brushes for Nanoparticle Stabilization. J Am Chem Soc 2022; 144:8138-8152. [PMID: 35452210 DOI: 10.1021/jacs.2c00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Controlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs). The generality of this robust functionalization strategy was also demonstrated by coating of silver, platinum, and iron oxide NPs with designed peptoids. Each peptoid (PE) is designed with varied arrangements of a multivalent AuNP-binding domain and a solvation domain consisting of oligo-ethylene glycol (EG) branches. Among designs, a peptoid (PE5) with a diblock structure is demonstrated to provide a superior nanocolloidal stability in diverse aqueous solutions while forming a compact shell (∼1.5 nm) on the AuNP surface. We demonstrate by experiments and molecular dynamics simulations that PE5-coated AuNPs (PE5/AuNPs) are stable in select organic solvents owing to the strong PE5 (amine)-Au binding and solubility of the oligo-EG motifs. At the vapor-aqueous interface, we show that PE5/AuNPs remain stable and can self-assemble into ordered 2D lattices. The NP films exhibit strong near-field plasmonic coupling when transferred to solid substrates.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Sunting Xuan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Guillaume Freychet
- Energy Sciences Directorate/Photon Science Division, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M Ocko
- Energy Sciences Directorate/Photon Science Division, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ronald N Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Nevena Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States.,Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
Zhang T, Sui X, Gutekunst WR. Convergent Synthesis of Branched Metathesis Polymers with Enyne Reagents. Macromolecules 2021; 54:8435-8442. [DOI: 10.1021/acs.macromol.1c01051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianqi Zhang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xuelin Sui
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Dutka V, Oshchapovska N. Adsorption of Oligomeric Peroxides on Aerosil and Magnesium Oxide and Their Behavior on the Water-Air Phases Interface. CHEMISTRY & CHEMICAL TECHNOLOGY 2021. [DOI: 10.23939/chcht15.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oligomeric peroxide adsorption of sebacic acid on aerosil and magnesium oxide was studied. Adsorption process parameters were found. It is shown that the adsorption takes place through the hydrogen bonds formation between OH– groups of adsorbents surface and peroxide groups. The adsorption process suggests the behavior of peroxide compounds on the water-air phase’s interface. Monomolecular film formations on water surface for oligomeric peroxides were studied. It was found that calculated values of the area extrapolated to zero pressure (S0) depend on the solvent which was used to apply the peroxide in the phases interface. Oligomeric peroxide monolayers considered as condensation-type monolayers. Thermal decomposition of oligomeric peroxide and its di- and monoperoxide analogues was studied. It was shown that total constants of thermal degradation rate k for oligomeric peroxide are higher than those for di- and monoperoxide analogues. There is a correlation between S0 calculated values and the constants of thermal degradation rate for oligoperoxide. The less is S0 value the higher is k value. The conformational state of the macromolecule was preserved during transferring the oligomeric peroxide solution in an organic solvent to the phases interface that affects k values.
Collapse
|
5
|
TMP-based hyperbranched polyurethane elastomer (HBPUE) packaging material applied to anodic bonding. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01190-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Gao HM, Li B, Zhang R, Sun ZY, Lu ZY. Free energy for inclusion of nanoparticles in solvated polymer brushes from molecular dynamics simulations. J Chem Phys 2020; 152:094905. [DOI: 10.1063/5.0002257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hui-Min Gao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
- School of Mathematics, Jilin University, Changchun 130023, China
| | - Bing Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ran Zhang
- School of Mathematics, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
7
|
Ambrožić G, Kolympadi Markovic M, Peter R, Kavre Piltaver I, Jelovica Badovinac I, Čakara D, Marković D, Knez M. Building organosilica hybrid nanohemispheres via thiol-ene click reaction on alumina thin films deposited by atomic layer deposition (ALD). J Colloid Interface Sci 2020; 560:303-311. [DOI: 10.1016/j.jcis.2019.10.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
|
8
|
Zhang J, Wang D, Jiang L, Xia J, Bo M, Yao Z. Mussel‐inspired catechol‐based chemistry for direct construction of super‐hydrophilic and waterproof coatings on intrinsic hydrophobic surfaces. J Appl Polym Sci 2019. [DOI: 10.1002/app.48013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jianfu Zhang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 People's Republic of China
- School of Chemistry and Environmental EngineeringChangchun University of Science and Technology Changchun 130022 People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun 130022 People's Republic of China
| | - Dan Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 People's Republic of China
- School of Chemistry and Environmental EngineeringChangchun University of Science and Technology Changchun 130022 People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun 130022 People's Republic of China
| | - Liping Jiang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 People's Republic of China
- School of Chemistry and Environmental EngineeringChangchun University of Science and Technology Changchun 130022 People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun 130022 People's Republic of China
| | - Jian Xia
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 People's Republic of China
- School of Chemistry and Environmental EngineeringChangchun University of Science and Technology Changchun 130022 People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun 130022 People's Republic of China
| | - Manjiang Bo
- School of Chemistry and Environmental EngineeringChangchun University of Science and Technology Changchun 130022 People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Changchun 130022 People's Republic of China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 People's Republic of China
| |
Collapse
|
9
|
Plohl O, Finšgar M, Gyergyek S, Ajdnik U, Ban I, Fras Zemljič L. Efficient Copper Removal from an Aqueous Anvironment using a Novel and Hybrid Nanoadsorbent Based on Derived-Polyethyleneimine Linked to Silica Magnetic Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E209. [PMID: 30736282 PMCID: PMC6409590 DOI: 10.3390/nano9020209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
Due to the extreme rise of sludge pollution with heavy metals (e.g. copper), the options for its disposal or treatment are decreasing. On the contrary, properly heavy metal-cleaned sludge can be used as an alternative sustainable energy and agriculture source. The aim of this study was to develop a novel nanoadsorbent, based on irreversibly linked amino-rich polymer onto previously silica-coated magnetic nanoparticles (MNPs) that can be applied efficiently for metal removal. MNPs were coated uniformly by 3 nm thick silica layer (core-shell structure), and were additionally modified with systematic covalent attachment of derived branched polyethyleneimine (bPEI). The formed structure of synthesized MNPs composite was confirmed with several analytical techniques. Importantly, nanoadsorbents exhibit high density of chelating amino groups and large magnetic force for easier separation. The importance of introduced bPEI, effect of pH, initial heavy metal concentration onto copper uptake efficiency and, further, nanoadsorbent regeneration, were studied and explained in detail. The adsorption isotherm was well fitted with Langmuir model, and the maximum adsorption capacity was shown to be 143 mg·g¹ for Cu2+. The reusability and superior properties of silica-coated MNPs functionalized with derived-bPEI for copper adsorption underlie its potential for the removal application from heavy metals contaminated sludge.
Collapse
Affiliation(s)
- Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova 17, 2000 Maribor, Slovenia.
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia.
| | - Sašo Gyergyek
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia.
- Jožef Stefan Institute, Department for Materials` Synthesis, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Urban Ajdnik
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova 17, 2000 Maribor, Slovenia.
| | - Irena Ban
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova 17, 2000 Maribor, Slovenia.
| |
Collapse
|
10
|
Kurowska M, Widyaya VT, Al-Ahmad A, Lienkamp K. Surface-Attached Poly(oxanorbornene) Hydrogels with Antimicrobial and Protein-Repellent Moieties: The Quest for Simultaneous Dual Activity. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1411. [PMID: 30103513 PMCID: PMC6120009 DOI: 10.3390/ma11081411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/28/2022]
Abstract
By copolymerizing an amphiphilic oxanorbornene monomer bearing N- tert-butyloxycarbonyl (Boc) protected cationic groups with an oxanorbornene-functionalized poly(ethylene glycol) (PEG) macromonomer, bifunctional comb copolymers were obtained. Varying the comonomer ratios led to copolymers with PEG contents between 5⁻25 mol %. These polymers were simultaneously surface-immobilized on benzophenone-bearing substrates and cross-linked with pentaerythritoltetrakis(3-mercaptopropionate). They were then immersed into HCl to remove the Boc groups. The thus obtained surface-attached polymer hydrogels (called SMAMP*-co-PEG) were simultaneously antimicrobial and protein-repellent. Physical characterization data showed that the substrates used were homogeneously covered with the SMAMP*-co-PEG polymer, and that the PEG moieties tended to segregate to the polymer⁻air interface. Thus, with increasing PEG content, the interface became increasingly hydrophilic and protein-repellent, as demonstrated by a protein adhesion assay. With 25 mol % PEG, near-quantitative protein-adhesion was observed. The antimicrobial activity of the SMAMP*-co-PEG polymers originates from the electrostatic interaction of the cationic groups with the negatively charged cell envelope of the bacteria. However, the SMAMP*-co-PEG surfaces were only fully active against E. coli, while their activity against S. aureus was already compromised by as little as 5 mol % (18.8 mass %) PEG. The long PEG chains seem to prevent the close interaction of bacteria with the surface, and also might reduce the surface charge density.
Collapse
Affiliation(s)
- Monika Kurowska
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| | - Vania Tanda Widyaya
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| | - Ali Al-Ahmad
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| | - Karen Lienkamp
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| |
Collapse
|
11
|
Wang D, Zhang J, He Y, Li W, Li S, Fu X, Tian M, Zhou Y, Yao Z. Large Area, Highly Transparent, and Mechanically Stable Adhesive Films with Tunable Refractive Indices. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jianfu Zhang
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yuanyuan He
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Wenfei Li
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Shitao Li
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Xiuhua Fu
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Ming Tian
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Yang Zhou
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
12
|
Modica KJ, Martin TB, Jayaraman A. Effect of Polymer Architecture on the Structure and Interactions of Polymer Grafted Particles: Theory and Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00524] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kevin J. Modica
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Tyler B. Martin
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, Colburn Laboratory, and ‡Department of
Materials Science and Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Rahimi M, Safa KD, Salehi R. Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polym Chem 2017. [DOI: 10.1039/c7py01701d] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nanoparticulate drug delivery systems have the potential to improve the therapeutic efficacy of anticancer agents, and combination therapy is a promising strategy for clinical cancer treatment with synergistic effects.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Kazem D. Safa
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Roya Salehi
- Drug Applied Research Centre and School of Advanced Medical Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|