1
|
Feng C, Li Y, Luo Y, Zhang L, Zong Y, Zhao K. Mechanisms of Hydrophobic Recovery of Poly(dimethylsiloxane) Elastomers after Plasma/Corona Treatments: A Minireview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39466172 DOI: 10.1021/acs.langmuir.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Plasma/corona treatment could alter the wettability of a poly(dimethylsiloxane) (PDMS) surface from being hydrophobic to being hydrophilic, which has attracted many researchers' attention. However, the treated surface will gradually recover its hydrophobicity as it ages. To understand the recovery, many studies have been performed. Although there is still no general consensus on the recovery mechanisms, several models have been proposed that can explain the reported wetting behavior of hydrophobic recovery. In this minireview, we summarized the reported mechanisms underlying the hydrophobicity-recovery of oxidized PDMS surfaces, which are certainly affected by varied factors including temperature, aging time, stored conditions, and treatment conditions. We hope this minireview can give beginners in the field of microfluidics a better understanding on the various mechanisms that contribute to the hydrophobic recovery of PDMS surfaces and thus take appropriate measures to efficiently maintain the surface wettability of oxidized PDMS chips to prolong their performance.
Collapse
Affiliation(s)
- Chunying Feng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yanran Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kun Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
2
|
Li X, Mao X, Li X, Liu C, Li J. A one-step process for multi-gradient wettability modification on a polymer surface. Analyst 2024; 149:2103-2113. [PMID: 38421308 DOI: 10.1039/d3an02185h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The surface modification technique is applied in microfluidic devices to modify wettability and achieve different flow velocities. Currently available methods for poly(dimethylsiloxane) (PDMS) surfaces may reliably induce wettability changes, but only one area can be altered at a time. This work introduces the controlled gradient oxygen plasma modification (CGPM) technique, which layers several resin masks with varying porosities on top of the PDMS surface. Selective wettability of the PDMS surface can be achieved by varying the oxygen plasma density above the modified material's surface by manipulation of the porosity value. Through the implementation of the COMSOL plasma module, the impact of the mask's porosity, through-hole size, distribution, and distance from the PDMS surface on wettability was studied. The suggested CGPM approach was characterized by contact angle measurements. During the 25-second CGPM procedure, the PDMS surface's contact angle continually changed from 8.77° to 76.98°. An integrated microfluidic device was created and manufactured to identify D-dimers to illustrate this method. In comparison with standard oxygen plasma treatment, the D-dimer assay was finished in 10 minutes and had a dynamic range of 1-1000 ng mL-1, with a peak fluorescence signal augmentation of 78.3% and an average fluorescence intensity enhancement of 31.1%.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| | - Xinyu Mao
- Department of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| | - Xudong Li
- Department of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| | - Chong Liu
- Department of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| | - Jingmin Li
- Department of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Aslan Y, McGleish O, Reboud J, Cooper JM. Alignment-free construction of double emulsion droplet generation devices incorporating surface wettability contrast. LAB ON A CHIP 2023; 23:5173-5179. [PMID: 37966340 DOI: 10.1039/d3lc00584d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Although polydimethylsiloxane (PDMS) is a versatile and easy-to-use material for microfluidics, its inherent hydrophobicity often necessitates specific hydrophilic treatment to fabricate microchip architectures for generating double emulsions. These additional processing steps frequently lead to increased complexity, potentially creating barriers to the wider use of promising microfluidic techniques. Here we describe an alignment-free spatial hydrophilic PDMS patterning technique to produce devices for the creation of double emulsions using combinations of PDMS and PDMS/surfactant bilayers. The technique enables us to achieve selective patterning and alignment-free bonding, producing reliable and reproducible water-in-oil-in-water W/O/W droplet emulsions. Our method involves processing devices in a vertical orientation, with the wetting transition contrast being achieved simply by imaging whilst adjusting the PDMS pouring speed (using a mobile phone, for example). We successfully obtain hydrophilic surfaces without distinguishable hydrophobic recovery using a range of surfactant concentrations. Droplet emulsions were produced with low coefficients of variation aligned with those generated with other, more complex, techniques (e.g. 3.8% and 3.1% for the inner and outer diameters, respectively). As a further example, the methods were also demonstrated for liposome production. In future we anticipate that the technique may be applied to other fields, including e.g. reagent delivery, DNA amplification, and encapsulated cell studies.
Collapse
Affiliation(s)
- Yunus Aslan
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Olivia McGleish
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Julien Reboud
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Jonathan M Cooper
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| |
Collapse
|
4
|
Khattak HK, Lu G, Dutcher LA, Brook MA, Dalnoki-Veress K. Preparation of ultra-thin elastomeric films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:33. [PMID: 37171676 DOI: 10.1140/epje/s10189-023-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
When polydimethylsiloxane elastomers are produced, in the absence of great care, chains remain that are unbound to the cross-linked matrix. Due to the unbound chains swelling the crosslinked matrix, these materials are gels. We have developed a simple process to prepare well-controlled elastomeric thin films which do not rely on unknown commercial formulations.
Collapse
Affiliation(s)
- Hamza K Khattak
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Guanhua Lu
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Lauren A Dutcher
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Michael A Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Kari Dalnoki-Veress
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada.
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005, Paris, France.
| |
Collapse
|
5
|
On Classification of Water-in-Oil and Oil-in-Water Droplet Generation Regimes in Flow-Focusing Microfluidic Devices. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The objective of this research work is to propose a phase diagram that can be used to find a proper operating condition for generating droplets of different types. It is found that the phase diagram of QR versus CaD can effectively classify the droplet generation into three vivid regimes: dripping, jetting and tubing. For the dripping regime, its operating condition is in the range of either CaD < 10−4 and QR < 50 or 10−3 < CaD < 10−4 and QR < 1. For the jetting regime, its operating condition is in the range of either CaD < 1.35 × 10−2 and QR > 100 or CaD > 1.35 × 10−2 and QR > 1. For the tubing regime, its operating condition is in the range of CaD > 1.35 × 10−2 and QR < 1.
Collapse
|
6
|
Cowell TW, Dobria A, Han HS. Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20528-20537. [PMID: 35502700 DOI: 10.1021/acsami.1c22692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Drop microfluidics has driven innovations for high throughput, low input analysis techniques such as single-cell RNA-seq. However, the instability of single emulsion (SE) drops occasionally causes significant merging during drop processing, limiting most applications to single-step reactions in drops. Here, we show that double emulsion (DE) drops address this critical limitation and completely prevent drop contents from mixing. DEs show excellent stability during thermal cycling. More importantly, DEs undergo rupture into the continuous phase instead of merging, preventing content mixing and eliminating unstable drops from the downstream analysis. Due to the lack of drop merging, the monodispersity of drops is maintained throughout a workflow, enabling the deterministic manipulation of drops downstream. We also developed a simple, one-layer DE drop maker compatible with simple surface treatment using a plasma cleaner. The device allows for the robust production of single-core DEs at a wide range of flow rates and better control over the shell thickness, both of which have been significant limitations of conventional two-layer devices. This approach makes the fabrication of DE devices much more accessible, facilitating its broader adoption. Finally, we show that DE droplets eliminate content mixing and maintain compartmentalization of single virus genomes during PCR-based amplification and barcoding, while SEs mixed contents due to merging. With their resistance to content mixing, DE drops have key advantages for multistep reactions in drops, which is limited in SEs due to merging and content mixing.
Collapse
Affiliation(s)
- Thomas W Cowell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Ave., Urbana, Illinois 61801, United States
| | - Andrew Dobria
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Ave., Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr., Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 North Mathews Ave., Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Feng C, Takahashi K, Zhu J. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production. Front Bioeng Biotechnol 2022; 10:891213. [PMID: 35519623 PMCID: PMC9061991 DOI: 10.3389/fbioe.2022.891213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Double emulsion (DE) droplets with controlled size and internal structure are a promising platform for biological analysis, chemical synthesis, and drug delivery systems. However, to further “democratize” their application, new methods that enable simple and precise spatial patterning of the surface wettability of droplet-generating microfluidic devices are still needed. Here, by leveraging the increase in hydrophilicity of polydimethylsiloxane (PDMS) due to the plasma-treatment used to permanently bond to glass, we developed a one-step method to selectively pattern the wettability of PDMS microfluidic devices for DE generation. Our results show that both Aquapel-treated and 1H,1H,2H,2H-Perfluorodecyltriethoxysilan (PFDTES)-treated devices are functionally showing the generality of our method. With the resulting microfluidic devices, both water-in-oil-in-water (w/o/w) and oil-in-water-in-oil (o/w/o) DE droplets can be produced. Using a PDMS mixture containing cross-linking agents, we formed PDMS microcapsules by solidifying the shell layer of water-in-PDMS-in-water DE droplets. We also characterize the morphological properties of the generated droplets/microcapsules. We anticipate the method developed in this work could be used in a broad range of applications of DE droplets.
Collapse
Affiliation(s)
- Chunying Feng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Chunying Feng,
| | - Kohei Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Jianan Zhu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Lian X, Song C, Wang Y. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Siedlik MJ, Issadore D. Pico-washing: simultaneous liquid addition and removal for continuous-flow washing of microdroplets. MICROSYSTEMS & NANOENGINEERING 2022; 8:46. [PMID: 35498338 PMCID: PMC9050730 DOI: 10.1038/s41378-022-00381-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 05/19/2023]
Abstract
Droplet microfluidics is based on a toolbox of several established unit operations, including droplet generation, incubation, mixing, pico-injection, and sorting. In the last two decades, the development of droplet microfluidic systems, which incorporate these multiple unit operations into a workflow, has demonstrated unique capabilities in fields ranging from single-cell transcriptomic analyses to materials optimization. One unit operation that is sorely underdeveloped in droplet microfluidics is washing, exchange of the fluid in a droplet with a different fluid. Here, we demonstrate what we name the "pico-washer," a unit operation capable of simultaneously adding fluid to and removing fluid from droplets in flow while requiring only a small footprint on a microfluidic chip. We describe the fabrication strategy, device architecture, and process parameters required for stable operation of this technology, which is capable of operating with kHz droplet throughput. Furthermore, we provide an image processing workflow to characterize the washing process with microsecond and micrometer resolution. Finally, we demonstrate the potential for integrated droplet workflows by arranging two of these unit operations in series with a droplet generator, describe a design rule for stable operation of the pico-washer when integrated into a system, and validate this design rule experimentally. We anticipate that this technology will contribute to continued development of the droplet microfluidics toolbox and the realization of novel droplet-based, multistep biological and chemical assays.
Collapse
Affiliation(s)
- Michael J. Siedlik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 United States
| |
Collapse
|
10
|
Kamnerdsook A, Juntasaro E, Khemthongcharoen N, Chanasakulniyom M, Sripumkhai W, Pattamang P, Promptmas C, Atthi N, Jeamsaksiri W. Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic-hydrophobic surface. RSC Adv 2021; 11:35653-35662. [PMID: 35493190 PMCID: PMC9043265 DOI: 10.1039/d1ra06887c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
The objective of this paper is to propose a surface modification method for preparing PDMS microfluidic devices with partially hydrophilic-hydrophobic surfaces for generating double emulsion droplets. The device is designed to be easy to use without any complicated preparation process and also to achieve high droplet encapsulation efficiency compared to conventional devices. The key component of this preparation process is the permanent chemical coating for which the Pluronic surfactant is added into the bulk PDMS. The addition of Pluronic surfactant can modify the surface property of PDMS from a fully hydrophobic surface to a partially hydrophilic-hydrophobic surface whose property can be either hydrophilic or hydrophobic depending on the air- or water-treatment condition. In order to control the surface wettability, this microfluidic device with the partially hydrophilic-hydrophobic surface undergoes water treatment by injecting deionized water into the specific microchannels where their surface property changes to hydrophilic. This microfluidic device is tested by generating monodisperse water-in-oil-in-water (w/o/w) double emulsion micro-droplets for which the maximum droplet encapsulation efficiency of 92.4% is achieved with the average outer and inner diameters of 75.0 and 57.7 μm, respectively.
Collapse
Affiliation(s)
- Ampol Kamnerdsook
- Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Ekachai Juntasaro
- Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Numfon Khemthongcharoen
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Mayuree Chanasakulniyom
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University Nakhon Pathom 73170 Thailand
| | - Witsaroot Sripumkhai
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| | - Pattaraluck Pattamang
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| | - Chamras Promptmas
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University Nakhon Pathom 73170 Thailand
| | - Nithi Atthi
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| | - Wutthinan Jeamsaksiri
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center, National Science and Technology Development Agency Chachoengsao 24000 Thailand
| |
Collapse
|
11
|
Liu H, Piper JA, Li M. Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation. Anal Chem 2021; 93:10955-10965. [PMID: 34323465 DOI: 10.1021/acs.analchem.1c01861] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water-in-oil-in-water (w/o/w) double emulsion (DE) encapsulation has been widely used as a promising platform technology for various applications in the fields of food, cosmetics, pharmacy, chemical engineering, materials science, and synthetic biology. Unfortunately, DEs formed by conventional emulsion generation approaches in most cases are highly polydisperse, making them less desirable for quantitative assays, controlled biomaterial synthesis, and entrapped ingredient release. Microfluidic devices can generate monodisperse DEs with controllable size, morphology, and production rate, but these generally require multistep fabrication processes and use of different solvents or bulky external instrumentation to pattern channel wettability. To overcome these limitations, we propose a rapid, simple, and inexpensive method to spatially pattern wettability in microfluidic devices for the continuous generation of monodisperse DEs. This is achieved by applying corona-plasma treatment to a select zone of the microchannel surface aided by a custom-designed corona resistance microchannel to strictly confine the plasma-treatment zone in a single polydimethylsiloxane (PDMS) microfluidic device. The properties of PDMS channel surfaces and key microchannel regions for DE generation are characterized under different levels of treatment. The size, shell thickness, and number of inner cores of generated DEs are shown to be highly controllable by tuning the phase flow rate ratios. Using DEs as templates, we successfully achieve a one-step generation and collection of gelatin microgels. Additionally, we demonstrate the biological capability of generated DEs by flow cytometric screening of the encapsulation and growth of yeast cells within DEs. We expect that the proposed approach will be widely used to create microfluidic devices with more complex wettability patterns.
Collapse
Affiliation(s)
- Hangrui Liu
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia.,Department of Physics and Astronomy, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia
| | - James A Piper
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia.,Department of Physics and Astronomy, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia
| | - Ming Li
- School of Engineering, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Balaclava Road, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
12
|
Yang J, Tu R, Yuan H, Wang Q, Zhu L. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol 2021; 41:1023-1045. [PMID: 33730939 DOI: 10.1080/07388551.2021.1898326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymes and cell factories play essential roles in industrial biotechnology for the production of chemicals and fuels. The properties of natural enzymes and cells often cannot meet the requirements of different industrial processes in terms of cost-effectiveness and high durability. To rapidly improve their properties and performances, laboratory evolution equipped with high-throughput screening methods and facilities is commonly used to tailor the desired properties of enzymes and cell factories, addressing the challenges of achieving high titer and the yield of the target products at high/low temperatures or extreme pH, in unnatural environments or in the presence of unconventional media. Droplet microfluidic screening (DMFS) systems have demonstrated great potential for exploring vast genetic diversity in a high-throughput manner (>106/h) for laboratory evolution and have been increasingly used in recent years, contributing to the identification of extraordinary mutants. This review highlights the recent advances in concepts and methods of DMFS for library screening, including the key factors in droplet generation and manipulation, signal sources for sensitive detection and sorting, and a comprehensive summary of success stories of DMFS implementation for engineering enzymes and cell factories during the past decade.
Collapse
Affiliation(s)
- Jianhua Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
13
|
Ma F, Guo T, Zhang Y, Bai X, Li C, Lu Z, Deng X, Li D, Kurabayashi K, Yang GY. An ultrahigh-throughput screening platform based on flow cytometric droplet sorting for mining novel enzymes from metagenomic libraries. Environ Microbiol 2020; 23:996-1008. [PMID: 32985743 DOI: 10.1111/1462-2920.15257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/26/2020] [Indexed: 11/27/2022]
Abstract
Uncultivable microbial communities provide enormous reservoirs of enzymes, but their experimental identification by functional metagenomics is challenging, mainly due to the difficulty of screening enormous metagenomic libraries. Here, we propose a reliable and convenient ultrahigh-throughput screening platform based on flow cytometric droplet sorting (FCDS). The FCDS platform employs water-in-oil-in-water double emulsion droplets serving as single-cell enzymatic micro-reactors and a commercially available flow cytometer, and it can efficiently isolate novel biocatalysts from metagenomic libraries by processing single cells as many as 108 per day. We demonstrated the power of this platform by screening a metagenomic library constructed from domestic running water samples. The FCDS assay screened 30 million micro-reactors in only 1 h, yielding a collection of esterase genes. Among these positive hits, Est WY was identified as a novel esterase with high catalytic efficiency and distinct evolutionary origin from other lipolytic enzymes. Our study manifests that the FCDS platform is a robust tool for functional metagenomics, with the potential to significantly improve the efficiency of exploring novel enzymes from nature.
Collapse
Affiliation(s)
- Fuqiang Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Tianjie Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yifan Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Changlong Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Zelin Lu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Xi Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daixi Li
- Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Ongaro AE, Di Giuseppe D, Kermanizadeh A, Miguelez Crespo A, Mencattini A, Ghibelli L, Mancini V, Wlodarczyk KL, Hand DP, Martinelli E, Stone V, Howarth N, La Carrubba V, Pensabene V, Kersaudy-Kerhoas M. Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications. Anal Chem 2020; 92:6693-6701. [PMID: 32233401 DOI: 10.1021/acs.analchem.0c00651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Organ-on-chip (OOC) devices are miniaturized devices replacing animal models in drug discovery and toxicology studies. The majority of OOC devices are made from polydimethylsiloxane (PDMS), an elastomer widely used in microfluidic prototyping, but posing a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled absorption of small compounds. Here we assess the suitability of polylactic acid (PLA) as a replacement material to PDMS for microfluidic cell culture and OOC applications. We changed the wettability of PLA substrates and demonstrated the functionalization method to be stable over a time period of at least 9 months. We successfully cultured human cells on PLA substrates and devices, without coating. We demonstrated that PLA does not absorb small molecules, is transparent (92% transparency), and has low autofluorescence. As a proof of concept of its manufacturability, biocompatibility, and transparency, we performed a cell tracking experiment of prostate cancer cells in a PLA device for advanced cell culture.
Collapse
Affiliation(s)
- Alfredo E Ongaro
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.,Division of Infection and Pathway Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH164SB, United Kingdom.,Department of Engineering, Università degli Studi di Palermo, Viale delle Scienze building 5, 90128 Palermo, Italy
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ali Kermanizadeh
- School of Medical Sciences, University of Bangor, LL57 2AS Bangor, United Kingdom
| | - Allende Miguelez Crespo
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lina Ghibelli
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vanessa Mancini
- School of Electronic and Electrical Engineering, Pollard Institute, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Krystian L Wlodarczyk
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Duncan P Hand
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Nicola Howarth
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vincenzo La Carrubba
- Department of Engineering, Università degli Studi di Palermo, Viale delle Scienze building 5, 90128 Palermo, Italy.,INSTM, Palermo Research Unit, Viale delle Scienze building 6, 90128 Palermo, Italy.,ATeN Center, Università degli Studi di Palermo, Viale delle Scienze building 18, 90128 Palermo, Italy
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, Pollard Institute, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom.,School of Medicine, Leeds Institute of Medical Research, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Maïwenn Kersaudy-Kerhoas
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.,Division of Infection and Pathway Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH164SB, United Kingdom
| |
Collapse
|
15
|
Pascual M, Kerdraon M, Rezard Q, Jullien MC, Champougny L. Wettability patterning in microfluidic devices using thermally-enhanced hydrophobic recovery of PDMS. SOFT MATTER 2019; 15:9253-9260. [PMID: 31657428 DOI: 10.1039/c9sm01792e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spatial control of wettability is key to many applications of microfluidic devices, ranging from double emulsion generation to localized cell adhesion. A number of techniques, often based on masking, have been developed to produce spatially-resolved wettability patterns at the surface of poly(dimethylsiloxane) (PDMS) elastomers. A major impediment they face is the natural hydrophobic recovery of PDMS: hydrophilized PDMS surfaces tend to return to hydrophobicity with time, mainly because of diffusion of low molecular weight silicone species to the surface. Instead of trying to avoid this phenomenon, we propose in this work to take advantage of hydrophobic recovery to modulate spatially the surface wettability of PDMS. Because temperature speeds up the rate of hydrophobic recovery, we show that space-resolved hydrophobic patterns can be produced by locally heating a plasma-hydrophilized PDMS surface with microresistors. Importantly, local wettability is quantified in microchannels using a fluorescent probe. This "thermo-patterning" technique provides a simple route to in situ wettability patterning in closed PDMS chips, without requiring further surface chemistry.
Collapse
Affiliation(s)
- Marc Pascual
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France.
| | - Margaux Kerdraon
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France.
| | - Quentin Rezard
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France.
| | - Marie-Caroline Jullien
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France. and Institut de Physique de Rennes, UMR CNRS 6251, Bât. 11A, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Lorène Champougny
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France. and Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés (Madrid), Spain
| |
Collapse
|
16
|
Abbasi MS, Song R, Lee J. Breakups of an encapsulated surfactant-laden aqueous droplet under a DC electric field. SOFT MATTER 2019; 15:8905-8911. [PMID: 31621746 DOI: 10.1039/c9sm01623f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigate the breakups of an encapsulated conducting aqueous droplet under a direct-current electric field via extensive experiments and theoretical analysis. The encapsulating shell phase and the ambient phase consist of leaky dielectric liquids. We change the surface tension by using an aqueous core with different surfactant (Tween 80) concentrations. Moreover, we vary the core size under different electric-field conditions and observe the core dynamics. We present three different breakup modes of the encapsulated droplet. In the first mode, the encapsulated core forms asymmetric Janus shapes after breakup. In the second and third breakup modes, stable and unstable ternary droplets are formed, respectively. We show that the surfactant molecules significantly alter the dynamics of core stretching. According to the theoretical analysis, we identify the critical conditions of instability leading to breakup. We plot the breakup modes in the form of a phase diagram in the electric capillary number (Ca23 = ε3rsEo2/γ23; ratio of interfacial electric to capillary stresses) vs. radius ratio of the core to the shell (β = rc/rs) parametric space at different nondimensional surfactant concentrations (C* = CTween 80/CCMC, where CCMC represents the critical micellar concentration). The study provides essential physical insight into encapsulated emulsions and is useful for their application in various areas of science and technology.
Collapse
Affiliation(s)
- Muhammad Salman Abbasi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea. and Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
17
|
Li L, Yan Z, Jin M, You X, Xie S, Liu Z, van den Berg A, Eijkel JCT, Shui L. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16934-16943. [PMID: 30983312 DOI: 10.1021/acsami.9b03160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on a simple approach for in-channel functionalization of a polydimethylsiloxane (PDMS) surface to obtain a switchable and reversible wettability change between hydrophilic and hydrophobic states. The thermally responsive polymer, poly( N-Isopropylacrylamide) (PNIPAAm), was grafted on the surface of PDMS channels by UV-induced surface grafting. PNIPAAm-grafted PDMS (PNIPAAm-g-PDMS) surface wettability can be thermally tuned to obtain water contact angles varying in the range of 24.3 to 106.1° by varying temperature at 25-38 °C. By selectively modifying the functionalized area in the microfluidic channels, multiform emulsion droplets of oil-in-water (O/W), water-in-oil (W/O), oil-in-water-in-oil (O/W/O), and water-in-oil-in-water (W/O/W) could be created on-demand. Combining solid surface wettability and liquid-liquid interfacial properties, tunable generation of O/W and W/O droplet and stratified flows were enabled in the same microfluidic device with either different or the same two-phase fluidic systems, by properly heating/cooling thermal-responsive microfluidic channels and choosing suitable surfactants. Controllable creation of O/W/O and W/O/W droplets was also achieved in the same microfluidic device, by locally heating or cooling the droplet generation areas with integrated electric heaters to achieve opposite surface wettability. Hollow microcapsules were prepared using double emulsion droplets as templates in the microfluidic device with sequential hydrophobic and hydrophilic channel segments, demonstrating the strength of the proposed approach in practical applications.
Collapse
Affiliation(s)
- Lanhui Li
- BIOS/Lab on a Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500AE , The Netherlands
| | | | | | | | | | | | - Albert van den Berg
- BIOS/Lab on a Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500AE , The Netherlands
| | - Jan C T Eijkel
- BIOS/Lab on a Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500AE , The Netherlands
| | | |
Collapse
|
18
|
Sesen M, Alan T, Neild A. Droplet control technologies for microfluidic high throughput screening (μHTS). LAB ON A CHIP 2017. [PMID: 28631799 DOI: 10.1039/c7lc00005g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transition from micro well plate and robotics based high throughput screening (HTS) to chip based screening has already started. This transition promises reduced droplet volumes thereby decreasing the amount of fluids used in these studies. Moreover, it significantly boosts throughput allowing screening to keep pace with the overwhelming number of molecular targets being discovered. In this review, we analyse state-of-the-art droplet control technologies that exhibit potential to be used in this new generation of screening devices. Since these systems are enclosed and usually planar, even some of the straightforward methods used in traditional HTS such as pipetting and reading can prove challenging to replicate in microfluidic high throughput screening (μHTS). We critically review the technologies developed for this purpose in depth, describing the underlying physics and discussing the future outlooks.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
19
|
Bodin-Thomazo N, Malloggi F, Guenoun P. Marker patterning: a spatially resolved method for tuning the wettability of PDMS. RSC Adv 2017. [DOI: 10.1039/c7ra05654k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article presents a marker patterning method where a permanent ink is used as a masking layer. During plasma oxidation, the PDMS surfaces are protected leading to a simple and easy wettability patterning.
Collapse
Affiliation(s)
| | | | - P. Guenoun
- LIONS
- NIMBE
- CEA
- CNRS
- Université Paris-Saclay
| |
Collapse
|