1
|
Ai S, Huang Z, Yu W, Huang C. Efficient dissolution of cellulose in slow-cooling alkaline systems and interacting modes between alkali and urea at the molecular level. Carbohydr Res 2024; 536:109054. [PMID: 38350405 DOI: 10.1016/j.carres.2024.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
The dissolution of microcrystalline cellulose (MCC) in a urea-NaOH system is beneficial for its mechanical processing. The apparent MCC solubility was greatly improved to 14 wt% under a slow-cooling condition with a cooling rate of -0.3 °C/min. The cooling curve or thermal history played a crucial role in the dissolution process. An exotherm (-54.7 ± 3 J/g MCC) was detected by DSC only under the slow-cooling condition, and the cryogenic dissolution of MCC was attributed to the exothermic interaction between MCC and solvent. More importantly, the low cooling rate promoted the dissolution of MCC by providing enough time for the diffusion of OH- and urea into MCC granules at higher temperatures. The Raman spectral data showed that the intramolecularly and intermolecularly hydrogen bonds in cellulose were cleaved by NaOH and urea, respectively. XPS and solid-state 13C NMR results showed that hydrogen bonds were generated after dissolution, and a dual-hydrogen-bond binding mode between urea and cellulose was confirmed by DFT calculations. Both the decrease of enthalpy and increase of entropy dominated the spontaneity of MCC dissolution, and that is the reason for the indispensability of cryogenic environment. The high apparent solubility of MCC in the slow-cooling process and the dissolution mechanism are beneficial for the studies on cellulose modification and mechanical processing.
Collapse
Affiliation(s)
- Shuo Ai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Zhenhua Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Wanguo Yu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Chengdu Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
2
|
Norgren M, Costa C, Alves L, Eivazi A, Dahlström C, Svanedal I, Edlund H, Medronho B. Perspectives on the Lindman Hypothesis and Cellulose Interactions. Molecules 2023; 28:molecules28104216. [PMID: 37241956 DOI: 10.3390/molecules28104216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In the history of cellulose chemistry, hydrogen bonding has been the predominant explanation when discussing intermolecular interactions between cellulose polymers. This is the general consensus in scholarly textbooks and in many research articles, and it applies to several other biomacromolecules' interactions as well. This rather unbalanced description of cellulose has likely impacted the development of materials based on the processing of cellulose-for example, via dissolution in various solvent systems and regeneration into solid materials, such as films and fibers, and even traditional wood fiber handling and papermaking. In this review, we take as a starting point the questioning of the general description of the nature of cellulose and cellulose interactions initiated by Professor Björn Lindman, based on generic physicochemical reasoning about surfactants and polymers. This dispute, which became known as "the Lindman hypothesis", highlights the importance of hydrophobic interactions in cellulose systems and that cellulose is an amphiphilic polymer. This paper elaborates on Björn Lindman's contribution to the subject, which has caused the scientific community to revisit cellulose and reconsider certain phenomena from other perspectives.
Collapse
Affiliation(s)
- Magnus Norgren
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Carolina Costa
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Luís Alves
- Department of Chemical Engineering, CIEPQPF-Chemical Processes and Forest Products Engineering Research Centre, University of Coimbra, Pólo II-R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Alireza Eivazi
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Christina Dahlström
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Ida Svanedal
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Håkan Edlund
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Bruno Medronho
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, SE-851 70 Sundsvall, Sweden
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Medronho B, Pereira A, Duarte H, Gentile L, Rosa da Costa AM, Romano A, Olsson U. Probing cellulose-solvent interactions with self-diffusion NMR: Onium hydroxide concentration and co-solvent effects. Carbohydr Polym 2023; 303:120440. [PMID: 36657835 DOI: 10.1016/j.carbpol.2022.120440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
The molecular self-diffusion coefficients were accessed, for the first time, in solutions of microcrystalline cellulose, dissolved in 30 wt% and 55 wt% aqueous tetrabutylammonium hydroxide, TBAH (aq), and in mixtures of 40 wt% TBAH (aq) with an organic co-solvent, dimethylsulfoxide (DMSO), through pulsed field gradient stimulated echo NMR measurements. A two-state model was applied to estimate α (i.e., average number of ions that "bind" to each anhydroglucose unit) and Pb (i.e., fraction of "bound" molecules of DMSO, TBAH or H2O to cellulose) parameters. The α values suggest that TBA+ ions can bind to cellulose within 0.5 TBA+ to 2.3 TBA+/AGU. On the other hand, the Pb parameter increases when raising cellulose concentration for TBA+, DMSO and water in all solvent systems. Data suggests that TBAH interacts with the ionized OH groups from cellulose forming a sheath of bulky TBA+ counterions which consequently leads to steric hindrance between cellulose chains.
Collapse
Affiliation(s)
- B Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal; FSCN Research Center, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden.
| | - A Pereira
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal.
| | - H Duarte
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - L Gentile
- Dipartimento di Chimica, Università di Bari "Aldo Moro" & CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Via Orabona 4, Bari I-70126, Italy.
| | - A M Rosa da Costa
- Algarve Chemistry Research Centre (CIQA), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - A Romano
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal.
| | - U Olsson
- Dipartimento di Chimica, Università di Bari "Aldo Moro" & CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Via Orabona 4, Bari I-70126, Italy; Physical Chemistry, Chemistry Department and Biochemistry and Structural Biology, Chemistry Department, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
4
|
Zhao C, Latif A, Williams KJ, Tirella A. The characterization of molecular weight distribution and aggregation by asymmetrical flow field-flow fractionation of unmodified and oxidized alginate. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Wan L, Yuan Z, Wu B, Jia H, Gao Z, Cao F. Dissolution behavior of arabinoxylan from sugarcane bagasse in tetrabutylammonium hydroxide aqueous solution. Carbohydr Polym 2022; 282:119037. [DOI: 10.1016/j.carbpol.2021.119037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
|
6
|
Wang HY, Zhang YQ, Wei ZG. Dissolution and processing of silk fibroin for materials science. Crit Rev Biotechnol 2021; 41:406-424. [PMID: 33749463 DOI: 10.1080/07388551.2020.1853030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent decades, silk fibroin (SF) from silkworm Bombyx mori has been extensively researched and applied in several fields, including: cosmetics, biomedicine and biomaterials. The dissolution and regeneration of SF fibers is the key and prerequisite step for the application of silk protein-based materials. Various solvents and dissolving systems have been reported to dissolve SF fibers. However, the dissolution process directly affects the characteristics of SF and particularly impacts the mechanical properties of the resulting silk biomaterials in subsequent processing. The purpose of this review is to summarize the common solvents, the dissolution methods for silk protein, the properties of the resulting SF protein. The suitable use of SF dissolved in the corresponding solvent was also briefly introduced. Recent applications of SF in various biomaterials are also discussed.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Szwengiel A, Kubiak P. Molecular Dispersion of Starch as a Crucial Parameter during Size-Exclusion Chromatography. Foods 2020; 9:E1204. [PMID: 32882800 PMCID: PMC7555438 DOI: 10.3390/foods9091204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 01/27/2023] Open
Abstract
Starch, α-polyglucan consisting of a large number of anhydroglucose units joined by α-1,4- and α-1,6-glycosidic bonds, seems to be characterized by a simple structure when compared to other natural polymers. Nevertheless, starches of various botanical origins have different physicochemical properties that are related to the differences in molecular and supramolecular structure of this polymer. In terms of the functional value of starch, the behavior of its macromolecules in solution is the most important result of its structural features. Extremely high molecular mass is the fundamental structural property of starch. Water, considered simply as a solvent for solubilization, does not provide molecular dispersion of starch without its degradation. The objectives of this study are to characterize the suitability of a new aqueous media (urea/NaOH) for enhancing the dispersion of native corn and potato starches and its effect on the consequent size-exclusion chromatography (SEC) analysis. The results were referred to other aqueous base solvents used for dispersing starch (NaOH and KOH). The samples were separated using SEC with triple detection and phosphate buffer (pH 8.0) with urea as the eluent. The characteristics of tested normal and waxy starches were compared. The results revealed that urea/NaOH did not degrade starch during the dispersion process. The recovery of starches, however, was not higher than 42%. These results prove that while the urea/NaOH solvent allows to obtain cold-water-soluble starch, the degree of disintegration of the intramolecular interactions of amylopectin chains is still insufficient.
Collapse
Affiliation(s)
- Artur Szwengiel
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60–624 Poznań, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60–627 Poznań, Poland;
| |
Collapse
|
8
|
Gough CR, Rivera-Galletti A, Cowan DA, Salas-de la Cruz D, Hu X. Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review. Molecules 2020; 25:E3362. [PMID: 32722182 PMCID: PMC7435976 DOI: 10.3390/molecules25153362] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the biopolymer in the final product. Understanding and controlling the physicochemical properties of biopolymers in ionic liquids matrices will be crucial for progress leading to the ability to fabricate robust multi-level structural 1D fiber materials. It will also help to predict the relationship between fiber conformation and protein secondary structures or carbohydrate crystallinity, thus creating potential applications for cell growth signaling, ionic conductivity, liquid diffusion and thermal conductivity, and several applications in biomedicine and environmental science. This will also enable the regeneration of biopolymer composite fiber materials with useful functionalities and customizable options critical for additive manufacturing. The specific capabilities of these fiber materials have been shown to vary based on their fabrication methods including electrospinning and post-treatments. This review serves to provide basic knowledge of these commonly utilized protein and polysaccharide biopolymers and their fiber fabrication methods from various ionic liquids, as well as the effect of post-treatments on these fiber materials and their applications in biomedical and pharmaceutical research, wound healing, environmental filters and sustainable and green chemistry research.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Darrel A. Cowan
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - David Salas-de la Cruz
- Department of Chemistry, and Center for Computational and Integrative Biology, Camden, NJ 08102, USA;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
9
|
Martin-Bertelsen B, Andersson E, Köhnke T, Hedlund A, Stigsson L, Olsson U. Revisiting the Dissolution of Cellulose in NaOH as "Seen" by X-rays. Polymers (Basel) 2020; 12:E342. [PMID: 32033419 PMCID: PMC7077394 DOI: 10.3390/polym12020342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Cotton production is reaching a global limit, leading to a growing demand for bio-based textile fibers produced by other means. Textile fibers based on regenerated cellulose from wood holds great potential, but in order to produce fibers, the components need to be dissolved in suitable solvents. Furthermore, the dissolution process of cellulose is not yet fully understood. In this study, we investigated the dissolution state of microcrystalline cellulose in aqueous NaOH by using primarily scattering methods. Contrary to previous findings, this study indicated that cellulose concentrations of up to 2 wt % are completely molecularly dissolved in 8 wt % NaOH. Scattering data furthermore revealed the presence of semi-flexible cylinders with stiff segments. In order to improve the dissolution capability of NaOH, the effects of different additives have been of interest. In this study, scattering data indicated that the addition of ZnO decreased the formation of aggregates, while the addition of PEG did not improve the dissolution properties significantly, although preliminary NMR data did suggest a weak attraction between PEG and cellulose. Overall, this study sheds further light on the dissolution of cellulose in NaOH and highlights the use of scattering methods to assess solvent quality.
Collapse
Affiliation(s)
| | - Erika Andersson
- Division of Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Tobias Köhnke
- Division Materials and Production, RISE Research Institutes of Sweden, 431 53 Mölndal, Sweden
| | - Artur Hedlund
- Division Materials and Production, RISE Research Institutes of Sweden, 431 53 Mölndal, Sweden
| | - Lars Stigsson
- KIRAM AB, Norra Villavägen 17, 237 34 Bjärred, Sweden
| | - Ulf Olsson
- Division of Physical Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
10
|
Han Y, Li D, Li D, Chen W, Mu S, Chen Y, Chai J. Impact of refractive index increment on the determination of molecular weight of hyaluronic acid by muti-angle laser light-scattering technique. Sci Rep 2020; 10:1858. [PMID: 32024914 PMCID: PMC7002679 DOI: 10.1038/s41598-020-58992-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) is applied in a number of medical applications and HA of different molecular weight (Mw) are used in different pharmaceutical preparations. In determination of Mw by muti-angle laser light-scattering (MALS), refractive index increment (dn/dc) is an important parameter for accuracy. Herein, the influence of dn/dc on the Mw of HA in stroke-physiological saline solution is investigated by MALS in this work. Additionally, the Mw variation of HA in the manufacturing process of preparations is measured. It is shown that each HA sample corresponds to a specific value of dn/dc, which is varied from 1.38 to 1.74 L/g with the Mw increasing from 13.5 to 2840 kDa in solution. It is indicated by the results from both MALS approach and viscometry that appropriate dn/dc should be selected for Mw determination. In steam sterilization process of preparations at 121 °C, the Mw and conformation of HA can be accurately and rapidly determined by MALS. This work provides a precise method to determine the Mw of HA in the medical applications and preparation industries.
Collapse
Affiliation(s)
- Ying Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Dejie Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
- Center of Research and Development, Bloomage Biotechnology Corporation Limited, Jinan, 250100, P.R. China
| | - Deqiang Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Wenwen Chen
- Center of Research and Development, Bloomage Biotechnology Corporation Limited, Jinan, 250100, P.R. China
| | - Shu'e Mu
- Center of Research and Development, Bloomage Biotechnology Corporation Limited, Jinan, 250100, P.R. China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China.
| | - Jinling Chai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China.
| |
Collapse
|
11
|
Walters MG, Mando AD, Matthew Reichert W, West CW, West KN, Rabideau BD. The role of urea in the solubility of cellulose in aqueous quaternary ammonium hydroxide. RSC Adv 2020; 10:5919-5929. [PMID: 35497420 PMCID: PMC9049597 DOI: 10.1039/c9ra07989k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
We examine the role of water and urea in cellulose solubility in tetrabutylammonium hydroxide (TBAH). Molecular dynamics simulations were performed for several different solvent compositions with a fixed cellulose fraction. For each composition, two simulations were carried out with cellulose fixed in each of the crystalline and the dissolved states. From the enthalpy and the entropy of the two states, the difference in Gibbs free energy (ΔG) and hence the spontaneity is determined. A comparison with solubility experiments showed a strong correlation between the calculated ΔG and the experimental measurements. A breakdown of the enthalpic and entropic contributions reveals the roles of water and urea in solubility. At high water concentration, a drop in solubility is attributed to both increased enthalpy and decreased entropy of dissolution. Water displaces strong IL–cellulose interactions for weaker water–cellulose interactions, resulting in an overall enthalpy increase. This is accompanied by a strong decrease in entropy, which is primarily attributed to both water and the entropy of mixing. Adding urea to TBAH(aq) increases solubility by an addition to the mixing term and by reducing losses in solvent entropy upon dissolution. In the absence of urea, the flexible [TBA]+ ions lose substantial degrees of freedom when they interact with cellulose. When urea is present, it partially replaces [TBA]+ and to a lesser extent OH− near cellulose, losing less entropy because of its rigid structure. This suggests that one way to boost the dissolving power of an ionic liquid is to limit the number of degrees of freedom from the outset. We examine the role of water and urea in cellulose solubility in tetrabutylammonium hydroxide (TBAH).![]()
Collapse
Affiliation(s)
- Mikayla G. Walters
- Department of Chemical & Biomolecular Engineering
- The University of South Alabama
- Mobile
- USA
| | - Albaraa D. Mando
- Department of Chemical & Biomolecular Engineering
- The University of South Alabama
- Mobile
- USA
| | | | - Christy W. West
- Department of Chemical & Biomolecular Engineering
- The University of South Alabama
- Mobile
- USA
| | - Kevin N. West
- Department of Chemical & Biomolecular Engineering
- The University of South Alabama
- Mobile
- USA
| | - Brooks D. Rabideau
- Department of Chemical & Biomolecular Engineering
- The University of South Alabama
- Mobile
- USA
| |
Collapse
|
12
|
Medronho B, Filipe A, Napso S, Khalfin RL, Pereira RFP, de Zea Bermudez V, Romano A, Cohen Y. Silk Fibroin Dissolution in Tetrabutylammonium Hydroxide Aqueous Solution. Biomacromolecules 2019; 20:4107-4116. [DOI: 10.1021/acs.biomac.9b00946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruno Medronho
- Faculty of Sciences and Technology (MeditBio), Ed. 8, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- FSCN, Surface and Colloid Engineering, Mid Sweden University, Sundsvall SE-851 70, Sweden
| | - Alexandra Filipe
- Faculty of Sciences and Technology (MeditBio), Ed. 8, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Sofia Napso
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Rafail. L. Khalfin
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Rui F. P. Pereira
- Center of Chemistry and Department of Chemistry, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Verónica de Zea Bermudez
- Department of Chemistry/CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Anabela Romano
- Faculty of Sciences and Technology (MeditBio), Ed. 8, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
13
|
Wang Y, Liu L, Chen P, Zhang L, Lu A. Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Phys Chem Chem Phys 2018; 20:14223-14233. [DOI: 10.1039/c8cp01268g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrophobic cations accumulate at the cellulose interface, favouring the physical dissolution of cellulose in aqueous quaternary ammonium hydroxides.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lijuan Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Pan Chen
- Wallenberg Wood Science Center, and the Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
- State Key Laboratory of Pulp and Paper Engineering
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Ang Lu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
14
|
From a new cellulose solvent to the cyclodextrin induced formation of hydrogels. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Gubitosi M, Nosrati P, Koder Hamid M, Kuczera S, Behrens MA, Johansson EG, Olsson U. Stable, metastable and unstable cellulose solutions. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170487. [PMID: 28878996 PMCID: PMC5579112 DOI: 10.1098/rsos.170487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
We have characterized the dissolution state of microcrystalline cellulose (MCC) in aqueous tetrabutylammonium hydroxide, TBAH(aq), at different concentrations of TBAH, by means of turbidity and small-angle X-ray scattering. The solubility of cellulose increases with increasing TBAH concentration, which is consistent with solubilization driven by neutralization. When comparing the two polymorphs, the solubility of cellulose I is higher than that of cellulose II. This has the consequence that the dissolution of MCC (cellulose I) may create a supersaturated solution with respect to cellulose II. As for the dissolution state of cellulose, we identify three different regimes. (i) In the stable regime, corresponding to concentrations below the solubility of cellulose II, cellulose is molecularly dissolved and the solutions are thermodynamically stable. (ii) In the metastable regime, corresponding to lower supersaturations with respect to cellulose II, a minor aggregation of cellulose occurs and the solutions are kinetically stable. (iii) In the unstable regime, corresponding to larger supersaturations, there is macroscopic precipitation of cellulose II from solution. Finally, we also discuss strong alkali solvents in general and compare TBAH(aq) with the classical NaOH(aq) solvent.
Collapse
Affiliation(s)
- Marta Gubitosi
- Physical Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Napso S, Rein DM, Khalfin R, Cohen Y. Semidilute solution structure of cellulose in an ionic liquid and its mixture with a polar organic co-solvent studied by small-angle X-ray scattering. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sofia Napso
- Department of Chemical Engineering; Technion-Israel Institute of Technology; Technion City Haifa 3200003 Israel
| | - Dmitry M. Rein
- Department of Chemical Engineering; Technion-Israel Institute of Technology; Technion City Haifa 3200003 Israel
| | - Rafail Khalfin
- Department of Chemical Engineering; Technion-Israel Institute of Technology; Technion City Haifa 3200003 Israel
| | - Yachin Cohen
- Department of Chemical Engineering; Technion-Israel Institute of Technology; Technion City Haifa 3200003 Israel
| |
Collapse
|
17
|
Lindman B, Medronho B, Alves L, Costa C, Edlund H, Norgren M. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02409f] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The interactions and structural properties of cellulose influence different phenomena.
Collapse
Affiliation(s)
- Björn Lindman
- FSCN
- Mid Sweden University
- SE-851 70 Sundsvall
- Sweden
- Physical Chemistry
| | - Bruno Medronho
- Faculty of Sciences and Technology (MeditBio)
- Ed. 8
- University of Algarve
- 8005-139 Faro
- Portugal
| | - Luis Alves
- CQC
- University of Coimbra
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | | - Håkan Edlund
- FSCN
- Mid Sweden University
- SE-851 70 Sundsvall
- Sweden
| | | |
Collapse
|
18
|
Gubitosi M, Duarte H, Gentile L, Olsson U, Medronho B. On cellulose dissolution and aggregation in aqueous tetrabutylammonium hydroxide. Biomacromolecules 2016; 17:2873-81. [DOI: 10.1021/acs.biomac.6b00696] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marta Gubitosi
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Hugo Duarte
- Faculty
of Sciences and Technology (MeditBio), University of Algarve, Campus de
Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Luigi Gentile
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Ulf Olsson
- Division
of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Bruno Medronho
- Faculty
of Sciences and Technology (MeditBio), University of Algarve, Campus de
Gambelas, Ed. 8, 8005-139 Faro, Portugal
| |
Collapse
|