1
|
Lin Z, Wei Y, Yang H. Mg alloys with antitumor and anticorrosion properties for orthopedic oncology: A review from mechanisms to application strategies. APL Bioeng 2024; 8:021504. [PMID: 38638143 PMCID: PMC11026114 DOI: 10.1063/5.0191800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
As a primary malignant bone cancer, osteosarcoma (OS) poses a great threat to human health and is still a huge challenge for clinicians. At present, surgical resection is the main treatment strategy for OS. However, surgical intervention will result in a large bone defect, and some tumor cells remaining around the excised bone tissue often lead to the recurrence and metastasis of OS. Biomedical Mg-based materials have been widely employed as orthopedic implants in bone defect reconstruction, and, especially, they can eradicate the residual OS cells due to the antitumor activities of their degradation products. Nevertheless, the fast corrosion rate of Mg alloys has greatly limited their application scope in the biomedical field, and the improvement of the corrosion resistance will impair the antitumor effects, which mainly arise from their rapid corrosion. Hence, it is vital to balance the corrosion resistance and the antitumor activities of Mg alloys. The presented review systematically discussed the potential antitumor mechanisms of three corrosion products of Mg alloys. Moreover, several strategies to simultaneously enhance the anticorrosion properties and antitumor effects of Mg alloys were also proposed.
Collapse
Affiliation(s)
- Zhensheng Lin
- Medical Engineering Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yuhe Wei
- Department of Medical Equipment, Tianjin Chest Hospital, Tianjin 300350, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
2
|
Paiva JCC, Oliveira L, Vaz MF, Costa-de-Oliveira S. Biodegradable Bone Implants as a New Hope to Reduce Device-Associated Infections-A Systematic Review. Bioengineering (Basel) 2022; 9:409. [PMID: 36004934 PMCID: PMC9405200 DOI: 10.3390/bioengineering9080409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone fractures often require fixation devices that frequently need to be surgically removed. These temporary implants and procedures leave the patient more prone to developing medical device-associated infections, and osteomyelitis associated with trauma is a challenging complication for orthopedists. In recent years, biodegradable materials have gained great importance as temporary medical implant devices, avoiding removal surgery. The purpose of this systematic review was to revise the literature regarding the use of biodegradable bone implants in fracture healing and its impact on the reduction of implant-associated infections. The systematic review followed the PRISMA guidelines and was conducted by searching published studies regarding the in vivo use of biodegradable bone fixation implants and its antibacterial activity. From a total of 667 references, 23 studies were included based on inclusion and exclusion criteria. Biodegradable orthopedic implants of Mg-Cu, Mg-Zn, and Zn-Ag have shown antibacterial activity, especially in reducing infection burden by MRSA strains in vivo osteomyelitis models. Their ability to prevent and tackle implant-associated infections and to gradually degrade inside the body reduces the need for a second surgery for implant removal, with expectable gains regarding patients' comfort. Further in vivo studies are mandatory to evaluate the efficiency of these antibacterial biodegradable materials.
Collapse
Affiliation(s)
- José C. C. Paiva
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Luís Oliveira
- DPS—Product Systems Development, INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, 4200-465 Porto, Portugal
| | - Maria Fátima Vaz
- IDMEC—Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
- Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, 1499-002 Lisboa, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|
4
|
Wang SH, Lee SP, Yang CW, Lo CM. Surface Modification of Biodegradable Mg-Based Scaffolds for Human Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation. MATERIALS 2021; 14:ma14020441. [PMID: 33477485 PMCID: PMC7831072 DOI: 10.3390/ma14020441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Magnesium alloys with coatings have the potential to be used for bone substitute alternatives since their mechanical properties are close to those of human bone. However, the surface modification of magnesium alloys to increase the surface biocompatibility and reduce the degradation rate remains a challenge. Here, FHA-Mg scaffolds were made of magnesium alloys and coated with fluorohydroxyapatite (FHA). Human mesenchymal stem cells (hMSCs) were cultured on FHA-Mg scaffolds and cell viability, proliferation, and osteogenic differentiation were investigated. The results showed that FHA-Mg scaffolds display a nano-scaled needle-like structure of aggregated crystallites on their surface. The average Mg2+ concentration in the conditioned media collected from FHA-Mg scaffolds (5.8–7.6 mM) is much lower than those collected from uncoated, Mg(OH)2-coated, and hydroxyapatite (HA)-coated samples (32.1, 17.7, and 21.1 mM, respectively). In addition, compared with hMSCs cultured on a culture dish, cells cultured on FHA-Mg scaffolds demonstrated better proliferation and comparable osteogenic differentiation. To eliminate the effect of osteogenic induction medium, hMSCs were cultured on FHA-Mg scaffolds in culture medium and an approximate 66% increase in osteogenic differentiation was observed three weeks later, indicating a significant effect of the nanostructured surface of FHA-Mg scaffolds on hMSC behaviors. With controllable Mg2+ release and favorable mechanical properties, porous FHA-Mg scaffolds have a great potential in cell-based bone regeneration.
Collapse
Affiliation(s)
- Si-Han Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Shiao-Pieng Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chung-Wei Yang
- Department of Materials Science and Engineering, National Formosa University, Yunlin 632, Taiwan
- Correspondence: (C.-W.Y.); (C.-M.L.); Tel.: +886-5-6315478 (C.-W.Y.); +886-2-28267018 (C.-M.L.)
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan;
- Correspondence: (C.-W.Y.); (C.-M.L.); Tel.: +886-5-6315478 (C.-W.Y.); +886-2-28267018 (C.-M.L.)
| |
Collapse
|
5
|
Chen Y, Dou J, Pang Z, Yu H, Chen C, Feng J. Improving the corrosion resistance of micro-arc oxidation coated Mg-Zn-Ca alloy. RSC Adv 2020; 10:8244-8254. [PMID: 35497822 PMCID: PMC9049900 DOI: 10.1039/c9ra10741j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 01/08/2023] Open
Abstract
Four additives (Na2WO4, nano-hydroxyapatite, K2TiF6 and NaF) were added into the Na5P3O10 + NaOH + C3H8O3 base electrolyte according to the orthogonal design of four factors three levels (L9 (34)). Nine different micro-arc oxidation (MAO) coatings were fabricated on Mg–2Zn–0.5Ca alloys through orthogonal experiments. The effects of four additives on the microstructure, mechanical properties, corrosion resistance and biocompatibility of MAO coatings were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), electrochemical corrosion test and in vitro degradation test. The addition of nano-hydroxyapatite and K2TiF6 showed self-sealing effects and contributed to the corrosion resistance of the samples significantly. The addition of 0.5 g L−1 Na2WO4 markedly elevated the bonding strength of the coatings with the substrate. The optimal combination of factors and levels considering both mechanical properties and corrosion resistance was: 0.5 g L−1 Na2WO4, 0 g L−1 NaF, 5 g L−1 n-HAp, 5 g L−1 K2TiF6. The growth mechanism of MAO coatings combining with the visual phenomenon was discussed as well. Large amount of micro-pores formed in MAO coatings were interconnected and sealed.![]()
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University Ji'nan 250061 China .,Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong Engineering Research Center for Superhard Materials, School of Materials Science and Engineering, Shandong University Ji'nan 250061 Shandong China
| | - Jinhe Dou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong Engineering Research Center for Superhard Materials, School of Materials Science and Engineering, Shandong University Ji'nan 250061 Shandong China
| | - Zengfen Pang
- Shandong Tumor Hospital and Institute Ji'nan 250117 Shandong P. R. China
| | - Huijun Yu
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University Ji'nan 250061 China
| | - Chuanzhong Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong Engineering Research Center for Superhard Materials, School of Materials Science and Engineering, Shandong University Ji'nan 250061 Shandong China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong Engineering Research Center for Superhard Materials, School of Materials Science and Engineering, Shandong University Ji'nan 250061 Shandong China
| |
Collapse
|
6
|
Chen Y, Dou J, Yu H, Chen C. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. J Biomater Appl 2019; 33:1348-1372. [PMID: 30854910 DOI: 10.1177/0885328219834656] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnesium-based alloys exhibit biodegradable, biocompatible and excellent mechanical properties which enable them to serve as ideal candidate biomedical materials. In particular, their biodegradable ability helps patients to avoid a second surgery. The corrosion rate, however, is too rapid to sustain the healing process. Alloying is an effective method to slow down the corrosion rate. However, currently magnesium alloys used as biomaterials are mostly commercial alloys without considering cytotoxicity from the perspective of biosafety. This article comprehensively reviews the status of various existing and newly developed degradable magnesium-based alloys specially designed for biomedical application. The effects of critical alloying elements, compositions, heat treatment and processing technology on the microstructure, mechanical properties and corrosion resistance of magnesium alloys are discussed in detail. This article covers Mg-Ca based, Mg-Zn based, Mg-Sr based, Mg-RE based and Mg-Cu-based alloy systems. The novel methods of fabricating Mg-based biomaterials and surface treatment on Mg based alloys for potential biomedical applications are summarized.
Collapse
Affiliation(s)
- Yang Chen
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Jinhe Dou
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Huijun Yu
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,3 Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, School of Mechanical Engineering, Shandong University, Ji'nan, Shandong, P.R. China.,4 National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Chuanzhong Chen
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| |
Collapse
|
7
|
Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections. METALS 2018. [DOI: 10.3390/met8070532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|