1
|
Zhao K, Yang Y, Peng H, Zhang L, Zhou Y, Zhang J, Du C, Liu J, Lin X, Wang N, Huang H, Luo L. Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153483. [PMID: 35093361 DOI: 10.1016/j.scitotenv.2022.153483] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
It has been confirmed that silicon (Si) fertilizer and humic acid (HA) could effectively decrease the heavy metals in soil. Nonetheless, the impact of these additives on soil aggregate characteristics was ignored. Therefore, the effects of Si fertilizer, HA, and their combinations on the physicochemical characteristics, availability of heavy metals (Cu, Cd, Pb, Zn), and fraction changes in soils and soil aggregates were investigated in this research. The results showed that Si fertilizer and HA significantly modified soil properties such as soil pH, electrical conductivity total organic carbon, water-soluble organic carbon, and nitrate‑nitrogen. HA and Si-HA (SHA) supplementation significantly decreased the availability of Cu, Cd, Pd, and Zn. Besides, there was no significant difference in physicochemical properties between soil and soil aggregates. The availability of Cu, Cd, Pd, and Zn in soil aggregates could be significantly inhibited by the addition of HA and SHA, and the content in microaggregates was greater than that in macroaggregates. After the addition of the three additives, the main fractions of heavy metals in different particle sizes were changed and eventually transformed to the residue state. These results indicated that Si fertilizer, HA, and SHA were influential in physicochemical properties and metal availability in soil aggregates. Therefore, it is of great scientific significance to study the impact of heavy metal pollution on the ecological environment in different aggregates, which will provide reference data for future sustainable management of heavy-metal polluted soils.
Collapse
Affiliation(s)
- Keqi Zhao
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Hua Peng
- Hunan Institue of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China.
| | - Chunyan Du
- School of Hydraulic Engineering, Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha University of Science & Technology, Changsha 410114, China
| | - Junwu Liu
- Hunan Kaidi Engineering Technology Co., LTD, Changsha 410000, Hunan, China
| | - Xu Lin
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Nanyi Wang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| |
Collapse
|
2
|
He J, Zhu N, Xu Y, Wang L, Zheng J, Li X. The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting. BIORESOURCE TECHNOLOGY 2022; 351:126973. [PMID: 35292388 DOI: 10.1016/j.biortech.2022.126973] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
This study investigated effects of composite microbes (CMs) (Phanerochaete chrysosporium and Trichoderma longibrachiatum) on humification during co-composting of biogas residue, spent mushroom substrate and rice straw. Results showed that CMs inoculation elevated degradation ratios of cellulose, hemicellulose and lignin by 7.86%, 8.87% and 6.45%, and contents of humus and humic acid were correspondingly promoted by 15.5% and 23.6%, respectively. Relative abundances of bacteria associated with refractory macromolecules degradation (Flavobacterium, Anseongella and Actinomadura) and cellulolytic fungi (Hypocreales_Incertae_sedis, Hypocreaceae and Psathyrellaceae) were raised by CMs addition. Redundancy analysis demonstrated a positive correlation between microbial communities and temperature, fulvic acid and lignocellulose contents. Moreover, CMs inoculation promoted pathways of xenobiotics biodegradation and metabolism, and biosynthesis of other secondary metabolites, which was closely associated with lignocellulose degradation and humus formation. These results suggested that biological inoculation could enhance composting efficiency and improve compost quality, benefiting biogas residues composting.
Collapse
Affiliation(s)
- Jing He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Nengmin Zhu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yansheng Xu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Li Wang
- Sichuan Academy of Forestry, Chengdu 610081, China
| | - Jiaqiang Zheng
- Hainan Chuanfu Agricultural Development Co., Ltd, Sanya 572024, China
| | - Xia Li
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
3
|
Zafar-Ul-Hye M, Tahzeeb-Ul-Hassan M, Wahid A, Danish S, Khan MJ, Fahad S, Brtnicky M, Hussain GS, Battaglia ML, Datta R. Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci Rep 2021; 11:6606. [PMID: 33758248 PMCID: PMC7988167 DOI: 10.1038/s41598-021-86082-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.
Collapse
Affiliation(s)
- Muhammad Zafar-Ul-Hye
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Muhammad Tahzeeb-Ul-Hassan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Abdul Wahid
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan.
| | - Muhammad Jamil Khan
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Purkynova 118, 62100, Brno, Czech Republic
| | - Ghulam Sabir Hussain
- Department of Technical Services, Fatima Agri Sales and Services, Bahawalpur, Punjab, Pakistan
| | | | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300, Brno, Czech Republic.
| |
Collapse
|
4
|
Wang N, Wu X, Liao P, Zhang J, Liu N, Zhou Z, Huang H, Zhang L. Morphological transformation of heavy metals and their distribution in soil aggregates during biotransformation of livestock manure. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Bacterial and Fungal Community Dynamics and Shaping Factors During Agricultural Waste Composting with Zeolite and Biochar Addition. SUSTAINABILITY 2020. [DOI: 10.3390/su12177082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial and fungal communities play significant roles in waste biodegradation and nutrient reservation during composting. Biochar and zeolite were widely reported to directly or indirectly promote microbial growth. Therefore, the effects of zeolite and biochar on the abundance and structure of bacterial and fungal communities and their shaping factors during the composting of agricultural waste were studied. Four treatments were carried out as follows: Run A as the control without any addition, Run B with zeolite (5%), Run C with biochar (5%), and Run D with zeolite (5%) and biochar (5%), respectively. The bacterial and fungal community structures were detected by high-throughput sequencing. Redundancy analysis was used for determining the relationship between community structure and physico-chemical parameters. The results indicated that the addition of biochar and zeolite changed the physico-chemical parameters (e.g., pile temperature, pH, total organic matter, ammonium, nitrate, and water-soluble carbon) during the composting process. Zeolite and biochar significantly changed the structure and diversity of bacterial and fungal populations. Moreover, the bacterial community rather than the fungal community was sensitive to the biochar and zeolite addition during the composting process. Community phylogenetic characteristics showed that Nocardiopsaceae, Bacillaceae, Leuconostocaceae, Phyllobacteriaceae, and Xanthomonadaceae were the predominant bacterial species at the family-level. Chaetomiaceae and Trichocomaceae were the two most dominant fungal species. The pH, total organic matter, and nitrate were the most important factors affecting the bacterial and fungal population changes during the composting process.
Collapse
|
6
|
Effects of Zeolite and Biochar Addition on Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea Communities during Agricultural Waste Composting. SUSTAINABILITY 2020. [DOI: 10.3390/su12166336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of zeolite and biochar addition on ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities during agricultural waste composting were determined in this study. Four treatments were conducted as follows: Treatment A as the control with no additive, Treatment B with 5% of zeolite, Treatment C with 5% of biochar, and Treatment D with 5% of zeolite and 5% biochar, respectively. The AOB and AOA amoA gene abundance as well as the ammonia monooxygenase (AMO) activity were estimated by quantitative PCR and enzyme-linked immunosorbent assay, respectively. The relationship between gene abundance and AMO enzyme activity was determined by regression analysis. Results indicated that the AOB was more abundant than that of AOA throughout the composting process. Addition of biochar and its integrated application with zeolite promoted the AOB community abundance and AMO enzyme activity. Significant positive relationships were obtained between AMO enzyme activity and AOB community abundance (r2 = 0.792; P < 0.01) and AOA community abundance (r2 = 0.772; P < 0.01), indicating that both bacteria and archaea played significant roles in microbial ammonia oxidation during composting. Using biochar and zeolite might promote the nitrification activity by altering the sample properties during agricultural waste composting.
Collapse
|
7
|
Zafar-Ul-Hye M, Tahzeeb-Ul-Hassan M, Abid M, Fahad S, Brtnicky M, Dokulilova T, Datta R, Danish S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci Rep 2020; 10:12159. [PMID: 32699323 PMCID: PMC7376197 DOI: 10.1038/s41598-020-69183-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022] Open
Abstract
Consumption of heavy metals, especially lead (Pb) contaminated food is a serious threat to human health. Higher Pb uptake by the plant affects the quality, growth and yield of crops. However, inoculation of plant growth-promoting rhizobacteria (PGPR) along with a mixture of organic amendments and biochar could be an effective way to overcome the problem of Pb toxicity. That’s why current pot experiment was conducted to investigate the effect of compost mixed biochar (CB) and ACC deaminase producing PGPR on growth and yield of spinach plants under artificially induced Pb toxicity. Six different treatments i.e., control, Alcaligenes faecalis (PGPR1), Bacillus amyloliquefaciens (PGPR2), compost + biochar (CB), PGPR1 + CB and PGPR2 + CB were applied under 250 mg Pb kg-1 soil. Results showed that inoculation of PGPRs (Alcaligenes faecalis and Bacillus amyloliquefaciens) alone and along with CB significantly enhanced root fresh (47%) and dry weight (31%), potassium concentration (11%) in the spinach plant. Whereas, CB + Bacillus amyloliquefaciens significantly decreased (43%) the concentration of Pb in the spinach root over control. In conclusion, CB + Bacillus amyloliquefaciens has the potential to mitigate the Pb induced toxicity in the spinach. The obtained result can be further used in the planning and execution of rhizobacteria and compost mixed biochar-based soil amendment.
Collapse
Affiliation(s)
- Muhammad Zafar-Ul-Hye
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Muhammad Tahzeeb-Ul-Hassan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Muhammad Abid
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan. .,College of Plant Sciences and Technology, Huazhong Agriculture University, Wuhan, China.
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.,Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 62100, Brno, Czech Republic
| | - Tereza Dokulilova
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Rahul Datta
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan.
| |
Collapse
|
8
|
Lv B, Zhang D, Chen Q, Cui Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. BIORESOURCE TECHNOLOGY 2019; 287:121428. [PMID: 31096104 DOI: 10.1016/j.biortech.2019.121428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
The effects of earthworms on nitrogen transformation and the responsible functional genes during disposal of sewage sludge and rice straw were investigated in this study. Vermicomposting resulted in the lower pH and total organic carbon (TOC) compared to the control treatment without earthworms. Moreover, the presence of earthworms could promote the nitrogen mineralization and nitrification process in vermicomposting. Earthworms increased the activity of ammonia monooxygenase and abundance of amoA-nitrifier and reduced its diversity, whereas they reduced the density of nirS-denitrifying bacteria but enhanced its diversity. Nitrosospira was the dominant amoA-nitrifier and earthworms stimulated its growth in the vermicomposting. The presence of earthworms could also affect the community composition of nirS-denitrifying bacteria despite most of the nirS-denitrifier was not be classified at the genus level. In conclusion, the presence of earthworms had significant influence on the diversity and abundances of amoA and nirS genes and affect the nitrogen bio-transformation in vermicomposting.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| | - Di Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Qihao Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxue Cui
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Li M, Ren L, Zhang J, Luo L, Qin P, Zhou Y, Huang C, Tang J, Huang H, Chen A. Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2166-2174. [PMID: 30326449 DOI: 10.1016/j.scitotenv.2018.10.152] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Sixteen treatments of soil contaminated by Cu, Pb, and Zn by the addition of a different percentage of biochar and compost were incubated for 120 days. The abundance of denitrifying genes such as narG, nirK, nirS and nosZ and the ammonia-oxidizing amoA genes of ammonia-oxidizing archaea/bacteria (AOA/AOB), soil nitrite reductase activity (S-NiR) and their shaping factors were also determined. The relationships between functional genes, S-NiR, and physico-chemical parameters were analyzed using the Pearson correlation method. The study found that the changes in physico-chemical parameters, including water-soluble organic carbon (WSC), nitrate (NO3-) and ammonium (NH4+), were predominant in different treatments. The abundance of nirK and narG genes is most sensitive to the changes in the properties of the soil sample. Bacterial 16S rDNA gene abundance was significantly affected by NO3- and S-NiR (P < 0.05). Nitrifying genes were mainly correlated to WSC and S-NiR, while denitrifying genes were associated with pH, electrical conductivity, NO3- and S-NiR. The systematic study for the relationship between the genes and the environmental parameters will help us to deep understand the biological mechanisms of nitrogen cycle in heavy metal contaminated soils remediated by biochar and compost.
Collapse
Affiliation(s)
- Mingyue Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pufeng Qin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiayi Tang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Ren L, Cai C, Zhang J, Yang Y, Wu G, Luo L, Huang H, Zhou Y, Qin P, Yu M. Key environmental factors to variation of ammonia-oxidizing archaea community and potential ammonia oxidation rate during agricultural waste composting. BIORESOURCE TECHNOLOGY 2018; 270:278-285. [PMID: 30223159 DOI: 10.1016/j.biortech.2018.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
In this research, the abundance and structure of AOA amoA gene during agricultural waste composting were determined by quantitative PCR and sequencing techniques, respectively. Pairwise correlations between potential ammonia oxidation (PAO) rate, physicochemical parameters and the AOA abundance were evaluated using Pearson correlation coefficient. Relationships between these parameters, PAO rates and AOA community structure were evaluated by redundancy analysis. Results showed that 22 AOA gene OTUs were divided into the soil/sediment lineage by phylogenetic analyses. Significant positive correlations were obtained between AOA amoA gene abundance and moisture, ammonium, water soluble carbon (WSC) and organic matter (OM), respectively. Redundancy analysis showed OM, pH and nitrate significantly explained the AOA amoA gene structure. Pearson correlation revealed the PAO rate correlated positively to ammonium, AOA amoA gene abundance. These results indicated that AOA communities sense the fluctuations in surrounding environment, and ultimately react and influence the nitrogen transformation during agricultural waste composting.
Collapse
Affiliation(s)
- Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Changqing Cai
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Pufeng Qin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Changsha 410128, China
| | - Man Yu
- Environmental Resources and Soil Fertilizer Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
11
|
Yan L, Wang G, Ai S, Huo Z, Wang Y, Gu JD, Wang W. Abundance of ammonia-oxidizing bacteria and archaea under different ventilation strategies during cattle manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:375-383. [PMID: 29459337 DOI: 10.1016/j.jenvman.2018.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Composting of cattle manure was conducted under four ventilation strategies, i.e., no-aeration (A-00), continuous aeration (B-44), non-aeration for 14 d and then aeration for 42 d (C-04), aeration for 14 d and then no-aeration for 42 d (D-40). Physicochemical parameters and potential ammonia oxidation (PAO) indicated that continuous and intermittent ventilation provide favourable conditions for ammonia-oxidizing bacteria (AOB) and archaea (AOA) to oxidize ammonia. Quantitative PCR (qPCR) analysis showed AOB amoA gene abundance of all treatments on every sampling day ranged from 2.25 × 105 to 2.76 × 109copies/g, was significantly lower than that of archaeal amoA gene from 2.71 × 108 to 9.05 × 1011copies/g. There was also a significantly positive relationship between PAO rates and AOB (r2 ≥ 0.066, p < 0.05) and AOA (r2 ≥ 0.300, p < 0.05) abundance. These data suggested that ammonia oxidation is driven by both AOA and AOB in cattle manure composting.
Collapse
Affiliation(s)
- Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Guoxing Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shiqi Ai
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhaochen Huo
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanjie Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
12
|
Zeng G, Zhang L, Dong H, Chen Y, Zhang J, Zhu Y, Yuan Y, Xie Y, Fang W. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs. BIORESOURCE TECHNOLOGY 2018; 253:112-120. [PMID: 29331826 DOI: 10.1016/j.biortech.2017.12.095] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting.
Collapse
Affiliation(s)
- Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yujie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yankai Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
13
|
The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste. SUSTAINABILITY 2018. [DOI: 10.3390/su10030795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effectiveness of co-additives for improving livestock waste composting (reduction of air pollution and conservation of nutrients) was investigated. Biochar and Flue gas desulphurization gypsum (FGD gypsum) were used to supplement the composting of a mixture of slaughter waste, swine slurry, and sawdust. Different compositions of additives (0% or 5% each, 10% biochar or FGD gypsum) were tested in triplicate on the laboratory scale. In addition, the effects of two different aeration schemes (continuous and intermittent) were also investigated. Ammonia volatilization, physicochemical characteristics, and compost maturity indices were investigated. The results indicated that the use of the co-additive (Biochar and FGD gypsum) during composting of livestock waste led to a reduction of ammonia volatilization by 26–59% and to a 6.7–7.9-fold increase of nitrate accumulation. The total ammonia volatilization of intermittent aeration treatment was lower than that of continuous aeration using co-additives treatment. It was concluded that co-additives (biochar and FGD gypsum) might be utilized in livestock waste composting to reduce ammonia volatilization and improve nutrient conservation.
Collapse
|