1
|
Neethu B, Ihjas K, Chakraborty I, Ghangrekar MM. Nickel adsorbed algae biochar based oxygen reduction reaction catalyst. Bioelectrochemistry 2024; 159:108747. [PMID: 38820671 DOI: 10.1016/j.bioelechem.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Lately, the bio electrochemical systems are emerging as an efficient wastewater treatment and energy conversion technology. However, their scaling-up is considerably restrained by slow-rate of cathodic oxygen reduction reaction (ORR) or otherwise by the high cost associated with the available efficient ORR catalysts. In this investigation, a cost-effective and eco-friendly approach for synthesizing Ni based ORR catalyst utilizing biosorption property of microalgae is accomplished. The synthesised Ni adsorbed algal biochar (NAB) served as an efficient cathode catalyst for enhancing ORR in a microbial carbon-capture cell (MCC). On increasing the initial concentration of Ni2+ in the aqueous medium from 100 mgL-1 to 500 mgL-1, the biosorption capacity was found to increase from 3 mgg-1 to 32 mgg-1 of algae cell. The MCC operated with NAB based cathode catalyst loading of 2 mgcm-2 exhibited 3.5 times higher power density (4.69 Wm-3) as compared to the one with commercial activated carbon. A significant organic matter removal (82 %) in the anodic chamber with simultaneous algal biomass productivity in the cathodic chamber was attained by MCC with cathode loaded with 2 mgcm-2 of NAB. Hence, this easily synthesised low-cost catalyst, out of waste stream, proved its ability to improve the performance of MCC.
Collapse
Affiliation(s)
- B Neethu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur 721302, India; Kerala State Council for Science, Technology and Environment (KSCSTE), Sasthrabhavan, Pattom, Thiruvananthapuram 69500, India.
| | - K Ihjas
- Ecology and Environment Research Group, KSCSTE-Centre for Water Resources Development and Management, Kozhikode, Kerala 673571, India
| | - I Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur 721302, India
| |
Collapse
|
2
|
Li C, Xu W, Ye L, Liu J, Wang F. Hydrothermal-Induced Formation of Well-Defined Hollow Carbons with Curvature-Activated N-C Sites for Zn-Air Batteries. Chemistry 2021; 27:6247-6253. [PMID: 33496039 DOI: 10.1002/chem.202005112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/05/2022]
Abstract
Metal-free carbons have been regarded as one of the promising materials alternatives to precious-metal catalysts for oxygen reduction reaction (ORR) due to their high activity and stability. In this paper, well-defined N-doped hollow carbons (NHCs) are firstly synthesized by using an ammonia-based hydrothermal synthesis that is environmentally friendly and suitable for mass production in industry and a commercial black carbon as raw material. Moreover, the shell thickness of the NHCs can be easily tuned by this hydrothermal strategy. Zn-air battery test results reveal shell thickness-dependent activity and durability for ORR over the NHCs, which exceeds that obtained by commercial Pt/C (20 wt %). The enhanced battery performance can be attributed to the curvature-activated N-C moieties on the hollow carbon surface, which served as the main active sites for ORR as evidenced by DFT calculations. The proposed approach may open a way for designing curved hollow carbons with high graphitization degree and dopant nitrogen level for metal-air batteries or fuel cells.
Collapse
Affiliation(s)
- Chunxiao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wanli Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liangwen Ye
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingjun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Varshney S, Bar‐Ziv R, Zidki T. On the Remarkable Performance of Silver‐based Alloy Nanoparticles in 4‐Nitrophenol Catalytic Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shalaka Varshney
- Department of Chemical Sciences, and the Center for Radical Reactions Ariel University Kyriat Hamada 3 Ariel 40700 Israel
| | - Ronen Bar‐Ziv
- Department of Chemistry Nuclear Research Center Negev Beer-Sheva 84190 Israel
| | - Tomer Zidki
- Department of Chemical Sciences, and the Center for Radical Reactions Ariel University Kyriat Hamada 3 Ariel 40700 Israel
| |
Collapse
|
4
|
Enhancement of Single Molecule Raman Scattering using Sprouted Potato Shaped Bimetallic Nanoparticles. Sci Rep 2019; 9:10771. [PMID: 31341207 PMCID: PMC6656737 DOI: 10.1038/s41598-019-47179-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Herein, for the first time, we report the single molecule surface enhanced resonance Raman scattering (SERRS) and surface enhanced Raman scattering (SERS) spectra with high signal to noise ratio (S/N) using plasmon-active substrates fabricated by sprouted potato shaped Au-Ag bimetallic nanoparticles, prepared using a new one-step synthesis method. This particular shape of the nanoparticles has been obtained by fixing the amount of Au and carefully adjusting the amount of Ag. These nanoparticles have been characterized using scanning electron microscopy, extinction spectroscopy, and glancing angle X-ray diffraction. The single molecule sensitivity of SERS substrates has been tested with two different molecular Raman probes. The origin of the electromagnetic enhancement of single molecule Raman scattering in the presence of sprouted shape nanoparticles has been explained using quasi-static theory as well as finite element method (FEM) simulations. Moreover, the role of (i) methods for binding Raman probe molecules to the substrate, (ii) concentration of molecules, and (iii) Au-Ag ratio on the spectra of molecules has been studied in detail.
Collapse
|
5
|
Enhancing the performance of microbial fuel cell using Ag Pt bimetallic alloy as cathode catalyst and anti-biofouling agent. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2018. [DOI: 10.1016/j.ijhydene.2018.08.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Ranjith KS, Celebioglu A, Uyar T. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers. NANOTECHNOLOGY 2018; 29:245602. [PMID: 29582779 DOI: 10.1088/1361-6528/aab9da] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min-1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.
Collapse
|
7
|
Kang S, Shin W, Kang K, Choi MH, Kim YJ, Kim YK, Min DH, Jang H. Revisiting of Pd Nanoparticles in Cancer Treatment: All-Round Excellence of Porous Pd Nanoplates in Gene-Thermo Combinational Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13819-13828. [PMID: 29608263 DOI: 10.1021/acsami.8b01000] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold nanomaterials are commonly used in biomedical applications owing to their excellent biocompatibility and unique physicochemical and optical properties, whereas Pd nanomaterials are mainly used as catalysts. Here, we re-examined the possible applications of Pd nanomaterials. Reducing agent-assisted excessive galvanic replacement-mediated porous Au nanoplates, porous Pt nanoplates, and porous Pd nanoplate synthesis enabled us to compare the properties and efficiency of nanoplates composed of three metal elements (Au, Pt, and Pd). According to our analytical results, porous Pd nanoplates exhibited exceptional all-round excellence in photothermal conversion, therapeutic gene loading/releasing, cytotoxicity, and in vitro combination cancer treatment. We believe that this discovery broadens the potential applications of metal nanomaterials, with an emphasis on more efficient biomedical applications in limited conventional fields.
Collapse
Affiliation(s)
- Seounghun Kang
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Woojun Shin
- Department of Chemistry , Kwangwoon University , 20, Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| | - Kyunglee Kang
- Department of Chemistry , Kwangwoon University , 20, Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| | - Myung-Ho Choi
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Young-Jin Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , San 101 , Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 , Republic of Korea
| | - Young-Kwan Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , San 101 , Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 , Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
- Center for RNA Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- Institute of Biotherapeutics Convergence Technology , Lemonex Inc. , Seoul 08826 , Republic of Korea
| | - Hongje Jang
- Department of Chemistry , Kwangwoon University , 20, Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| |
Collapse
|
8
|
Liu M, Liu J, Li Z, Wang F. Atomic-Level Co 3O 4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7052-7060. [PMID: 29400438 DOI: 10.1021/acsami.7b16549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co3O4 layers covered on Co nanoparticles through partial reduction of Co3O4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co3O4 nanoparticles, the synthesized Co3O4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co3O4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Jingjun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Zhilin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| |
Collapse
|
9
|
|
10
|
Chen S, Thota S, Singh G, Aímola TJ, Koenigsmann C, Zhao J. Synthesis of hollow Pt–Ag nanoparticles by oxygen-assisted acid etching as electrocatalysts for the oxygen reduction reaction. RSC Adv 2017. [DOI: 10.1039/c7ra07721a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hollow Pt–Ag nanoparticles synthesized by oxygen assisted acid etching exhibited high specific activity and durability as electrocatalysts for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Shutang Chen
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Sravan Thota
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | | | | | | | - Jing Zhao
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
- Institute of Materials Science
| |
Collapse
|