1
|
Kaur H, Siwal SS, Saini RV, Singh N, Thakur VK. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS NANOSCIENCE AU 2022; 3:1-27. [PMID: 37101467 PMCID: PMC10125382 DOI: 10.1021/acsnanoscienceau.2c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson's disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material's morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes' roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, United Kingdom
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| |
Collapse
|
2
|
Xie S, Deng L, Huang H, Yuan J, Xu J, Yue R. One-pot synthesis of porous Pd-polypyrrole/nitrogen-doped graphene nanocomposite as highly efficient catalyst for electrooxidation of alcohols. J Colloid Interface Sci 2022; 608:3130-3140. [PMID: 34802753 DOI: 10.1016/j.jcis.2021.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/19/2023]
Abstract
Herein, a ternary-nanocomposite Pd-polypyrrole/nitrogen-doped graphene (Pd-PPy/NGE) has been prepared facilely by the one-pot method. In simple terms, PPy was in-situ polymerized on the surface of NGE with PdCl42- as the oxidant, and simultaneously Pd nanopaticles were loaded on the surface of PPy or embedded in PPy particles. The obtained Pd-PPy/NGE nanocomposite exhibits promising electrocatalytic properties toward the oxidation reaction of alcohols in alkaline medium. Especially, the optimized Pd-PPy/NGE (1:50) catalyst possesses mass activity of 2176.7, 1192.7 and 498.9 mA mgPd-1 toward ethylene glycol, methanol and ethanol electrooxidation, respectively, which are 4.3, 6.7 and 2.9 times of those for commercial Pd/C catalyst. Moreover, the Pd-PPy/NGE (1:50) also shows higher anti-poisoning ability and operating stability than the Pd/C catalyst. The promising electrocatalytic performance of the Pd-PPy/NGE (1:50) for alcohols oxidation can be ascribed to the well dispersion of Pd nanoparticles, the porous and stable three dimentional structure of the composite, and the synergistic effect between different components. The structural randomness of the conducting polymer and the potential synergistic effect between the metal nanoparticles and various supports would provide broad development space for these composites as electrocatalysts in direct alcohol fuel cell.
Collapse
Affiliation(s)
- Shuqian Xie
- College of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Lu Deng
- College of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Hui Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jie Yuan
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jingkun Xu
- College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Ruirui Yue
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
3
|
Role of Silver Nanoparticle-Doped 2-Aminodiphenylamine Polymeric Material in the Detection of Dopamine (DA) with Uric Acid Interference. MATERIALS 2022; 15:ma15041308. [PMID: 35207848 PMCID: PMC8875575 DOI: 10.3390/ma15041308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
A viable electrochemical approach for the detection of dopamine (DA) in uric acid (UA) utilizing a silver nanoparticle-doped 2-aminodiphenylamine (AgNPs-2ADPA) electrode was invented. The electrochemical performance of DA showed that the incorporated electrode displayed outstanding electrocatalytic performance to the electrochemical oxidation of DA. In our study, the AgNPs-2ADPA exhibits remarkable catalytic activity, retaining high current value and resilience when employed as a working electrode component for electrocatalytic detection of DA. We have also utilized the bare and polymeric-2ADPA in DA detection for a comparison study. This method offers a facile route with extraordinary sensitivity, selectivity, and strength for the voltammetric detection of DA, even in the presence of UA and ascorbic acid (AA) as interferents, that can be employed for pharmaceutical and biological specimens.
Collapse
|
4
|
Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Thiangchanya A, Phonchai A, Limbut W. Micro-colloidal catalyst of palladium nanoparticles on polyaniline-coated carbon microspheres for a non-enzymatic hydrogen peroxide sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Sai Bhavani K, Anusha T, Stuparu MC, Brahman PK. Synthesis and characterization of palladium nanoparticles-corannulene nanocomposite: An anode electrocatalyst for direct oxidation of methanol in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Tong Y, Yan X, Liang J, Dou SX. Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904126. [PMID: 31608601 DOI: 10.1002/smll.201904126] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Direct methanol fuel cells (DMFCs) are among the most promising portable power supplies because of their unique advantages, including high energy density/mobility of liquid fuels, low working temperature, and low emission of pollutants. Various metal-based anode catalysts have been extensively studied and utilized for the essential methanol oxidation reaction (MOR) due to their superior electrocatalytic performance. At present, especially with the rapid advance of nanotechnology, enormous efforts have been exerted to further enhance the catalytic performance and minimize the use of precious metals. Constructing multicomponent metal-based nanocatalysts with precisely designed structures can achieve this goal by providing highly tunable compositional and structural characteristics, which is promising for the modification and optimization of their related electrochemical properties. The recent advances of metal-based electrocatalytic materials with rationally designed nanostructures and chemistries for MOR in DMFCs are highlighted and summarized herein. The effects of the well-defined nanoarchitectures on the improved electrochemical properties of the catalysts are illustrated. Finally, conclusive perspectives are provided on the opportunities and challenges for further refining the nanostructure of metal-based catalysts and improving electrocatalytic performance, as well as the commercial viability.
Collapse
Affiliation(s)
- Yueyu Tong
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Xiao Yan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Ji Liang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
7
|
Bhavani KS, Anusha T, Kumar JVS, Brahman PK. Enhanced Electrocatalytic Activity of Methanol and Ethanol Oxidation in Alkaline Medium at Bimetallic Nanoparticles Electrochemically Decorated Fullerene‐C
60
Nanocomposite Electrocatalyst: An Efficient Anode Material for Alcohol Fuel Cell Applications. ELECTROANAL 2020. [DOI: 10.1002/elan.202060154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. Sai Bhavani
- Electroanalytical Lab, Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram (A.P. India
| | - T. Anusha
- Electroanalytical Lab, Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram (A.P. India
| | - J. V. Shanmukha Kumar
- Electroanalytical Lab, Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram (A.P. India
| | - Pradeep Kumar Brahman
- Electroanalytical Lab, Department of Chemistry Koneru Lakshmaiah Education Foundation Vaddeswaram (A.P. India
| |
Collapse
|
8
|
Siwal SS, Zhang Q, Devi N, Thakur VK. Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers (Basel) 2020; 12:E505. [PMID: 32110927 PMCID: PMC7182882 DOI: 10.3390/polym12030505] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.
Collapse
Affiliation(s)
- Samarjeet Singh Siwal
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming 650093, China
| | - Nishu Devi
- Department of Chemistry, University of Johannesburg, P.O. Box: 524, Auckland Park 2006, South Africa
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| |
Collapse
|
9
|
Pd/PANI/C Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00536-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Siwal S, Devi N, Perla VK, Ghosh SK, Mallick K. Promotional role of gold in electrochemical methanol oxidation. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/2055074x.2019.1595872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Samarjeet Siwal
- Department of Chemistry, University of Johannesburg, Auckland Park, South Africa
| | - Nishu Devi
- Department of Chemistry, University of Johannesburg, Auckland Park, South Africa
| | - Venkata K. Perla
- Department of Chemistry, University of Johannesburg, Auckland Park, South Africa
| | - Sarit K. Ghosh
- Department of Chemistry, University of Johannesburg, Auckland Park, South Africa
| | - Kaushik Mallick
- Department of Chemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
11
|
Fabrication and characterizations of PdAu/thiolation poly (phthalazinone ether ketone) superfine fibrous membrane as a free-standing electrocatalyst for methanol oxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Huang Y, Babu DD, Wu M, Wang Y. Synergistic Supports Beyond Carbon Black for Polymer Electrolyte Fuel Cell Anodes. ChemCatChem 2018. [DOI: 10.1002/cctc.201801094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yiyin Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Dickson D. Babu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Maoxiang Wu
- Key Laboratory of Optoelectronic Materials Chemistry; Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| |
Collapse
|
13
|
Taher A, Choudhary M, Nandi D, Siwal S, Mallick K. Polymer-supported palladium: A hybrid system for multifunctional catalytic application. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abu Taher
- Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Meenakshi Choudhary
- Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Debkumar Nandi
- Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Samarjeet Siwal
- Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Kaushik Mallick
- Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| |
Collapse
|