1
|
Alim E, Stone L, Sharma N, McMahon S, Allen Z, Aceto P, Victor P, Mitchell LF, Raulerson A, Schepke C, Grabowski J, Valera R, Kalia K, Fernandez M, Kouba K, Shannon M, Johnson V, Forestal C, Pongo I, Ospina S, Fontanez N, Rosenberg M, Levin M, Martinez D, Betancourt YP, Rhodes LV, Lee KJ. Single Live Cell Imaging of Multidrug Resistance Using Silver Ultrasmall Nanoparticles as Biosensing Probes in Triple-Negative Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:4672-4681. [PMID: 37844294 DOI: 10.1021/acsabm.3c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Silver ultrasmall nanoparticles (Ag UNPs) (size < 5 nm) were used as biosensing probes to analyze the efflux kinetics contributing to multidrug resistance (MDR) in single live triple-negative breast cancer (TNBC) cells by using dark-field optical microscopy to follow their size-dependent localized surface plasmon resonance. TNBC cells lack expression of estrogen (ER-), progesterone (PR-), and human epidermal growth factor 2 (HER2-) receptors and are more likely to acquire resistance to anticancer drugs due to their ability to transport harmful substances outside the cell. The TNBC cells displayed greater nuclear and cytoplasmic efflux, resulting in less toxicity of Ag UNPs in a concentration-independent manner. In contrast, more Ag UNPs and an increase in cytotoxic effects were observed in the receptor-positive breast cancer cells that have receptors for ER+, PR+, and HER2+ and are known to better respond to anticancer therapies. Ag UNPs accumulated in receptor-positive breast cancer cells in a time-and concentration-dependent mode and caused decreased cellular growth, whereas the TNBC cells due to the efflux were able to continue to grow. The TNBC cells demonstrated a marked increase in survival due to their ability to have MDR determined by efflux of Ag UNPs outside the nucleus and the cytoplasm of the cells. Further evaluation of the nuclear efflux kinetics of TNBC cells with Ag UNPs as biosensing probes is critical to gain a better understanding of MDR and potential for enhancement of cancer drug delivery.
Collapse
Affiliation(s)
- Ece Alim
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Logan Stone
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Naina Sharma
- College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Shane McMahon
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Zachary Allen
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Peter Aceto
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Paige Victor
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Luisa F Mitchell
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Arial Raulerson
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Connor Schepke
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Jamie Grabowski
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Rebecca Valera
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Karishma Kalia
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Mirtha Fernandez
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Kalli Kouba
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Matthew Shannon
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Victoria Johnson
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Christopher Forestal
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Immanuelle Pongo
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Sebastian Ospina
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Neysha Fontanez
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Madison Rosenberg
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Madison Levin
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Danna Martinez
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Yanel Pena Betancourt
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Lyndsay V Rhodes
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Kerry J Lee
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
- College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| |
Collapse
|
2
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Vázquez-Arias A, Pérez-Juste J, Pastoriza-Santos I, Bodelon G. Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. NANOSCALE 2021; 13:18054-18069. [PMID: 34726220 DOI: 10.1039/d1nr04961e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid systems composed of living cells and nanomaterials have been attracting great interest in various fields of research ranging from materials science to biomedicine. In particular, the interfacing of noble metal nanoparticles and bacterial cells in a single architecture aims to generate hybrid systems that combine the unique physicochemical properties of the metals and biological attributes of the microbial cells. While the bacterial cells provide effector and scaffolding functions, the metallic component endows the hybrid system with multifunctional capabilities. This synergistic effort seeks to fabricate living materials with improved functions and new properties that surpass their individual components. Herein, we provide an overview of this research field and the strategies for obtaining hybrid systems, and we summarize recent biological applications, challenges and current prospects in this exciting new arena.
Collapse
Affiliation(s)
- Alba Vázquez-Arias
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Gustavo Bodelon
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
4
|
Songkiatisak P, Ding F, Cherukuri PK, Xu XHN. Size-Dependent Inhibitory Effects of Antibiotic Nanocarriers on Filamentation of E. coli. NANOSCALE ADVANCES 2020; 2:2135-2145. [PMID: 33791510 PMCID: PMC8009294 DOI: 10.1039/c9na00697d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 06/12/2023]
Abstract
Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells, which causes multidrug resistance (MDR) and urgent need of new and more effective therapeutic agencies. In this study, we used three different sized antibiotic nanocarriers to study their mode of actions and their size-dependent inhibitory effects against Escherichia coli (E. coli). The antibiotic nanocarriers (AgMUNH-Oflx NPs) with 8.6×102, 9.4×103 and 6.5×105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing the Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer of 11-amino-1-undecanethiol (MUNH2) and covalently linking ofloxacin (Oflx) with the amine group of AgMUNH2 NPs, respectively. We designed a modified cell culture medium for nanocarriers to be stable (non-aggregated) over 18 h of cell culture, which enables us to quantitatively study their size and dose dependent inhibitory effects against E. coli. We found that inhibitory effects of Oflx against E. coli highly depend upon dose of Oflx and size of nanocarriers, showing that the equal amount of Oflx delivered by the largest nanocarriers (92.6 ± 4.4 nm) were the most potent with the lowest minimum inhibitory concentration (MIC50) and created the longest and highest percentage of filamentous cells, while the smallest nanocarriers (2.4 ± 0.7) were the least potent with the highest MIC50 and produced the shortest and lowest percentage of filamentous cells. Interestingly, the same amount of Oflx on 2.4 ± 0.7 nm nanocarriers showed the 2x higher MIC and created the 2x shorter filamentous cells than free Oflx, while the Oflx on 13.0 ± 3.1 and 92.6 ± 4.4 nm nanocarriers exhibited 2x and 6x lower MICs, and produced 2x and 3x longer filamentous cell than free Oflx, respectively. Notably, three sized AgMUNH2 NPs (absence of Oflx) showed negligible inhibitory effects and did not create filamentous cells. The results show that the filamentation of E. coli highly depends upon the sizes of nanocarriers, which leads to the size-dependent inhibitory effects of nanocarriers against E. coli.
Collapse
Affiliation(s)
- Preeyaporn Songkiatisak
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Feng Ding
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Pavan Kumar Cherukuri
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| | - Xiao-Hong Nancy Xu
- Department of Chemistry and Biochemistry, Old Dominion UniversityNorfolkVirginia 23529USAhttp://www.odu.edu/∼xhxu+1 (757) 683 5698+1 (757) 683 5698
| |
Collapse
|
5
|
Cherukuri P, Songkiatisak P, Ding F, Jault JM, Xu XHN. Antibiotic Drug Nanocarriers for Probing of Multidrug ABC Membrane Transporter of Bacillus subtilis. ACS OMEGA 2020; 5:1625-1633. [PMID: 32010837 PMCID: PMC6990642 DOI: 10.1021/acsomega.9b03698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Multidrug membrane transporters can extrude a wide range of substrates, which cause multidrug resistance and ineffective treatment of diseases. In this study, we used three different sized antibiotic drug nanocarriers to study their size-dependent inhibitory effects against Bacillus subtilis. We functionalized 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm silver nanoparticles (Ag NPs) with a monolayer of 11-amino-1-undecanethiol and covalently linked them with antibiotics (ofloxacin, Oflx). The labeling ratios of antibiotics with NPs are 8.6 × 102, 9.4 × 103, and 6.5 × 105 Oflx molecules per NP, respectively. We designed cell culture medium in which both BmrA and ΔBmrA cells grew and functioned normally while ensuring the stabilities of nanocarriers (nonaggregation). These approaches allow us to quantitatively study the dependence of their inhibitory effect against two isogenic strains of B. subtilis, WT (normal expression of BmrA) and ΔBmrA (deletion of bmrA), upon the NP size, antibiotic dose, and BmrA expression. Our results show that the inhibitory effects of nanocarriers highly depend on NP size and antibiotic dose. The same amount of Oflx on 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm nanocarriers shows the 3× lower, nearly the same, and 10× higher inhibitory effects than that of free Oflx, against both WT and ΔBmrA, respectively. Control experiments of the respective sized AgMUNH2 NPs (absence of Oflx) show insignificant inhibitory effects toward both strains. Taken together, the results show multiple factors, such as labeling ratios, multivalent effects, and pharmacodynamics (Oflx localization and distribution), which might play the roles in the size-dependent inhibitory effects on the growth of both WT and ΔBmrA strains. Interestingly, the inhibitory effects of nanocarriers are independent of the expression of BmrA, which could be attributed to the higher efflux of nanocarriers by other membrane transporters in both strains.
Collapse
Affiliation(s)
- Pavan
Kumar Cherukuri
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Preeyaporn Songkiatisak
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Feng Ding
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Jean-Michel Jault
- UMR5086
CNRS/UCBLyon I, MMSB-IBCP, 7 Passage du Vercors, 69367 Lyon cedex 07, France
| | - Xiao-Hong Nancy Xu
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| |
Collapse
|
6
|
Zhi X, Jiang Y, Xie L, Li Y, Fang CJ. Gold Nanorods Functionalized with Cathepsin B Targeting Peptide and Doxorubicin for Combinatorial Therapy against Multidrug Resistance. ACS APPLIED BIO MATERIALS 2019; 2:5697-5706. [DOI: 10.1021/acsabm.9b00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaomin Zhi
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| | - Yuqian Jiang
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| | - Linlin Xie
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chen-Jie Fang
- School of Pharmaceutics, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Santos RS, Figueiredo C, Azevedo NF, Braeckmans K, De Smedt SC. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev 2018; 136-137:28-48. [PMID: 29248479 DOI: 10.1016/j.addr.2017.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti-infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review. The first part of this manuscript overviews the permeability of bacterial envelopes and how it limits the internalization of common antibiotic and novel oligonucleotide drugs. Subsequently we critically discuss the mechanisms that allow nanomaterials/molecular transporters to overcome the bacterial envelopes, focusing on the most promising ones to this end - siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell-penetrating peptides and fusogenic liposomes. This review may stimulate drug delivery and microbiology scientists in designing effective nanomaterials/molecular transporters against bacterial infections.
Collapse
|
8
|
Browning LM, Lee KJ, Cherukuri PK, Huang T, Songkiatisak P, Warren S, Xu XHN. Single gold nanoparticle plasmonic spectroscopy for study of chemical-dependent efflux function of single ABC transporters of single live Bacillus subtilis cells. Analyst 2018; 143:1599-1608. [PMID: 29488517 PMCID: PMC5869163 DOI: 10.1039/c7an01787a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) membrane transporters serve as self-defense transport apparatus in many living organisms and they can selectively extrude a wide variety of substrates, leading to multidrug resistance (MDR). The detailed molecular mechanisms remain elusive. Single nanoparticle plasmonic spectroscopy highly depends upon their sizes, shapes, chemical and surface properties. In our previous studies, we have used the size-dependent plasmonic spectra of single silver nanoparticles (Ag NPs) to study the real-time efflux kinetics of the ABC (BmrA) transporter and MexAB-OprM transporter in single live cells (Gram-positive and Gram-negative bacterium), respectively. In this study, we prepared and used purified, biocompatible and stable (non-aggregated) gold nanoparticles (Au NPs) (12.4 ± 0.9 nm) to study the efflux kinetics of single BmrA membrane transporters of single live Bacillus subtillis cells, aiming to probe chemical dependent efflux functions of BmrA transporters and their potential chemical sensing capability. Similar to those observed using Ag NPs, accumulation of the intracellular Au NPs in single live cells (WT and ΔBmrA) highly depends upon the cellular expression of BmrA and the NP concentration (0.7 and 1.4 nM). The lower accumulation of intracellular Au NPs in WT (normal expression of BmrA) than ΔBmrA (deletion of bmrA) indicates that BmrA extrudes the Au NPs out of the WT cells. The accumulation of Au NPs in the cells increases with NP concentration, suggesting that the Au NPs most likely passively diffuse into the cells, similar to antibiotics. The result demonstrates that such small Au NPs can serve as imaging probes to study the efflux function of the BmrA membrane transporter in single live cells. Furthermore, the dependence of the accumulation rate of intracellular Au NPs in single live cells upon the expression of BmrA and the concentration of the NPs is about twice higher than that of the same sized Ag NPs. This interesting finding suggests the chemical-dependent efflux kinetics of BmrA and that BmrA could distinguish nearly identical sized Au NPs from Ag NPs and might possess chemical sensing machinery.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ding F, Songkiatisak P, Cherukuri PK, Huang T, Xu XHN. Size-Dependent Inhibitory Effects of Antibiotic Drug Nanocarriers against Pseudomonas aeruginosa. ACS OMEGA 2018; 3:1231-1243. [PMID: 29399654 PMCID: PMC5793034 DOI: 10.1021/acsomega.7b01956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 05/24/2023]
Abstract
Multidrug membrane transporters (efflux pumps) are responsible for multidrug resistance (MDR) and the low efficacy of therapeutic drugs. Noble metal nanoparticles (NPs) possess a high surface-area-to-volume ratio and size-dependent plasmonic optical properties, enabling them to serve both as imaging probes to study sized-dependent MDR and as potential drug carriers to circumvent MDR and enhance therapeutic efficacy. To this end, in this study, we synthesized three different sizes of silver nanoparticles (Ag NPs), 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm, functionalized their surface with a monolayer of 11-amino-1-undecanethiol (AUT), and covalently conjugated them with antibiotics (ofloxacin, Oflx) to prepare antibiotic drug nanocarriers with conjugation ratios of 8.6 × 102, 9.4 × 103, and 6.5 × 105 Oflx molecules per NP, respectively. We purified and characterized the nanocarriers and developed cell culture medium in which the cells grew normally and the nanocarriers were stable (non-aggregated), to quantitatively study the size, dose, and efflux pump (MexAB-OprM) dependent inhibitory effect of the nanocarriers against two strains of Pseudomonas aeruginosa, WT (normal expression of MexAB-OprM) and ΔABM (deletion of MexAB-OprM). We found that the inhibitory effect of these nanocarriers highly depended on the sizes of NPs, the doses of antibiotic, and the expression of MexAB-OprM. The same amount of Oflx on the largest nanocarriers (92.6 ± 4.4 nm) showed the highest inhibitory effect (the lowest minimal inhibitory concentration) against P. aeruginosa. Surprisingly, the smallest nanocarriers (2.4 ± 0.7 nm) exhibited a lower inhibitory effect than free Oflx. The results suggest that size-dependent multivalent effects, the distribution and localization of Oflx (pharmacodynamics), and the efflux of Oflx all play a role in the inhibitory effects. Control experiments using three sizes of AgMUNH2 NPs (absence of Oflx) showed that these NPs do not exhibit any significant inhibitory activity toward both strains. These new findings demonstrate the need for and possibility of designing optimal sized antibiotic nanocarriers to achieve the highest efficacy against P. aeruginosa.
Collapse
|
10
|
Browning LM, Lee KJ, Nallathamby PD, Cherukuri PK, Huang T, Warren S, Xu XHN. Single Nanoparticle Plasmonic Spectroscopy for Study of Charge-Dependent Efflux Function of Multidrug ABC Transporters of Single Live Bacillus subtilis Cells. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:21007-21016. [PMID: 29662596 PMCID: PMC5899213 DOI: 10.1021/acs.jpcc.6b03313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multidrug membrane transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, and they are responsible for ineffective treatment of a wide range of diseases (e.g., infection and cancer). Their underlying molecular mechanisms remain elusive. In this study, we functionalized Ag NPs (11 nm in diameter) with two biocompatible peptides (CALNNK, CALNNE) to prepare positively and negatively charged Ag-peptide NPs (Ag-CALNNK NPs+ζ, Ag-CALNNE NPs-4ζ), respectively. We used them as photostable plasmonic imaging probes to study charge-dependent efflux kinetics of BmrA (ABC) membrane transporter of single live Bacillus (B.) subtilis cells. Two strains of the cells, normal expression of BmrA (WT) or devoid of BmrA (ΔBmrA), were used to study the charge-dependent efflux kinetics of single NPs upon the expression of BmrA. The NPs (1.4 nM) were stable (non-aggregated) in a PBS buffer and biocompatible to the cells. We found the high dependent accumulation of the intracellular NPs in both WT and ΔBmrA upon the charge and concentration of NPs. Notably, the accumulation rates of the positively charged NPs in single live WT cells are nearly identical to those in ΔBmrA cells, showing independence upon the expression of BmrA. In contrast, the accumulation rates of the negatively charged NPs in WT are much lower than in ΔBmrA, showing high dependence upon the expression of BmrA and suggesting that BmrA extrude the negatively charged NPs, but not positively charged NPs, out of the WT. The accumulation of positively charged NPs in both WT and ΔBmrA increases nearly proportionally to the NP concentration. The accumulation of negatively charged NPs in ΔBmrA, but not in WT, also increases nearly proportionally to the NP concentration. These results suggest that both negatively and positively charged NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane, and BmrA can only extrude the negatively charged NPs out of the WT. This study shows that single NP plasmon spectroscopy can serve as a powerful tool to identify single plasmonic NPs and to probe the charge-dependent efflux kinetics and function of single membrane transporters in single live cells in real time.
Collapse
Affiliation(s)
- Lauren M. Browning
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Kerry J. Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Prakash D. Nallathamby
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Pavan K. Cherukuri
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Tao Huang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Seth Warren
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | - Xiao-Hong Nancy Xu
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|