1
|
Huang YS, Ejeta DD, Lin KY(A, Kuo SW, Jamnongkan T, Huang CF. Synthesis of PDMS-μ-PCL Miktoarm Star Copolymers by Combinations ( Є) of Styrenics-Assisted Atom Transfer Radical Coupling and Ring-Opening Polymerization and Study of the Self-Assembled Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2355. [PMID: 37630940 PMCID: PMC10457737 DOI: 10.3390/nano13162355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Due to their diverse and unique physical properties, miktoarm star copolymers (μ-SCPs) have garnered significant attention. In our study, we employed α-monobomoisobutyryl-terminated polydimethylsiloxane (PDMS-Br) to carry out styrenics-assisted atom transfer radical coupling (SA ATRC) in the presence of 4-vinylbenzyl alcohol (VBA) at 0 °C. By achieving high coupling efficiency (χc = 0.95), we obtained mid-chain functionalized PDMS-VBAm-PDMS polymers with benzylic alcohols. Interestingly, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis revealed the insertion of only two VBA coupling agents (m = 2). Subsequently, the PDMS-VBA2-PDMS products underwent mid-chain extensions using ε-caprolactone (ε-CL) through ring-opening polymerization (ROP) with an efficient organo-catalyst at 40 °C, resulting in the synthesis of novel (PDMS)2-μ-(PCL)2 μ-SCPs. Eventually, novel (PDMS)2-μ-(PCL)2 μ-SCPs were obtained. The obtained PDMS-μ-PCL μ-SCPs were further subjected to examination of their solid-state self-assembly through small-angle X-ray scattering (SAXS) experiments. Notably, various nanostructures, including lamellae and hexagonally packed cylinders, were observed with a periodic size of approximately 15 nm. As a result, we successfully developed a simple and effective reaction combination (Є) strategy (i.e., SA ATRC-Є-ROP) for the synthesis of well-defined PDMS-μ-PCL μ-SCPs. This approach may open up new possibilities for fabricating nanostructures from siloxane-based materials.
Collapse
Affiliation(s)
- Yi-Shen Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.H.); (D.D.E.)
| | - Dula Daksa Ejeta
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.H.); (D.D.E.)
| | - Kun-Yi (Andrew) Lin
- Department of Environmental Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
| | - Tongsai Jamnongkan
- Department of Fundamental Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University, Chonburi 20230, Thailand
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.H.); (D.D.E.)
| |
Collapse
|
2
|
Kamigaito M. Evolutions of precision radical polymerizations from metal-catalyzed radical addition: living polymerization, step-growth polymerization, and monomer sequence control. Polym J 2022. [DOI: 10.1038/s41428-022-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Hill L, Sims H, Nguyen N, Collins C, Palmer J, Wasson F. A Degradable Difunctional Initiator for ATRP That Responds to Hydrogen Peroxide. Polymers (Basel) 2022; 14:polym14091733. [PMID: 35566902 PMCID: PMC9099818 DOI: 10.3390/polym14091733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Mid-chain degradable polymers can be prepared by atom transfer radical polymerization from difunctional initiators that include triggers for the desired stimuli. While many difunctional initiators can respond to reducing conditions, procedures to prepare difunctional initiators that respond to oxidizing conditions are significantly less available in the literature. Here, a difunctional initiator incorporating an oxidizable boronic ester trigger was synthesized over four steps using simple and scalable procedures. Methyl methacrylate was polymerized by atom transfer radical polymerization using this initiator, and the polymerization kinetics were consistent with a controlled polymerization. The polymer synthesized using the difunctional initiator was found to decrease in molecular weight by 58% in the presence of hydrogen peroxide, while a control experiment using poly(methyl methacrylate) without a degradable linkage showed a much smaller decrease in molecular weight of only 9%. These observed molecular weight decreases were consistent with cleavage of the difunctional initiator via a quinone methide shift and hydrolysis of the methyl ester pendent groups in both polymers, and both polymers increased in polydispersity after oxidative degradation.
Collapse
Affiliation(s)
- Lawrence Hill
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA; (H.S.); (N.N.); (C.C.); (J.P.); (F.W.)
- Correspondence: ; Tel.: +1-270-745-2136
| | - Hunter Sims
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA; (H.S.); (N.N.); (C.C.); (J.P.); (F.W.)
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ngoc Nguyen
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA; (H.S.); (N.N.); (C.C.); (J.P.); (F.W.)
| | - Christopher Collins
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA; (H.S.); (N.N.); (C.C.); (J.P.); (F.W.)
| | - Jeffery Palmer
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA; (H.S.); (N.N.); (C.C.); (J.P.); (F.W.)
| | - Fiona Wasson
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA; (H.S.); (N.N.); (C.C.); (J.P.); (F.W.)
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
4
|
Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Lin ST, Wang CC, Chang CJ, Nakamura Y, Lin KYA, Huang CF. Progress in the Preparation of Functional and (Bio)Degradable Polymers via Living Polymerizations. Int J Mol Sci 2020; 21:E9581. [PMID: 33339183 PMCID: PMC7765598 DOI: 10.3390/ijms21249581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
This review presents the latest developments in (bio)degradable approaches and functional aliphatic polyesters and polycarbonates prepared by typical ring-opening polymerization (ROP) of lactones and trimethylene carbonates. It also considers several recent innovative synthetic methods including radical ring-opening polymerization (RROP), atom transfer radical polyaddition (ATRPA), and simultaneous chain- and step-growth radical polymerization (SCSRP) that produce aliphatic polyesters. With regard to (bio)degradable approaches, we have summarized several representative cleavable linkages that make it possible to obtain cleavable polymers. In the section on functional aliphatic polyesters, we explore the syntheses of specific functional lactones, which can be performed by ring-opening copolymerization of typical lactone/lactide monomers. Last but not the least, in the recent innovative methods section, three interesting synthetic methodologies, RROP, ATRPA, and SCSRP are discussed in detail with regard to their reaction mechanisms and polymer functionalities.
Collapse
Affiliation(s)
- Si-Ting Lin
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan;
| | - Chung-Chi Wang
- Division of Cardiovascular Surgery, Veterans General Hospital, Taichung 407-05, Taiwan;
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen District, Taichung 40724, Taiwan;
| | - Yasuyuki Nakamura
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan;
| |
Collapse
|
6
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
7
|
Cuneo T, Graff RW, Wang X, Gao H. Synthesis of Highly Branched Copolymers in Microemulsion. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Timothy Cuneo
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Robert W. Graff
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Xiaofeng Wang
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN 46556 USA
| |
Collapse
|
8
|
Lu YC, Chou LC, Huang CF. Iron-catalysed atom transfer radical polyaddition for the synthesis and modification of novel aliphatic polyesters displaying lower critical solution temperature and pH-dependent release behaviors. Polym Chem 2019. [DOI: 10.1039/c9py00506d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel aliphatic polyesters were synthesized and quantitatively modified by click reactions to obtain amphiphilic polymer brushes for nano-carrier applications.
Collapse
Affiliation(s)
- Yu-Chi Lu
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Li-Chieh Chou
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| |
Collapse
|
9
|
Recent Progress on Hyperbranched Polymers Synthesized via Radical-Based Self-Condensing Vinyl Polymerization. Polymers (Basel) 2017; 9:polym9060188. [PMID: 30970866 PMCID: PMC6431861 DOI: 10.3390/polym9060188] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/27/2023] Open
|