1
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Choudhury H, Pandey M, Saravanan V, Mun ATY, Bhattamisra SK, Parikh A, Garg S, Gorain B. Recent progress of targeted nanocarriers in diagnostic, therapeutic, and theranostic applications in colorectal cancer. BIOMATERIALS ADVANCES 2023; 153:213556. [PMID: 37478770 DOI: 10.1016/j.bioadv.2023.213556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Vilashini Saravanan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Amanda Tan Yee Mun
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ankit Parikh
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
3
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
4
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
5
|
Nornberg AB, Martins CC, Cervi VF, Sari MHM, Cruz L, Luchese C, Wilhelm EA, Fajardo AR. Transdermal release of methotrexate by cationic starch/poly(vinyl alcohol)-based films as an approach for rheumatoid arthritis treatment. Int J Pharm 2022; 611:121285. [PMID: 34774696 DOI: 10.1016/j.ijpharm.2021.121285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
Methotrexate (MTX) is a common drug used for rheumatoid arthritis (RA) treatment; however, a series of adverse effects associated with its oral or subcutaneous administration is reported. Transdermal delivery of MTX is an alternative to abate these issues, and the use of drug delivery systems (DDS) based on polymeric films presents an impressive potential for this finality. Based on this, in this study, we report the preparation of films made by cationic starch (CSt), poly(vinyl alcohol) (PVA), and chondroitin sulfate (ChS) to incorporate and release MTX, as well as the in vivo evaluation in model of rheumatoid arthritis in mice. CSt/PVA and CSt/PVA/ChS-based films (with and without MTX) were prepared using a simple protocol under mild conditions. The films loaded with 5 w/w-% of MTX exhibited appreciable drug loading efficiency and distribution. The MTX permeation through the layers of porcine skin demonstrated that most of the drug permeated was detected in the medium, suggesting that the formulation can provide a systemic absorption of the MTX. In vivo studies performed in an arthritis-induced model in mice demonstrated that the MTX-loaded films were able to treat and attenuate the symptoms and the biochemical alterations related to RA (inflammatory process, oxidative stress, and nociceptive behaviors). Besides, the pharmacological activity of MTX transdermally delivery by the CSt/PVA and CSt/PVA/ChS films was comparable to the MTX orally administered. Based on these results, it can be inferred that both films are prominent materials for incorporation and transdermal delivery of MTX in a practical and non-invasive manner.
Collapse
Affiliation(s)
- Andressa B Nornberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil
| | - Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Verônica F Cervi
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Marcel H M Sari
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil.
| |
Collapse
|
6
|
Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics 2020; 12:pharmaceutics12090850. [PMID: 32906852 PMCID: PMC7558911 DOI: 10.3390/pharmaceutics12090850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the most prevalent diseases worldwide, with increasing incidence in recent years. Current pharmacological strategies are not tissue-specific therapies, which hampers their efficacy and results in toxicity in healthy organs. Carbon-based nanomaterials have emerged as promising nanoplatforms for the development of targeted delivery systems to treat diseased cells. Single-walled carbon nanohorns (SWCNH) are graphene-based horn-shaped nanostructure aggregates with a multitude of versatile features to be considered as suitable nanosystems for targeted drug delivery. They can be easily synthetized and functionalized to acquire the desired physicochemical characteristics, and no toxicological effects have been reported in vivo followed by their administration. This review focuses on the use of SWCNH as drug delivery systems for cancer therapy. Their main applications include their capacity to act as anticancer agents, their use as drug delivery systems for chemotherapeutics, photothermal and photodynamic therapy, gene therapy, and immunosensing. The structure, synthesis, and covalent and non-covalent functionalization of these nanoparticles is also discussed. Although SWCNH are in early preclinical research yet, these nanotube-derived nanostructures demonstrate an interesting versatility pointing them out as promising forthcoming drug delivery systems to target and treat cancer cells.
Collapse
|
7
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
9
|
Gupta N, Rai DB, Jangid AK, Kulhari H. A Review of Theranostics Applications and Toxicities of Carbon Nanomaterials. Curr Drug Metab 2020; 20:506-532. [PMID: 30251600 DOI: 10.2174/1389200219666180925094515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last few years, the use of modified Carbon Nanomaterials (CNMs) for theranostics (therapeutic and diagnosis) applications is a new and rapidly growing area in pharmacy and medical fields. Owing to this, their specific physicochemical behaviors like high stability, drug loading, surface area to volume ratio, with low toxicity and immunogenicity are mainly responsible to be considered those as smart nanomaterials. OBJECTIVES This review describes the different dimensions of carbon-based nanocarriers including 0-D fullerene, 1-D Carbon Nanotubes (CNTs), and 2-D graphene and Graphene Oxide (GO) and their surface modification with different biocompatible and biodegradable molecules via covalent or non-covalent functionalization. The major focus of this article is on the different theranostics applications of CNMs like targeted drugs and genes delivery, photodynamic therapy, photothermal therapy, bioimaging, and biosensing. The therapeutic efficacy of drugs could be enhanced by delivering them directly on a specific site using different targeted ligands such as vitamins, peptide, carbohydrates, proteins, etc. A section of the article also discusses the toxicity of the CNMs to the living systems. CONCLUSIONS In brief, this review article discusses the numerous theranostics applications and toxicities of CNMs.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| | - Divya Bharti Rai
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar-382030, India
| |
Collapse
|
10
|
Mankotia P, Choudhary S, Sharma K, Kumar V, Kaur Bhatia J, Parmar A, Sharma S, Sharma V. Neem gum based pH responsive hydrogel matrix: A new pharmaceutical excipient for the sustained release of anticancer drug. Int J Biol Macromol 2019; 142:742-755. [PMID: 31739022 DOI: 10.1016/j.ijbiomac.2019.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
The present research work was aimed to synthesize neem gum-based site-specific drug delivery device for anticancer drug methotrexate at different pH condition. The hydrogel-based drug delivery device was synthesized by optimizing reaction parameters using a factorial design approach response surface method. This model comprised of various sets of reactions with varying concentrations of solvent, crosslinker, initiator and monomer under microwave radiation. Characterization of the candidate hydrogel was done using UV-visible spectrophotometer, FTIR, SEM, Raman, and XRD techniques. The release profile of the hydrogels network was studied through a methotrexate under different pH conditions. The drug encapsulation capacity was found to be around 93% and 90% in pH 7.4 and 6.8. Drug release through the synthesized hydrogel matrix was found to show non-Fickian behaviour at each medium. The hydrogel network showed less release in pH 6.8 than pH 7.4, suggesting that hydrogels may be suitable drug carriers for release of anticancer drug delivery system. Hemolysis testing was also done to check the compatibility of the synthesized drug delivery device with the four different blood samples. Hemolysis was found to be less than 1% in the case of all blood groups, which indicates that the synthesized candidate polymers are biocompatible with all blood groups.
Collapse
Affiliation(s)
- Priyanka Mankotia
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India
| | - Sonal Choudhary
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India
| | - Kashma Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India.
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, J&K 19006, India.
| | - Jaspreet Kaur Bhatia
- Postgraduate Department of Chemistry, D.A.V College, Jalandhar, Punjab, 144008, India
| | - Ankush Parmar
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
12
|
Moghimipour E, Rezaei M, Kouchak M, Ramezani Z, Amini M, Ahmadi Angali K, Saremy S, Abedin Dorkoosh F, Handali S. A mechanistic study of the effect of transferrin conjugation on cytotoxicity of targeted liposomes. J Microencapsul 2018; 35:548-558. [PMID: 30445885 DOI: 10.1080/02652048.2018.1547325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was performed to prepare 5-fluorouracil (5FU) containing targeted liposomes for the safety and efficacy enhancement. Liposomes were prepared using thin layer method and transferrin (Tf) was employed as the targeting ligand. Morphology of 5FU-loaded liposomes was assessed by transmission electron microscopy (TEM). The in vitro cytotoxicity was investigated via MTT assay on HT-29, CT26 and fibroblast cells. Mitochondrial membrane and cell death evaluations were also investigated. Resulted showed that the encapsulation efficiency (EE%) and particle size of the liposomes were 40.12% and 130 nm, respectively. TEM image implied that liposomes were spherical in shape. In cancer cells, targeted liposomes triggered the mitochondrial apoptotic pathway by lower production of reactive oxygen species (ROS) (63.58 vs 84.95 fluorescence intensity), reduced mitochondrial membrane potential and releasing of cytochrome c (68.66 vs 51.13 ng/mL). The results of this study indicated that Tf-targeted 5FU liposomes can be employed as promising nanocarrier for the delivery of drugs to cancer cells.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran.,b Cellular and Molecular Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohsen Rezaei
- c Department of Toxicology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Maryam Kouchak
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Zahra Ramezani
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Mohsen Amini
- d Department of Medicinal Chemistry, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Kambiz Ahmadi Angali
- e Department of Biostatistics, School of Public Health , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Sadegh Saremy
- b Cellular and Molecular Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| | - Farid Abedin Dorkoosh
- f Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran.,g Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences , Tehran , Iran
| | - Somayeh Handali
- a Nanotechnology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
13
|
Wen J, Sun S. Carbon Nanomaterials in Optical Detection. CARBON-BASED NANOMATERIALS IN ANALYTICAL CHEMISTRY 2018. [DOI: 10.1039/9781788012751-00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Owing to their unique optical, electronic, mechanical, and chemical properties, flexible chemical modification, large surface coverage and ready cellular uptake, various carbon nanomaterials such as carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs), graphene quantum dots, fullerenes, carbon nanohorns (CNHs) and carbon nano-onions (CNOs), have been widely explored for use in optical detection. Most of them are based on fluorescence changes. In this chapter, we will focus on carbon nanomaterials-based optical detection applications, mainly including fluorescence sensing and bio-imaging. Moreover, perspectives on future exploration of carbon nanomaterials for optical detection are also given.
Collapse
Affiliation(s)
- Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University Yangling, Shaanxi 712100 PR China
| |
Collapse
|
14
|
Methotrexate loaded on magnetite iron nanoparticles coated with chitosan: Biosynthesis, characterization, and impact on human breast cancer MCF-7 cell line. Int J Biol Macromol 2018; 120:1170-1180. [PMID: 30172815 DOI: 10.1016/j.ijbiomac.2018.08.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/28/2018] [Accepted: 08/23/2018] [Indexed: 11/20/2022]
Abstract
Methotrexate (MTX) is effective therapeutic agent treated many tumors and autoimmune diseases. The aim of our study was to design an effective delivery nanocarrier for methotrexate to improve stability and biodistribution, reduce adverse effects and maximize clinical efficacy. Magnetite nanoparticles (Fe3O4-NPs) were synthesized using Pterocladiella. The size of Fe3O4-NPs, CS-Fe3O4-NPs and MTX/CS-Fe3O4-NPs were 37.6, 61.4 and 150 nm respectively. Methotrexate loading efficiency was 74.15% of total amount of MTX loaded on CS-Fe3O4-NPs and 39.8% of the loaded drug was initially released and the remaining amount was released through 120 h. The IC50 of MTX and MTX/CS-Fe3O4-NPs was 51.4 and 9.7 μg/ml respectively after 72 h. MTX/CS-Fe3O4-NPs caused remarkable damage to the membrane of MCF-7 cells led to increasing the LDH activity 5 fold in MCF-7 cells as compared with MTX treated once. DNA fragmentation and caspase-3 activity were higher in MCF-7 cells treated with MTX/CS-Fe3O4-NPs than that of MTX. Up-regulation of caspase3 and DHFR genes expression was observed in the treatment with MTX/CS-Fe3O4-NPs. The loading of MTX on chitosan coated Fe3O4-NPs improves the release and anticancer efficacy of MTX for effective cancer treatment.
Collapse
|
15
|
Devereux SJ, Cheung S, Daly HC, O'Shea DF, Quinn SJ. Multimodal Microscopy Distinguishes Extracellular Aggregation and Cellular Uptake of Single‐Walled Carbon Nanohorns. Chemistry 2018; 24:14162-14170. [DOI: 10.1002/chem.201801532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
| | - Shane Cheung
- Department of ChemistryRCSI 123 St Stephen's Green Dublin 2 Ireland
| | - Harrison C. Daly
- Department of ChemistryRCSI 123 St Stephen's Green Dublin 2 Ireland
| | - Donal F. O'Shea
- Department of ChemistryRCSI 123 St Stephen's Green Dublin 2 Ireland
| | - Susan J. Quinn
- School of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
16
|
Transferrin targeted liposomal 5-fluorouracil induced apoptosis via mitochondria signaling pathway in cancer cells. Life Sci 2017; 194:104-110. [PMID: 29275107 DOI: 10.1016/j.lfs.2017.12.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023]
Abstract
The purpose of this study was to prepare transferrin (Tf) targeted liposomal 5-Fluorouracil (5FU) to improve the safety and efficacy of the drug. Liposomes were prepared using thin layer method. Morphology of liposomes was characterized by transmission electron microscopy (TEM) and their particle size was also determined. The in vitro cytotoxicity was investigated via MTT assay on HT-29 (as cancer cell) and fibroblast (as normal cell). Moreover, cytotoxicity mechanism of targeted liposomes was determined through the production of reactive oxygen species (ROS), mitochondrial membrane potential (∆Ψm) and release of cytochrome c. Results showed that encapsulation efficiency (EE%) was 58.66±0.58 and average size of liposomes was 107nm. Also, nano-particles were spherical as shown by TEM. MTT assay on HT-29 cells revealed the higher cytotoxic activity of targeted liposomes in comparison to free drug and non-targeted liposome. In contrast, comparing with cancer cells, targeted liposomes had no cytotoxic effect on normal cells. In addition, targeted liposomes induced apoptosis through activation of mitochondrial apoptosis pathways, as evidenced by decreased mitochondrial membrane potential and release of cytochrome c. Results of the study indicated that targeted liposomes would provide a potential strategy to treat colon cancer by inducing apoptosis via mitochondria signaling pathway with reducing dose of the drug and resulting fewer side-effects.
Collapse
|
17
|
Carbon nanotubes-based drug delivery to cancer and brain. Curr Med Sci 2017; 37:635-641. [DOI: 10.1007/s11596-017-1783-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/19/2017] [Indexed: 01/15/2023]
|
18
|
Laskar K, Faisal SM, Rauf A, Ahmed A, Owais M. Undec-10-enoic acid functionalized chitosan based novel nano-conjugate: An enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydr Polym 2017; 166:14-23. [PMID: 28385217 DOI: 10.1016/j.carbpol.2017.02.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022]
Abstract
Fatty acid functionalized chitosan conjugates are of great interest in cancer therapeutics because of its internalization through receptor mediated endocytosis into the cancer cells. Keeping the above fact into consideration, herein we synthesized the undec-10-enoic acid functionalized chitosan based undecyl-chitosan (U-CS) nano-bioconjugate with the use of DCC as a coupling agent. The U-CS conjugate synthesized was confirmed and characterized by FTIR, 1H NMR, TGA, XRD, SEM and TEM analysis. Generally, it is well established that conjugates of oleic acid with human Alpha-lactalbumin (HAMLET) induce cytotoxicity in the altered cells, but not in healthy cells. To check our presumptions, anti-bacterial and anti-cancer potential of U-CS was evaluated against bacterial pathogens (Gram +ve and Gram -ve) and human cancer cell lines (HeLa, MDA-MB-231 and Hep3B). The results of our study clearly revealed that conjugate showed enhance anti-bacterial, anti-biofilm as well as anti-cancer efficacy as compared to pure and free form of the chitosan.
Collapse
Affiliation(s)
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Abdul Rauf
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Anees Ahmed
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
19
|
El-Kalyoubi S, Agili F. A Novel Synthesis of Fused Uracils: Indenopyrimidopyridazines, Pyrimidopyridazines, and Pyrazolopyrimidines for Antimicrobial and Antitumor Evalution. Molecules 2016; 21:molecules21121714. [PMID: 27983644 PMCID: PMC6273033 DOI: 10.3390/molecules21121714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022] Open
Abstract
A variety of different compounds of fused uracils were prepared simply by the heating of 6-hydrazinyl-1-methyl-, 6-hydrazinyl-1-propyl-, or 6-hydrazinyl-1,3-dipropyluracil under reflux with ninhydrin, isatin, benzylidene malononitrile, benzylylidene ethyl cyanoacetate, benzil, and phenacyl bromide derivatives. The newly synthesized compounds were completely screened for antimicrobial and antitumor activity.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11651, Cairo, Egypt.
- Medical Chemistry Department, Faculty of Medicine (Female Section), Jazan University, Jazan 45142, Saudi Arabia.
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia.
| |
Collapse
|
20
|
Wang J, Wang R, Zhang F, Yin Y, Mei L, Song F, Tao M, Yue W, Zhong W. Overcoming multidrug resistance by a combination of chemotherapy and photothermal therapy mediated by carbon nanohorns. J Mater Chem B 2016; 4:6043-6051. [DOI: 10.1039/c6tb01469k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A targeted drug delivery system based on carbon nanohorns for targeting P-glycoprotein and delivering etoposide into cells to overcome multidrug resistance.
Collapse
Affiliation(s)
- Junling Wang
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Ran Wang
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Fangrong Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Yajun Yin
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Leixia Mei
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Fengjuan Song
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Mingtao Tao
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Wanqing Yue
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Wenying Zhong
- Department of analytical chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|