1
|
Solanki R, Patel S. Evodiamine and its nano-based approaches for enhanced cancer therapy: recent advances and challenges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8430-8444. [PMID: 38821861 DOI: 10.1002/jsfa.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Evodiamine is a bioactive alkaloid extracted from the Evodia rutaecarpa plant. It has various pharmacological effects including anti-cancer, anti-bacterial, anti-obesity, anti-neurodegenerative, anti-depressant, and cardiac protective properties. Evodiamine demonstrates potent anti-cancer activity by inhibiting the proliferation of cancer cells in vitro and in vivo. Despite the health-promoting properties of evodiamine, its clinical use is hindered by low water solubility, poor bioavailability, and toxicity. Thus, there is a need to develop alternative drug delivery systems for evodiamine to enhance its solubility, permeability, and stability, as well as to facilitate targeted, prolonged, and controlled drug release. Nanocarriers can increase the therapeutic potential of evodiamine in cancer therapy while reducing adverse side effects. To date, numerous attempts have been made through the development of smart nanocarriers to overcome the drawbacks of evodiamine. This review focuses on the pharmacological applications, anti-cancer mechanisms, and limitations of evodiamine. Various nanocarriers, including lipid-based nanoparticles, polymeric nanoparticles, cyclodextrins, and so forth, have been discussed extensively for evodiamine delivery. Nano-drug delivery systems could increase the solubility, bioavailability, stability, and therapeutic efficacy of evodiamine. This review aims to present a comprehensive and critical evaluation of several nano-formulations of evodiamine for cancer therapy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
2
|
Pebam M, Khatun S, Ali MS, Srivastava A, Rengan AK. Self-assembled IR dye/mitoxantrone loaded Porphysomes nanosystem for enhanced combinatorial chemo-photothermal cancer therapy. Colloids Surf B Biointerfaces 2024; 241:113985. [PMID: 38838443 DOI: 10.1016/j.colsurfb.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chemo-photothermal therapy (PTT) is an emerging non-invasive cancer treatment modality. Light-responsive porphysomes (DPP IR Mtx @Lipo NPs) nanosystems ablate breast cancer cells upon oxidative stress and hyperthermia. The unique self-assembled porphysomes were formed spherical shape in the size range of 150 ± 30 nm formed by the co-assembly of porphyrins along with IR 775 and chemotherapeutic drug, Mitoxantrone (Mtx), forming a camouflaged nanosystem (DPP IR Mtx @Lipo NPs, porphysomes). The advent of the prepared porphysomes aids in proper tuning of NIR absorbance improving singlet oxygen species generation among other anticancer drugs. The eminent release of DPP and adjuvant chemo-drug, Mitoxantrone from the self-assembled porphysomes is triggered by IR 775, a NIR photosensitizer upon laser irradiation. These multifunctional DPP IR Mtx @Lipo NPs have an efficient photothermal conversion efficiency of 65.8% as well as bioimaging properties. In-vitro studies in 2D and 3D models showed a significant cell death of 4T1 cells via the apoptotic pathway when irradiated with NIR laser, causing minimal damage to nearby healthy cells. DPP IR Mtx @Lipo NPs exhibited commingled PDT/PTT interdependent via NIR laser exposure, leading to mitochondrial disruption. Interestingly, the transient transfection using p53-GFP in cancer cells followed by DPP IR Mtx @Lipo NPs treatment causes rapid cell death. The activation of p53-dependent apoptosis pathways was vividly expressed, evidenced by the upregulation of Bax and increased pattern of Caspase-3 cleavage. This effect was pronounced upon transfection and induction with DPP IR Mtx @Lipo NPs, particularly in comparison to non-transfected malignant breast cancer 4T1 cells.
Collapse
Affiliation(s)
- Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aditya Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India.
| |
Collapse
|
3
|
Sohel M, Zahra Shova FT, shuvo S, Mahjabin T, Mojnu Mia M, Halder D, Islam H, Roman Mogal M, Biswas P, Saha HR, Sarkar BC, Mamun AA. Unveiling the potential anti-cancer activity of calycosin against multivarious cancers with molecular insights: A promising frontier in cancer research. Cancer Med 2024; 13:e6924. [PMID: 38230908 PMCID: PMC10905684 DOI: 10.1002/cam4.6924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Calycosin may be a potential candidate regarding chemotherapeutic agent, because already some studies against multivarious cancer have been made with this natural compound. AIM This review elucidated a brief overview of previous studies on calycosin potential effects on various cancers and its potential mechanism of action. METHODOLOGY Data retrieved by systematic searches of Google Scholar, PubMed, Science Direct, Web of Science, and Scopus by using keywords including calycosin, cancer types, anti-cancer mechanism, synergistic, and pharmacokinetic and commonly used tools are BioRender, ChemDraw Professional 16.0, and ADMETlab 2.0. RESULTS Based on our review, calycosin is available in nature and effective against around 15 different types of cancer. Generally, the anti-cancer mechanism of this compound is mediated through a variety of processes, including regulation of apoptotic pathways, cell cycle, angiogenesis and metastasis, oncogenes, enzymatic pathways, and signal transduction process. These study conducted in various study models, including in silico, in vitro, preclinical and clinical models. The molecular framework behind the anti-cancer effect is targeting some oncogenic and therapeutic proteins and multiple signaling cascades. Therapies based on nano-formulated calycosin may make excellent nanocarriers for the delivery of this compound to targeted tissue as well as particular organ. This natural compound becomes very effective when combined with other natural compounds and some standard drugs. Moreover, proper use of this compound can reverse resistance to existing anti-cancer drugs through a variety of strategies. Calycosin showed better pharmacokinetic properties with less toxicity in human bodies. CONCLUSION Calycosin exhibits excellent potential as a therapeutic drug against several cancer types and should be consumed until standard chemotherapeutics are available in pharma markets.
Collapse
Affiliation(s)
- Md Sohel
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Fatema Tuj Zahra Shova
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Shahporan shuvo
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Taiyara Mahjabin
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Mojnu Mia
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Dibyendu Halder
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Hafizul Islam
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Roman Mogal
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and TechnologyJashore University of Science and Technology (JUST)JashoreBangladesh
| | - Hasi Rani Saha
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | | | - Abdullah Al Mamun
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
4
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
5
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
6
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
7
|
Das A, Adhikari S, Deka D, Baildya N, Sahare P, Banerjee A, Paul S, Bisgin A, Pathak S. An Updated Review on the Role of Nanoformulated Phytochemicals in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040685. [PMID: 37109643 PMCID: PMC10143464 DOI: 10.3390/medicina59040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
The most common cancer-related cause of death worldwide is colorectal cancer. It is initiated with the formation of polyps, which further cause the development of colorectal cancer in multistep phases. Colorectal cancer mortality is high despite recent treatment breakthroughs and a greater understanding of its pathophysiology. Stress is one of the major causes of triggering different cellular signalling cascades inside the body and which might turn toward the development of cancer. Naturally occurring plant compounds or phytochemicals are being studied for medical purposes. Phytochemicals' benefits are being analyzed for inflammatory illnesses, liver failure, metabolic disorders, neurodegenerative disorders, and nephropathies. Cancer treatment with fewer side effects and better outcomes has been achieved by combining phytochemicals with chemotherapy. Resveratrol, curcumin, and epigallocatechin-3-gallate have been studied for their chemotherapeutic and chemopreventive potentiality, but hydrophobicity, solubility, poor bioavailability, and target selectivity limit the clinical uses of these compounds. The therapeutic potential is maximized by utilizing nanocarriers such as liposomes, micelles, nanoemulsions, and nanoparticles to increase phytochemical bioavailability and target specificity. This updated literature review discusses the clinical limitations, increased sensitivity, chemopreventive and chemotherapeutic effects, and the clinical limitations of the phytochemicals.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Suman Adhikari
- Department of Chemistry, Govt. Degree College, Dharmanagar 799253, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla 76230, Querétaro, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo 76130, Querétaro, Mexico
| | - Atil Bisgin
- Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Medical Genetics Department of Medical Faculty, Cukurova University, Adana 01330, Turkey
- InfoGenom RD Laboratories of Cukurova Technopolis, Adana 01330, Turkey
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
8
|
Gaydhane MK, Sharma CS, Majumdar S. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Adv 2023; 13:7312-7328. [PMID: 36891485 PMCID: PMC9987416 DOI: 10.1039/d2ra06023j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 03/08/2023] Open
Abstract
Emerging drug-delivery systems demand a controlled or programmable or sustained release of drug molecules to improve therapeutic efficacy and patient compliance. Such systems have been heavily investigated as they offer safe, accurate, and quality treatment for numerous diseases. Amongst newly developed drug-delivery systems, electrospun nanofibres have emerged as promising drug excipients and are coming up as promising biomaterials. The inimitable characteristics of electrospun nanofibres in terms of their high surface-to-volume ratio, high porosity, easy drug encapsulation, and programmable release make them an astounding drug-delivery vehicle.
Collapse
Affiliation(s)
- Mrunalini K Gaydhane
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Saptarshi Majumdar
- Poly-Nano-Bio Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| |
Collapse
|
9
|
Mahmoud AWM, Ayad AA, Abdel-Aziz HSM, Williams LL, El-Shazoly RM, Abdel-Wahab A, Abdeldaym EA. Foliar Application of Different Iron Sources Improves Morpho-Physiological Traits and Nutritional Quality of Broad Bean Grown in Sandy Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192599. [PMID: 36235465 PMCID: PMC9572197 DOI: 10.3390/plants11192599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Nano-fertilizers are a new tool that can be used to address plant production challenges, and it addresses such nutrient deficiencies through smart agriculture approaches. Iron (Fe) is a vital element for several metabolic and physiological processes; however, Fe deficiency is common in poorly fertile soils (sand soil) and in arid areas. Therefore, additional research is required to select the most efficient form of iron absorbance. This research was implemented on broad bean plants (Vicia faba L. var. major Harz) to examine the impact of three iron sources: nano-iron (FeNPs, T1), iron sulfate (T2), and chelated iron (T3) as a foliar spray on the morphological properties, physiological attributes, and nutritional status of these plants compared to the untreated plants (control). The obtained results showed that foliar spraying with FeNPs, chelated iron and sulphate iron fertilizers increased plant height by 35.01%, 26.2, and 20.4%; leaf area by 38.8%, 18.3%, and 8.1%; the fresh weight of the plant by 47%, 32.8%, and 7.3%; the dry weight of the plant by 52.9%, 37.3%, and 11.2%; and the number of branches by 47%, 31.3%, and 25.6 %, respectively, compared to the control treatment (CT). Furthermore, the application of FeNPs, chelated iron, and sulphate iron fertilizers improved the number of pods by 47.9%, 24.8%, and 6.1%; the number of seeds by 32.8%, 7.9%, and 2.8%; and seed weight by 20.8%, 9.1%, and 5.4%, compared to control treatment (CT). Additionally, foliar application of FeNPs showed the highest values of photosynthesis rate (Pn), water-use efficiency (WUE), total chlorophyll, and phytohormones (IAA, GA3) compared to all the other treatments. The anatomical structure revealed an enhancement of leaf size and thickness (epidermis cells and mesophyll tissue) affected by FeNPs treatment compared to other treatments. Foliar application of FeNPs also improved the total content of carbohydrates, crude protein, element content (N, P, K, Ca, Na, Fe, Zn, Mn, and Cu), and some amino acids such as lysine, arginine, phenylalanine, isoleucine, and tyrosine in the seeds of broad beans. Based on the above results, the maximum values of all tested measurements were observed when FeNPs were used as the foliar spraying followed by chelated and sulphate iron fertilizers. Therefore, these findings suggest that using FeNPs, as a foliar treatment, could be a promising strategy for reducing the Fe deficiency in sandy soil and enhancing plant growth, pod yield, and pod quality of broad bean plants in addition to being environmentally favored in arid areas.
Collapse
Affiliation(s)
- Abdel Wahab M. Mahmoud
- Plant Physiology Division, Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Amira A. Ayad
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA
| | - Hend S. M. Abdel-Aziz
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA
| | - Rasha M. El-Shazoly
- Botany and Microbiology Department, Faculty of Science, New Valley University, Al-Kharja 72511, Egypt
| | - Ahmed Abdel-Wahab
- Department of Vegetable, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Emad A. Abdeldaym
- Department of Vegetable, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
10
|
Garcia-Carrasco M, Picos-Corrales LA, Gutiérrez-Grijalva EP, Angulo-Escalante MA, Licea-Claverie A, Heredia JB. Loading and Release of Phenolic Compounds Present in Mexican Oregano (Lippia graveolens) in Different Chitosan Bio-Polymeric Cationic Matrixes. Polymers (Basel) 2022; 14:polym14173609. [PMID: 36080684 PMCID: PMC9459739 DOI: 10.3390/polym14173609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90–99% and 50–60%, correspondingly. The release profiles in simulated fluids revealed a better control of host–guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.
Collapse
Affiliation(s)
- Melissa Garcia-Carrasco
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Miguel A. Angulo-Escalante
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de Mexico/Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22000, Baja California, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| | - J. Basilio Heredia
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| |
Collapse
|
11
|
Antiviral perspectives of economically important Indian medicinal plants and spices. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9422945 DOI: 10.1007/s43538-022-00099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human respiratory diseases caused by viral infections leads to morbidity. Among infectious diseases, viral infections associated with the respiratory tract remain the primary reason for global deaths due to their transmissibility. Since immemorial, traditional Indian medicinal plants, their extracts, and several phytochemicals can treat various diseases. Sources for this review paper are data derived from a peer-reviewed journal that emphasizes the economic importance of medicinal plants. Several plant-based medicines have been reported to be effective against multiple viral infections, including the Human Adenovirus, Enterovirus, Influenza virus, Hepatitis virus, etc. This review emphasizes use of the Indian medicinal plants like as Withania somnifera (Ashwagandha, Winter Cherry), Moringa oleifera (Drumstick), Ocimum tenuiflorum (Tulsi), Azadirachta indica (Neem), Curcuma longa (Turmeric), Terminalia chebula (Chebulic Myrobalan), Punica granatum (Pomegranate) and the Indian household spices (ginger, garlic and black pepper). It further describes their secondary phytoconstituents extraction procedure, mode of action and the potential application to improve clinical outcomes of neutraceuticals against various viral infections.
Collapse
|
12
|
Sanati M, Afshari AR, Amini J, Mollazadeh H, Jamialahmadi T, Sahebkar A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Nazemoroaya Z, Sarafbidabad M, Mahdieh A, Zeini D, Nyström B. Use of Saponinosomes from Ziziphus spina-christi as Anticancer Drug Carriers. ACS OMEGA 2022; 7:28421-28433. [PMID: 35990496 PMCID: PMC9386697 DOI: 10.1021/acsomega.2c03109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/22/2022] [Indexed: 05/06/2023]
Abstract
Saponins are plant glycosides with different structures and biological activities, such as anticancer effects. Ziziphus spina-christi is a plant rich in saponin, and this compound is used to treat malignant melanoma in the present study. Nanophytosomes can be used as an advantageous nanodrug delivery system for plant extracts. The aim of this work is to use the saponin-rich fraction (SRF) from Z. spina-christi and prepare SRF-loaded nanophytosomes (saponinosomes) and observe the in vitro and in vivo effects of these carriers. First, the SRF was obtained from Z. spina-christi by a solvent-solvent fractionation method. Then, Fourier transform infrared (FTIR) analyses were performed to confirm the presence of saponins in the extracted material. Subsequently, the saponinosomes were prepared by the solvent injection method (ether injection method) using a 1:1:1 ratio of lecithin/cholesterol/SRF in the mixture. Characterization of the prepared saponinosomes was performed by FTIR, dynamic light scattering (DLS), field-emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) analyses. In addition, a UV-vis spectrophotometer was used to determine the entrapment efficiency (EE) and in vitro release of the SRF. Finally, cell cytotoxicity of the different formulations was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay on both mouse melanoma cells (B16F10) and fibroblasts (L929). Using DLS, AFM, and FE-SEM analyses, the particle size was determined to be 58 ± 6 nm with a zeta potential of -32 ± 2 mV. The calculated EE was 85 ± 3%. The results of the in vitro release profile showed that 68.2% of the SRF was released from the saponinosome after 48 h. The results of the MTT assay showed that the SRF and saponinosomes have high toxicity on B16F10 melanoma cells, but saponinosomes showed a significant decrease in cytotoxicity on L929 fibroblast cells compared with that of the SRF. Our results indicate that the SRF from Z. spina-christi has anticancer activity, and the saponinosomes prepared in this work can control tumor growth, improve therapeutic efficacy, and reduce the side effects of saponins.
Collapse
Affiliation(s)
- Zahra Nazemoroaya
- Student
Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Mohsen Sarafbidabad
- Department
of Biomedical Engineering, Faculty of Engineering, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Athar Mahdieh
- School
of Pharmacy, Department of Pharmaceutics, University of Oslo, P.O. Box 1068,
Blindern, N-0316 Oslo, Norway
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Darya Zeini
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Laboratory
of Neural Development and Optical Recording (NDEVOR), Department of
Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.
Box 1103, N-0317 Oslo, Norway
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
15
|
A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers (Basel) 2022; 14:polym14152991. [PMID: 35893954 PMCID: PMC9330056 DOI: 10.3390/polym14152991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.
Collapse
|
16
|
The Targeting of Noncoding RNAs by Quercetin in Cancer Prevention and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4330681. [PMID: 35656022 PMCID: PMC9155922 DOI: 10.1155/2022/4330681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
The dietary flavonoid quercetin is ubiquitously distributed in fruits, vegetables, and medicinal herbs. Quercetin has been a focal point in recent years due to its versatile health-promoting benefits and high pharmacological values. It has well documented that quercetin exerts anticancer actions by inhibiting cell proliferation, inducing apoptosis, and retarding the invasion and metastasis of cancer cells. However, the exact mechanism of quercetin-mediated cancer chemoprevention is still not fully understood. With the advances in high-throughput sequencing technologies, the intricate oncogenic signaling networks have been gradually characterized. Increasing evidence on the close association between noncoding RNA (ncRNAs) and cancer etiopathogenesis emphasizes the potential of ncRNAs as promising molecular targets for cancer treatment. Available experimental studies indicate that quercetin can dominate multiple cancer-associated ncRNAs, hence repressing carcinogenesis and cancer development. Thus, modulation of ncRNAs serves as a key mechanism responsible for the anticancer effects of quercetin. In this review, we focus on the chemopreventive effects of quercetin on cancer pathogenesis by targeting cancer-relevant ncRNAs, supporting the viewpoint that quercetin holds promise as a drug candidate for cancer chemoprevention and chemotherapy. An in-depth comprehension of the interplay between quercetin and ncRNAs in the inhibition of cancer development and progression will raise the possibility of developing this bioactive compound as an anticancer agent that could be highly efficacious and safe in clinical practice.
Collapse
|
17
|
Anticancer activity and docking study of flavone derivatives as peroxisome proliferator-activated receptorγ inhibitors. Struct Chem 2022. [DOI: 10.1007/s11224-022-01926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Yee YJ, Benson HA, Dass CR, Chen Y. Evaluation of novel conjugated resveratrol polymeric nanoparticles in reduction of plasma degradation, hepatic metabolism and its augmentation of anticancer activity in vitro and in vivo. Int J Pharm 2022; 615:121499. [DOI: 10.1016/j.ijpharm.2022.121499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
19
|
Javaid A, Zahra D, Rashid F, Mashraqi M, Alzamami A, Khurshid M, Ali Ashfaq U. Regulation of micro-RNA, epigenetic factor by natural products for the treatment of cancers: Mechanistic insight and translational Association. Saudi J Biol Sci 2022; 29:103255. [PMID: 35495735 PMCID: PMC9052154 DOI: 10.1016/j.sjbs.2022.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
From onset to progression, cancer is a ailment that might take years to grow. All common epithelial malignancies, have a long latency period, frequently 20 years or more, different gene may contain uncountable mutations if they are clinically detectable. MicroRNAs (miRNAs) are around 22nt non-coding RNAs that control gene expression sequence-specifically through translational inhibition or messenger degradation of RNA (mRNA). Epigenetic processes of miRNA control genetic variants through genomic DNA methylation, post-translation histone modification, rework of the chromatin, and microRNAs. The field of miRNAs has opened a new era in understanding small non-coding RNAs since discovering their fundamental mechanisms of action. MiRNAs have been found in viruses, plants, and animals through molecular cloning and bioinformatics approaches. Phytochemicals can invert the epigenetic aberrations, a leading cause of the cancers of various organs, and act as an inhibitor of these changes. The advantage of phytochemicals is that they only function on cells that cause cancer without affecting normal cells. Phytochemicals appear to play a significant character in modulating miRNA expression, which is linked to variations in oncogenes, tumor suppressors, and cancer-derived protein production, according to several studies. In addition to standard anti-oxidant or anti-inflammatory properties, the initial epigenetic changes associated with cancer prevention may be modulated by many polyphenols. In correlation with miRNA and epigenetic factors to treat cancer some of the phytochemicals, including polyphenols, curcumin, resveratrol, indole-3-carbinol are studied in this article.
Collapse
|
20
|
Zhang C, Zhou X, Zhang H, Han X, Li B, Yang R, Zhou X. Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Front Pharmacol 2022; 13:776895. [PMID: 35237155 PMCID: PMC8883114 DOI: 10.3389/fphar.2022.776895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the clinical direct reasons for chemotherapy failure. MDR directly leads to tumor recurrence and metastasis, with extremely grievous mortality. Engineering a novel nano-delivery system for the treatment of MDR tumors has become an important part of nanotechnology. Herein, this review will take those different mechanisms of MDR as the classification standards and systematically summarize the advances in nanotechnology targeting different mechanisms of MDR in recent years. However, it still needs to be seriously considered that there are still some thorny problems in the application of the nano-delivery system against MDR tumors, including the excessive utilization of carrier materials, low drug-loading capacity, relatively narrow targeting mechanism, and so on. It is hoped that through the continuous development of nanotechnology, nano-delivery systems with more universal uses and a simpler preparation process can be obtained, for achieving the goal of defeating cancer MDR and accelerating clinical transformation.
Collapse
Affiliation(s)
- Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuemei Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hanyi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuanliang Han
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Baijun Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Ran Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
21
|
Ihsan A, Khera RA, Iqbal J, Asgher M. Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The docking simulation of benzamide derivatives as ligands and protein targets (DNA–gyrase) was performed and Sec14p binding mode interaction was predicted based on binding free energy analysis. Software Molegro Virtual Docking (MVD) was used to visualize the ligand–protein binding interactions. The results indicated the prevalence of steric or hydrophobic interactions among all the benzamide ligands besides hydrogen bonding or electrostatic interactions. The compounds B2, B4 against DNA gyrase, and compounds B3, B5 against Sec14p showed an uncompetitive pattern of inhibition as compared with the reference molecule. While compounds B1, B5 exhibited the best MolDock scores, i.e., −109.736 and −114.391 kcal/mol respectively for DNA gyrase, also compounds B1 and B2 against Sec14p displayed −100.105 and −119.451 kcal/mol sequentially. It was evident from the comparison of MolDock score for both the bacterial and fungal protein receptors that all the ligands were found to be more potent against DNA gyrase than Sec14p. However, only compound B2 with MolDock score −119.451 kcal/mol showed exceptional activity against Sec14p and was predicted to have potency as a lead compound to find a new anti-fungal therapeutic agent. Docking studies further highlighted the unique interactions such as tail-end hydrophobic rings of benzamide inhibitors with catalytically important amino acid residues, allowing flexibility in binding to both the receptors different from other inhibitors. These findings showed us that B1, B2 against Staphylococcus aureus and B5 against Saccharomyces cerevisiae could be leading compounds to discover new multidrug-resistant strains.
Collapse
Affiliation(s)
- Anaum Ihsan
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Javed Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Asgher
- Department of Biochemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
22
|
Liu Q, Wu B, Li M, Huang Y, Li L. Heterostructures Made of Upconversion Nanoparticles and Metal-Organic Frameworks for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103911. [PMID: 34791801 PMCID: PMC8787403 DOI: 10.1002/advs.202103911] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Indexed: 05/02/2023]
Abstract
Heterostructure nanoparticles (NPs), constructed by two single-component NPs with distinct nature and multifunctional properties, have attracted intensive interest in the past few years. Among them, heterostructures made of upconversion NPs (UCNPs) and metal-organic frameworks (MOFs) can not only integrate the advantageous characteristics (e.g., porosity, structural regularity) of MOFs with unique upconverted optical features of UCNPs, but also induce cooperative properties not observed either for single component due to their special optical or electronic communications. Recently, diverse UCNP-MOF heterostructures are designed and synthesized via different strategies and have demonstrated appealing potential for applications in biosensing and imaging, drug delivery, and photodynamic therapy (PDT). In this review, the synthesis strategies of UCNP-MOF heterostructures are first summarized, then the authors focus mainly on discussion of their biomedical applications, particularly as PDT agents for cancer treatment. Finally, the authors briefly outlook the current challenges and future perspectives of UCNP-MOF hybrid nanocomposites. The authors believe that this review will provide comprehensive understanding and inspirations toward recent advances of UCNP-MOF heterostructures.
Collapse
Affiliation(s)
- Qing Liu
- School of Life ScienceInstitute of Engineering MedicineKey Laboratory of Molecular Medicine and BiotherapyBeijing Institute of TechnologyBeijing100081China
| | - Bo Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| | - Mengyuan Li
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Yuanyu Huang
- School of Life ScienceInstitute of Engineering MedicineKey Laboratory of Molecular Medicine and BiotherapyBeijing Institute of TechnologyBeijing100081China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| |
Collapse
|
23
|
Chen C, Wang J, Sun M, Li J, Wang HMD. Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery. Biomed Pharmacother 2021; 145:112416. [PMID: 34781147 DOI: 10.1016/j.biopha.2021.112416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.
Collapse
Affiliation(s)
- Chaoxiang Chen
- College of Food and Biological Engineering, Jimei University, China
| | - Jialin Wang
- College of Food and Biological Engineering, Jimei University, China
| | - Mengdi Sun
- College of Food and Biological Engineering, Jimei University, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, China.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
24
|
Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytonutrients are plant foods that contain many natural bioactive compounds, called phytochemicals, which show specific biological activities. These phytonutrients and their phytochemicals may play an important role in health care maintaining normal organism functions (as preventives) and fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune response. This review summarizes the effects of the most studied or the most popular phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This article also presents the calculated physicochemical properties of the main phytochemicals in the selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for this article, all these phytonutrients have consistently shown great potential as preventives and therapeutics on many diseases in vitro, in vivo, and clinical studies.
Collapse
|
25
|
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50:6013-6041. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH), the main redox buffer, has long been recognized as a pivotal modulator of tumor initiation, progression and metastasis. It is also implicated in the resistance of platinum-based chemotherapy and radiation therapy. Therefore, depleting intracellular GSH was considered a potent solution to combating cancer. However, reducing GSH within cancer cells alone always failed to yield desirable therapeutic effects. In this regard, the convergence of GSH-scavenging agents with therapeutic drugs has thus been pursued in clinical practice. Unfortunately, the therapeutic outcomes are still unsatisfactory due to untargeted drug delivery. Advanced nanomedicine of synergistic GSH depletion and cancer treatment has attracted tremendous interest because they promise to deliver superior therapeutic benefits while alleviating life-threatening side effects. In the past five years, the authors and others have demonstrated that numerous nanomedicines, by simultaneously delivering GSH-depleting agents and therapeutic components, boost not only traditional chemotherapy and radiotherapy but also multifarious emerging treatment modalities, including photodynamic therapy, sonodynamic therapy, chemodynamic therapy, ferroptosis, and immunotherapy, to name a few, and achieved decent treatment outcomes in a large number of rodent tumor models. In this review, we summarize the most recent progress in engineering nanomedicine for GSH depletion-enhanced cancer therapies. Biosynthesis of GSH and various types of GSH-consuming strategies will be briefly introduced. The challenges and perspectives of leveraging nanomedicine for GSH consumption-augmented cancer therapies will be discussed at the end.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|
26
|
Farrag NS, Shetta A, Mamdouh W. Green tea essential oil encapsulated chitosan nanoparticles-based radiopharmaceutical as a new trend for solid tumor theranosis. Int J Biol Macromol 2021; 186:811-819. [PMID: 34280444 DOI: 10.1016/j.ijbiomac.2021.07.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023]
Abstract
The existing study is embarked on investigating the antineoplastic activity of green tea essential oil (GTO) as a natural product. In this regard, GTO was encapsulated in cationic chitosan, nitrogenous-polysaccharide derived by partial deacetylation of chitin, nanoparticles (CS NPs) with entrapment efficiency (EE%) of 81.4 ± 5.7% and a mean particle-size of 30.7 ± 1.13 nm. Moreover, the cytotoxic effect of CS/GTO NPs was evaluated versus human liver (HepG-2), breast (MCF-7) and colon (HCT-116) cancer cell-lines and exhibited a positive impact when compared to bare CS NPs by 3, 2.3 and 1.7 fold for the three cell lines, respectively. More interestingly, CS/GTO NPs were complexed with technethium-99m (99mTc) radionuclide. With a view to achieve a successful radiolabeling process, different parameters were optimized resulting in a radiolabeling efficiency (RE%) of 93.4 ± 1.2%. Radiopharmacokinetics of the radiolabeled NPs in healthy mice demonstrated a reticuloendothelial system (RES) evading and long blood circulation time up to 4 h. On the other hand, the biodistribution profile in solid tumor models showed 20.3 ± 2.1% localization and cancer cell targeting within just 30 min. On the whole, the reported results encourage the potential use of CS/GTO NPs as a side effect-free anticancer agent and its 99mTc-analogue as a novel CS/GTO NPs-based diagnostic-radiopharmaceutical for cancer.
Collapse
Affiliation(s)
- Nourihan S Farrag
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt.
| | - Amro Shetta
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), 11835 Cairo, Egypt.
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), 11835 Cairo, Egypt.
| |
Collapse
|
27
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
28
|
Karade VC, Sharma A, Dhavale RP, Dhavale RP, Shingte SR, Patil PS, Kim JH, Zahn DRT, Chougale AD, Salvan G, Patil PB. APTES monolayer coverage on self-assembled magnetic nanospheres for controlled release of anticancer drug Nintedanib. Sci Rep 2021; 11:5674. [PMID: 33707549 PMCID: PMC7952395 DOI: 10.1038/s41598-021-84770-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The use of an appropriate delivery system capable of protecting, translocating, and selectively releasing therapeutic moieties to desired sites can promote the efficacy of an active compound. In this work, we have developed a nanoformulation which preserves its magnetization to load a model anticancerous drug and to explore the controlled release of the drug in a cancerous environment. For the preparation of the nanoformulation, self-assembled magnetic nanospheres (MNS) made of superparamagnetic iron oxide nanoparticles were grafted with a monolayer of (3-aminopropyl)triethoxysilane (APTES). A direct functionalization strategy was used to avoid the loss of the MNS magnetization. The successful preparation of the nanoformulation was validated by structural, microstructural, and magnetic investigations. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to establish the presence of APTES on the MNS surface. The amine content quantified by a ninhydrin assay revealed the monolayer coverage of APTES over MNS. The monolayer coverage of APTES reduced only negligibly the saturation magnetization from 77 emu/g (for MNS) to 74 emu/g (for MNS-APTES). Detailed investigations of the thermoremanent magnetization were carried out to assess the superparamagnetism in the MNS. To make the nanoformulation pH-responsive, the anticancerous drug Nintedanib (NTD) was conjugated with MNS-APTES through the acid liable imine bond. At pH 5.5, which mimics a cancerous environment, a controlled release of 85% in 48 h was observed. On the other hand, prolonged release of NTD was found at physiological conditions (i.e., pH 7.4). In vitro cytotoxicity study showed dose-dependent activity of MNS-APTES-NTD for human lung cancer cells L-132. About 75% reduction in cellular viability for a 100 μg/mL concentration of nanoformulation was observed. The nanoformulation designed using MNS and monolayer coverage of APTES has potential in cancer therapy as well as in other nanobiological applications.
Collapse
Affiliation(s)
- V C Karade
- School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju, 500-757, South Korea
| | - A Sharma
- Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - R P Dhavale
- School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - R P Dhavale
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, 416013, India
| | - S R Shingte
- Department of Physics, The New College, Shivaji University, Kolhapur, Maharashtra, 416012, India
| | - P S Patil
- School of Nanoscience and Technology, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Department of Physics, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - J H Kim
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju, 500-757, South Korea
| | - D R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - A D Chougale
- Department of Chemistry, The New College, Shivaji University, Kolhapur, Maharashtra, 416012, India
| | - G Salvan
- Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany.
| | - P B Patil
- Department of Physics, The New College, Shivaji University, Kolhapur, Maharashtra, 416012, India.
| |
Collapse
|
29
|
Microfluidic fabrication of berberine-loaded nanoparticles for cancer treatment applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Shen J, Ma M, Zhang H, Yu H, Xue F, Hao N, Chen H. Microfluidics-Assisted Surface Trifunctionalization of a Zeolitic Imidazolate Framework Nanocarrier for Targeted and Controllable Multitherapies of Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45838-45849. [PMID: 32956582 DOI: 10.1021/acsami.0c14021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metal-organic framework (MOF)-based drug delivery nanosystems with both precise drug release and multidrug codelivery capabilities have emerged as promising candidates for cancer treatment. However, challenges are posed by the limited number of suitable payload types, uncontrollable drug leakage, and lack of chemical groups for postmodification. To overcome those challenges, we developed a core-shell nanocomposite composed of zeolitic imidazolate framework-90 (ZIF-90) coated with spermine-modified acetalated dextran (SAD) by a facile microfluidics-based nanoprecipitation method. This nanocomposite could serve as a multidrug storage reservoir for the loading of two drugs with distinct properties, where the hydrophilic doxorubicin (DOX) was coordinately attached to the ZIF-90 framework, and hydrophobic photosensitizer IR780 was loaded into the SAD shell, enabling the combination therapy of photodynamic treatment with chemotherapy. Meanwhile, equipping ZIF-90 with a SAD shell not only substantially improved the pH-responsive drug release of ZIF-90 but also enabled the postformation conjugation of ZIF-90 with hyaluronic acid for specific CD44 recognition, thereby facilitating precise drug delivery to CD44-overexpressed tumor. Such a simple microfluidics-based strategy can efficiently overcome the limitations of solely MOF-based DDSs and greatly extend the flexibility of MOF biomedical applications.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, FI-20520 Turku, Finland
| | - Huizhu Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
31
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
32
|
Naveed R, Bhatti IA, Sohail I, Ashar A, Ibrahim SM, Iqbal M, Nazir A. Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Water gets polluted by industrial effluents, mainly composed of heavy metals and organic materials. Water soluble heavy metals can be taken up by living organisms. Chromium mainly occurs in the form of chromate and cationic hydroxo complexes in water. Apart from conventional methods of heavy metal removal, there are some novel approaches such as using dendrimers for removal of heavy metal. Dendrimers are extremely branched nano sized polymers with a three-dimensional symmetry around a core that imparts poly functionality. PAMAM (poly amido amine) dendrimers having ethylene diamine as core and methyl acrylate as repeating unit was divergently synthesized. Characterization of PAMAM dendrimers was evaluated by UV–Vis spectroscopy, zeta sizer, scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy. Zero generation dendrimers have amine terminal groups, showed intense amide group peak at 1596.76 cm−1. The λ
max value was 278 nm. SEM exhibited spherical shape for full generation while needle like structure for −0.5 generation. Evaluation of chromium removal from wastewater has been done by atomic absorption spectroscopy (AAS). The data revealed that optimal removal of Cr occurs at dendrimer concentration of 5 mL, Cr concentration of 300 ppm, contact time of 2 min and pH 7. The synthesized dendrimers have effectively removed Cr from tannery wastewater.
Collapse
Affiliation(s)
- Rizwana Naveed
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
| | - Isra Sohail
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
| | - Ambreen Ashar
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
- Department of Chemistry , Government College Women University , Faisalabad , 38040, Pakistan
| | - Sobhy M. Ibrahim
- Department of Biochemistry, College of Science , King Saud University , P.O. Box: 2455 , Riyadh , 11451, Saudi Arabia
- Department of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center , Atomic Energy Authority , Cairo , 13759, Egypt
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , 53700, Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , 53700, Pakistan
| |
Collapse
|
33
|
Baskar G, Supria Sree N. Synthesis, characterization and anticancer activity of β-cyclodextrin-Asparaginase nanobiocomposite on prostate and lymphoma cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Li Y, Hong W, Zhang H, Zhang TT, Chen Z, Yuan S, Peng P, Xiao M, Xu L. Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. J Control Release 2020; 317:232-245. [DOI: 10.1016/j.jconrel.2019.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
|
35
|
Jafri A, Amjad S, Bano S, Kumar S, Serajuddin M, Arshad M. Efficacy of Nano-phytochemicals Over Pure Phytochemicals Against Various Cancers: Current Trends and Future Prospects. NANOMATERIALS AND ENVIRONMENTAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-34544-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Saravanakumar K, Jeevithan E, Hu X, Chelliah R, Oh DH, Wang MH. Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111728. [DOI: 10.1016/j.jphotobiol.2019.111728] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
|
37
|
Almessiere M, Slimani Y, Guner S, Nawaz M, Baykal A, Aldakheel F, Sadaqat A, Ercan I. Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Eco-friendly synthesis of Mg0.5Ni0.5AlxFe2-xO4 magnetic nanoparticles and study of their photocatalytic activity for degradation of direct blue 129 dye. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111942] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Chen IH, Chen YF, Liou JH, Lai JT, Hsu CC, Wang NY, Jan JS. Green synthesis of gold nanoparticle/gelatin/protein nanogels with enhanced bioluminescence/biofluorescence. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110101. [PMID: 31546461 DOI: 10.1016/j.msec.2019.110101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022]
Abstract
Here we report the green synthesis of gelatin/protein hybrid nanogels containing gold nanoparticles (AuNPs) that collectively exhibit metal-enhanced luminescence/fluorescence (MEL/MEF). The gelatin/protein nanogels, prepared by genipin cross-linking of preformed gelatin/protein polyion complexes (PICs), exhibited sizes ranging between 50 and 200 nm, depending on the weight ratio of gelatin and protein. These nanogels serve as reducing and stabilizing agents for the AuNPs, allowing for nucleation in a gel network that exhibits colloidal stability and MEL/MEF. AuNP/gelatin/HRP and AuNP/gelatin/LTF nanogels presented an ~11-fold enhancement of bioluminescence in an HRP-luminol system and a ~50-fold fluorescence enhancement when compared to free LTF in cell uptake experiments. These hybrid nanogels show promise for optically enhanced diagnosis and other therapeutic applications.
Collapse
Affiliation(s)
- I-Hsiu Chen
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan
| | - Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan
| | - Jhih-Han Liou
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan
| | - Jinn-Tsyy Lai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30052, Taiwan
| | - Chia-Chen Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30052, Taiwan
| | - Nai-Yi Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30052, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
40
|
Aouad MR, Almehmadi MA, Rezki N, Al-blewi FF, Messali M, Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A. Uptake and translocation of magnetite (Fe 3O 4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). CHEMOSPHERE 2019; 226:110-122. [PMID: 30925403 DOI: 10.1016/j.chemosphere.2019.03.075] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 05/23/2023]
Abstract
This study investigates the fate and impact of iron oxide or magnetite (Fe3O4, ∼13 nm in size) nanoparticles (NPs) in barley (Hordeum vulgare L.), a common crop cultivated around the world. Barley seedlings were grown in hydroponic culture for three weeks to include NPs (125, 250, 500, and 1000 mg/L). Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) techniques were used to assess their uptake and translocation. Photosynthesis marker genes were quantified by RT-qPCR. Results revealed that increasing doses of Fe3O4 NPs were gradually enhanced the plant growth up to 500 mg/L, which promoted the fresh weight (FW) respectively ∼19% and ∼88% for leaf and root tissues than the ones for control. No phytotoxic effect was recorded even at high NPs doses. NPs inclusion increased some phenological parameters such as chlorophyll, total soluble protein, number of chloroplasts, and dry weight. High NPs doses dramatically reduced the catalase activity and hydrogen peroxide content, suggesting a possible function of NPs as nanozyme in vivo. TEM observations showed that Fe3O4 NPs penetrated and internalized in the root cells. In leaves, they were mostly existed at the surrounding cell wall, suggesting their translocation from root to shoot without cellular penetration. Further analysis by using VSM confirmed the existence of Fe3O4 NPs in leaves which result in dramatic alterations of the photosystem genes (PetA, psaA, BCA and psbA). In conclusion, barley plants uptake and translocate Fe3O4 NPs, which promoted the plant growth probably due to the promoted gene expression and efficient photosynthetic activity.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| | - Guzin Tombuloglu
- Adnan Kahveci Mah., Mimar Sinan Cad., Mavisu evl., 7/28 Beylikduzu, Istanbul, Turkey
| | - Munirah Almessiere
- Department of Nanomedicine, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia; Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 34221, Dammam, Saudi Arabia
| |
Collapse
|
42
|
Ben Ameur S, BelHadjltaief H, Duponchel B, Leroy G, Amlouk M, Guermazi H, Guermazi S. Enhanced photocatalytic activity against crystal violet dye of Co and In doped ZnO thin films grown on PEI flexible substrate under UV and sunlight irradiations. Heliyon 2019; 5:e01912. [PMID: 31245643 PMCID: PMC6581879 DOI: 10.1016/j.heliyon.2019.e01912] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/23/2019] [Accepted: 06/03/2019] [Indexed: 12/01/2022] Open
Abstract
This work is focused on the photocatalytic activities of undoped ZnO, Co (1%) doped ZnO (CZO) and In (1%) doped ZnO (IZO) thin films grown on flexible PEI (Polyetherimide) substrate by spray pyrolysis. The photodegradation of crystal violet dye was investigated under UV and sunlight irradiations. Doping and excitation energy effects on photocatalytic efficiencies are discussed. All ZnO thin films show high photocatalytic efficiency up to 80% under either UV or sunlight irradiations for 210 min. However, CZO has the higher photocatalytic performance under UV irradiation. While, the photodegradation efficiency of IZO was enhanced under sunlight irradiation due to the narrowing of its optical gap. These results are discussed based on structural, morphological and optical investigations. The photocatalytic stability of ZnO films was studied as well. So, after three photocatalysis cycles, all ZnO thin films still effective. The obtained results are promising for the use of doped ZnO/PEI as talented photocatalysts for applications in large surfaces with various geometries for photodegradation of hazardous pollutants.
Collapse
Affiliation(s)
- S. Ben Ameur
- Research Unit: Physics of Insulators and Semi Insulator Materials, Faculty of Science of Sfax, Road of Soukra Km 3.5, B.P:1171, 3000, Sfax, University of Sfax, Tunisia
| | - H. BelHadjltaief
- Laboratory of Eau, Energie et Environnement, National Engineering School of Sfax, B.P1173.W.3038, Sfax, University of Sfax, Tunisia
| | - B. Duponchel
- UDSMM, University Lille North of France, ULCO, 59140, Dunkerque, France
| | - G. Leroy
- UDSMM, University Lille North of France, ULCO, 62228, Calais, France
| | - M. Amlouk
- Research Unit: Physics of Semi-conductor Devices, Faculty of Science of Tunis, Tunis El Manar University, 2092, Tunis, Tunisia
| | - H. Guermazi
- Research Unit: Physics of Insulators and Semi Insulator Materials, Faculty of Science of Sfax, Road of Soukra Km 3.5, B.P:1171, 3000, Sfax, University of Sfax, Tunisia
| | - S. Guermazi
- Research Unit: Physics of Insulators and Semi Insulator Materials, Faculty of Science of Sfax, Road of Soukra Km 3.5, B.P:1171, 3000, Sfax, University of Sfax, Tunisia
| |
Collapse
|
43
|
Nandwana V, Ryoo SR, Zheng T, You MM, Dravid VP. Magnetic Nanostructure-Coated Thermoresponsive Hydrogel Nanoconstruct As a Smart Multimodal Theranostic Platform. ACS Biomater Sci Eng 2019; 5:3049-3059. [DOI: 10.1021/acsbiomaterials.9b00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Sharma M, Sharma S, Wadhwa J. Improved uptake and therapeutic intervention of curcumin via designing binary lipid nanoparticulate formulation for oral delivery in inflammatory bowel disorder. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:45-55. [DOI: 10.1080/21691401.2018.1543191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Manu Sharma
- aDepartment of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| | - Shipra Sharma
- aDepartment of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| | - Jyoti Wadhwa
- bDepartment of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar University, Mullana, Ambala, Haryana-133207, India
| |
Collapse
|
46
|
Sanidad KZ, Sukamtoh E, Xiao H, McClements DJ, Zhang G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu Rev Food Sci Technol 2019; 10:597-617. [PMID: 30633561 DOI: 10.1146/annurev-food-032818-121738] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial human and preclinical studies have shown that curcumin, a dietary compound from turmeric, has a variety of health-promoting effects including but not limited to antioxidant, antimicrobial, anti-inflammatory, and anticancer actions. However, curcumin has poor bioavailability, and high doses of curcumin are usually needed to exert its health-promoting effects in vivo, limiting its applications for disease prevention. Here, we discuss the health-promoting effects of curcumin, factors limiting its bioavailability, and strategies to improve its oral bioavailability.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Elvira Sukamtoh
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; ,
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; ,
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
47
|
Nag S, Manna K, Saha KD. Tannic acid-stabilized gold nano-particles are superior to native tannic acid in inducing ROS-dependent mitochondrial apoptosis in colorectal carcinoma cells via the p53/AKT axis. RSC Adv 2019; 9:8025-8038. [PMID: 35547831 PMCID: PMC9087445 DOI: 10.1039/c9ra00808j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Tannic acid and AuNP-TA lead to death of colon cancer cells via the ROS/p53/Akt pathway, and AuNP-TA is more potent.
Collapse
Affiliation(s)
- Sayoni Nag
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Krishnendu Manna
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| |
Collapse
|
48
|
Vara J, Sanchez JM, Perillo MA, Ortiz CS. Phospholipid multilamellar vesicles entrapping phenothiazine photosensitizers. Preparation, characterization and evaluation of their photodynamic properties. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Liu Z, Shen N, Tang Z, Zhang D, Ma L, Yang C, Chen X. An eximious and affordable GSH stimulus-responsive poly(α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomater Sci 2019; 7:2803-2811. [DOI: 10.1039/c9bm00002j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new GSH responsive nano-carrier was developed in a simple way, bonding vascular disrupting agents (VDAs) to achieved long-range treatment of tumors.
Collapse
Affiliation(s)
- Zhilin Liu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dawei Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
50
|
Saravanakumar K, Jeevithan E, Chelliah R, Kathiresan K, Wen-Hui W, Oh DH, Wang MH. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol 2018; 119:1144-1153. [DOI: 10.1016/j.ijbiomac.2018.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
|