1
|
Lai R, Lin Z, Yang C, Hai L, Yang Z, Guo L, Nie R, Wu Y. Novel berberine derivatives as p300 histone acetyltransferase inhibitors in combination treatment for breast cancer. Eur J Med Chem 2024; 266:116116. [PMID: 38215590 DOI: 10.1016/j.ejmech.2023.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Adenoviral E1A binding protein p300 (EP300 or p300) and its similar paralog, cyclic-AMP response element binding protein (CBP), are important histone acetyltransferases (HAT) and transcriptional co-activators in epigenetics, participating in numerous cellular pathways including proliferation, differentiation and apoptosis. The overexpression or dysregulation of p300/CBP is closely related to oncology-relevant disease. The inhibition of p300 HAT has been found to be a potential drug target. Berberine has been reported to show anticancer activity and synergistic effect in combination with some of the clinical anticancer drugs via modulation of various pathways. Here, the present study sought to discover more chemotypes of berberine derivatives as p300 HAT inhibitors and to examine the combination of these novel analogues with doxorubicin for the treatment of breast cancer. A series of novel berberine derivatives with modifications of A/B/D rings of berberine have been designed, synthesized and screened. Compound 7b was found to exhibit inhibitory potency against p300 HAT with IC50 values of 1.51 μM. Western blotting proved that 7b decreased H3K27Ac and interfered with the expression of oncology-relevant protein in MCF-7 cells. Further bioactive evaluation showed that combination of compound 7b with doxorubicin could significantly inhibit tumor growth and invasion in vitro and in vivo.
Collapse
Affiliation(s)
- Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646100, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruifang Nie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhong X, Deng H, Long M, Yin H, Zhong Q, Zheng S, Gong T, He L, Wang G, Sun Q. Discovery of berberine analogs as potent and highly selective p300/CBP HAT inhibitors. Bioorg Chem 2023; 138:106597. [PMID: 37245245 DOI: 10.1016/j.bioorg.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
The protein p300 is a positive regulator of cancer progression and is related to many human pathological conditions. To find effective p300/CBP HAT inhibitors, we screened an internal compound library and identified berberine as a lead compound. Next, we designed, synthesized, and screened a series of novel berberine analogs, and discovered that analog 5d was a potent and highly selective p300/CBP HAT inhibitor with IC50 values of 0.070 μM and 1.755 μM for p300 and CBP, respectively. Western blotting further proved that 5d specifically decreased H3K18Ac and interfere with the function of histone acetyltransferase. Although 5d had only a moderate inhibitory effect on the MDA-MB-231 cell line, 5d suppressed the growth of 4T1 tumor growth in mice with a tumor weight inhibition ratio (TWI) of 39.7%. Further, liposomes-encapsulated 5d increased its inhibition of tumor growth to 57.8 % TWI. In addition, 5d has no obvious toxicity to the main organ of mice and the pharmacokinetic study confirmed that 5d has good absorption properties in vivo.
Collapse
Affiliation(s)
- Xue Zhong
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiwen Deng
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Long
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Honglu Yin
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiu Zhong
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Shilong Zheng
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling He
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Qiu Sun
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Ramakrishnan J, Magudeeswaran S, Suresh S, Poomani K. Investigation of intermolecular interactions and binding mechanism of PU139 and PU141 molecules with p300 HAT enzyme via molecular docking, molecular dynamics simulations and binding free energy analysis. J Biomol Struct Dyn 2023; 41:1351-1365. [PMID: 34974819 DOI: 10.1080/07391102.2021.2020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The p300 histone acetyltransferase (HAT) enzyme acetylates the lysine residue of histone promotes the transcription reaction. The abnormal function of p300 HAT enzyme causes various diseases such as Cancer, Asthma, Alzheimer, Diabetics, and AIDS. In the recent years, several studies have been conducted to design potential drug to inhibit this enzyme. Recently, an in vitro study has been performed on the synthetic molecules PU139 and PU141 to inhibit the p300 HAT enzyme. The present study aims to understand the binding affinity, intermolecular interactions, conformational stability and binding energy of PU139 and PU141 molecules in the active site of p300 HAT enzyme from the in silico studies. The molecular docking and molecular dynamics (MD) simulations were carried out for both ligands with the p300 HAT enzyme. The molecular docking and MD simulations reveals that both molecules forms expected interactions with the catalytic site key residues of p300 enzyme. The MD simulation shows the maximum RMSD value for the PU141 is 2.3 Å, whereas for PU139 is 3.3 Å; these low RMSD values indicate that both molecules are highly stable in the active site of p300. The calculated binding free energy of PU141 (-20.62 kcal/mol) is higher than the molecule PU139 (-17.67 kcal/mol). Among the results, PU141 shows the high binding affinity with p300 while comparing with PU139. The results of this in-silico study coupled with the findings reported in the in vitro study confirm that PU141 may be suitable for clinical study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jaganathan Ramakrishnan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Sivanandam Magudeeswaran
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Suganya Suresh
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
4
|
Kamerzell TJ, Mikell B, Chen L, Elias H, Dawn B, MacRae C, Middaugh CR. The structural basis of histone modifying enzyme specificity and promiscuity: Implications for metabolic regulation and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:189-243. [PMID: 35534108 DOI: 10.1016/bs.apcsb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Histone modifying enzymes regulate chromatin architecture through covalent modifications and ultimately control multiple aspects of cellular function. Disruption of histone modification leads to changes in gene expression profiles and may lead to disease. Both small molecule inhibitors and intermediary metabolites have been shown to modulate histone modifying enzyme activity although our ability to identify successful drug candidates or novel metabolic regulators of these enzymes has been limited. Using a combination of large scale in silico screens and in vivo phenotypic analysis, we identified several small molecules and intermediary metabolites with distinctive HME activity. Our approach using unsupervised learning identifies the chemical fingerprints of both small molecules and metabolites that facilitate recognition by the enzymes active sites which can be used as a blueprint to design novel inhibitors. Furthermore, this work supports the idea that histone modifying enzymes sense intermediary metabolites integrating genes, environment and cellular physiology.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States; Division of Internal Medicine, HCA MidWest Health, Overland Park, KS, United States; Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States; Applied AI Technologies, LLC, Overland Park, KS, United States.
| | - Brittney Mikell
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lei Chen
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Harold Elias
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
5
|
Yang H, Poznik M, Tang S, Xue P, Du L, Liu C, Chen X, Chruma JJ. Synthesis of Conformationally Liberated Yohimbine Analogues and Evaluation of Cytotoxic Activity. ACS OMEGA 2021; 6:19291-19303. [PMID: 34337266 PMCID: PMC8320076 DOI: 10.1021/acsomega.1c02784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/07/2021] [Indexed: 05/09/2023]
Abstract
A modular synthetic approach to strategically unique structural analogues of the alkaloid yohimbine is reported. The overall synthetic strategy couples the transition-metal-catalyzed decarboxylative allylation of 2,2-diphenylglycinate imino esters with a scandium triflate-mediated highly endo-selective intramolecular Diels-Alder (IMDA) cycloaddition to generate a small collection of de-rigidified yohimbine analogues lacking the ethylene linkage between the indole and decahydroisoquinoline units. One compound generated in this study contains an unprecedented pentacyclic urea core and appears to demonstrate increased cytotoxicity against the gastric cancer cell line SGC-7901 in comparison to a pancreatic cancer cell line (PATU-8988) and a normal human gastric mucosal cell line (GES-1).
Collapse
Affiliation(s)
- Han Yang
- Key
Laboratory of Green Chemistry & Technology (MOE), College of Chemistry
and Sino-British Materials Research Institute, College of Physical
Sciences & Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Michal Poznik
- Key
Laboratory of Green Chemistry & Technology (MOE), College of Chemistry
and Sino-British Materials Research Institute, College of Physical
Sciences & Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Shaojian Tang
- School
of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, P. R. China
| | - Peng Xue
- School
of Public Health, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, P. R. China
| | - Lidong Du
- School
of Clinical Medicine, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, P. R. China
| | - Chenlu Liu
- Key
Laboratory of Green Chemistry & Technology (MOE), College of Chemistry
and Sino-British Materials Research Institute, College of Physical
Sciences & Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiaochuan Chen
- Key
Laboratory of Green Chemistry & Technology (MOE), College of Chemistry
and Sino-British Materials Research Institute, College of Physical
Sciences & Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Jason J. Chruma
- Key
Laboratory of Green Chemistry & Technology (MOE), College of Chemistry
and Sino-British Materials Research Institute, College of Physical
Sciences & Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- Department
of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, Virginia 22903-4319, United States
| |
Collapse
|
6
|
Hwang SY, Park SY, Hong JY, Lee SY, Shin JH, Na Y, Sohn MH, Yoon HG, Kwon Y. Field-based rational design of p300 histone acetyltransferase inhibitor and systematic evaluation as an anti-fibrotic agent. Chem Commun (Camb) 2021; 56:9795-9798. [PMID: 32701101 DOI: 10.1039/d0cc03553j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
(E)-3-(3-(4-((3-Carbamoylbenzyl)oxy)-3-iodo-5-methoxyphenyl) acryloyl)benzamide (A6) was found to be a potent p300 inhibitor (IC50 = 870 nM) showing a similar binding mode to that of acetyl-CoA, a p300 substrate, and effective anti-fibrotic activity in both TGF-β1-stimulated lung fibroblast cells and bleomycin-induced in vivo lung fibrosis mice.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Jung Yeon Hong
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Jae-Ho Shin
- College of Pharmacy, CHA University, Pocheon, 11160, Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 11160, Korea.
| | - Myung Hyun Sohn
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Youngjoo Kwon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
7
|
Zhang Q, Hao T, Hu D, Guo Z, Wang S, Hu Y. RNA aptamer-driven ECL biosensing for tracing histone acetylation based on nano-prism substrate and cascade DNA amplification strategy. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Current development of CBP/p300 inhibitors in the last decade. Eur J Med Chem 2020; 209:112861. [PMID: 33045661 DOI: 10.1016/j.ejmech.2020.112861] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
CBP/p300, functioning as histone acetyltransferases and transcriptional co-factors, represents an attractive target for various diseases, including malignant tumor. The development of small-molecule inhibitors targeting the bromodomain and HAT domains of CBP/p300 has aroused broad interests of medicinal chemist in expectation of providing new hope for anti-cancer treatment. In particular, the CBP/p300 bromodomain inhibitor CCS1477, identified by CellCentric, is currently undergone clinical evaluation for the treatment of haematological malignancies and prostate cancer. In this review, we depict the development of CBP/p300 inhibitors reported from 2010 to 2020 and particularly highlight their structure-activity relationships (SARs), binding modes, selectivity and pharmacological functions with the aim to facilitate rational design and development of CBP/p300 inhibitors.
Collapse
|
9
|
Kandagalla S, Shekarappa SB, Rimac H, Grishina MA, Potemkin VA, Hanumanthappa M. Computational insights into the binding mode of curcumin analogues against EP300 HAT domain as potent acetyltransferase inhibitors. J Mol Graph Model 2020; 101:107756. [PMID: 32979659 DOI: 10.1016/j.jmgm.2020.107756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Acetylation plays a key role in maintaining and balancing cellular regulation and homeostasis. Acetyltransferases are an important class of enzymes which mediate this acetylation process. EP300 is a type 3 major lysine (K) acetyl transferase, and its aberrant activity is implicated in many human diseases. Hence, targeting EP300 mediated acetylation is a necessary step to control the associated diseases. Currently, a few EP300 inhibitors are known, among which curcumin is the most widely investigated molecule. However, due to its instability, chemical aggregation and reactivity, its inhibitory activity against the EP300 acetyltransferase domain is disputable. To address this curcumin problem, different curcumin analogues have been synthesized. These molecules were selected for screening against the EP300 acetyltransferase domain using in silico docking and MD analysis. We have successfully elucidated that the curcumin analogue CNB001 is a potential EP300 inhibitor with good drug-like characteristics.
Collapse
Affiliation(s)
- Shivananda Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia
| | - Sharath Belenahalli Shekarappa
- Department of PG Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, 577451, Karnataka, India
| | - Hrvoje Rimac
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia; Department of Medicinal Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovacica 1, 10000, Zagreb, Croatia.
| | - Maria A Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia
| | - Vladimir A Potemkin
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454080, Chaikovskogo 20A, Russia.
| | - Manjunatha Hanumanthappa
- Department of PG Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, 577451, Karnataka, India; Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, 560056, India.
| |
Collapse
|
10
|
Fiorentino F, Mai A, Rotili D. Lysine Acetyltransferase Inhibitors From Natural Sources. Front Pharmacol 2020; 11:1243. [PMID: 32903408 PMCID: PMC7434864 DOI: 10.3389/fphar.2020.01243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Acetylation of histone and non-histone protein lysine residues has been widely described as a critical modulator of several cell functions in humans. Lysine acetyltransferases (KATs) catalyse the transfer of acetyl groups on substrate proteins and are involved in multiple physiological processes such as cell signalling, metabolism, gene regulation, and apoptosis. Given the pivotal role of acetylation, the alteration of KATs enzymatic activity has been clearly linked to various cellular dysfunctions leading to several inflammatory, metabolic, neurological, and cancer diseases. Hence, the use KAT inhibitors (KATi) has been suggested as a potentially successful strategy to reverse or prevent these conditions. To date, only a few KATi have proven to be potential drug candidates, and there is still a keen interest in designing molecules showing drug-like properties from both pharmacodynamics and pharmacokinetics point of view. Increasing literature evidence has been highlighting natural compounds as a wide source of molecular scaffolds for developing therapeutic agents, including KATi. In fact, several polyphenols, catechins, quinones, and peptides obtained from natural sources (including nuts, oils, root extracts, and fungi metabolites) have been described as promising KATi. Here we summarize the features of this class of compounds, describing their modes of action, structure-activity relationships and (semi)-synthetic derivatives, with the aim of assisting the development of novel more potent, isoform selective and drug-like KATi.
Collapse
Affiliation(s)
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Yao Y, Liu Z, Zhao M, Chen Z, Li P, Zhang Y, Wang Y, Zhao C, Long C, Chen X, Yang J. Design, synthesis and pharmacological evaluation of 4-(3-chloro-4-(3-cyclopropylthioureido)-2-fluorophenoxy)-7-methoxyquinoline-6-carboxamide (WXFL-152): a novel triple angiokinase inhibitor for cancer therapy. Acta Pharm Sin B 2020; 10:1453-1475. [PMID: 32963943 PMCID: PMC7488503 DOI: 10.1016/j.apsb.2020.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023] Open
Abstract
Angiokinases, such as vascular endothelial-, fibroblast- and platelet-derived growth factor receptors (VEGFRs, FGFRs and PDGFRs) play crucial roles in tumor angiogenesis. Anti-angiogenesis therapy using multi-angiokinase inhibitor has achieved great success in recent years. In this study, we presented the design, synthesis, target identification, molecular mechanism, pharmacodynamics (PD) and pharmacokinetics (PK) research of a novel triple-angiokinase inhibitor WXFL-152. WXFL-152, identified from a series of 4-oxyquinoline derivatives based on a structure-activity relationship study, inhibited the proliferation of vascular endothelial cells (ECs) and pericytes by blocking the angiokinase signals VEGF/VEGFR2, FGF/FGFRs and PDGF/PDGFRβ simultaneously in vitro. Significant anticancer effects of WXFL-152 were confirmed in multiple preclinical tumor xenograft models, including a patient-derived tumor xenograft (PDX) model. Pharmacokinetic studies of WXFL-152 demonstrated high favourable bioavailability with single-dose and continuous multi-dose by oral administration in rats and beagles. In conclusion, WXFL-152, which is currently in phase Ib clinical trials, is a novel and effective triple-angiokinase inhibitor with clear PD and PK in tumor therapy.
Collapse
Key Words
- ATCC, American Type Culture Collection
- AUC, area under the plasma concentration–time curve
- Anti-angiogenesis therapy
- CE, collision energy
- CL, systemic clearance
- Cmax, maximum plasma concentration
- Drug synthesis
- EC, vascular endothelial cell
- ECM, endothelial cell medium
- ERKs, extracellular signal-regulated kinases
- FGF, fibroblast growth factor
- FGFRs, fibroblast growth factor receptors
- HBVPs, human brain vascular pericytes
- HUVECs, human umbilical vein endothelial cells
- IC50, half maximal inhibitory concentration
- IHC, immunohistochemistry
- LC–MS, liquid chromatography mass spectrometry
- LLOQ, lower limit of quantification
- MRM, multiple reaction monitoring
- MsOH, methane sulfonic acid
- Multi-angiokinase inhibitor
- NMR, nuclear magnetic resonance
- PD, pharmacodynamics
- PDB, protein data bank
- PDGF, platelet-derived growth factor
- PDGFRs, platelet-derived growth factor receptors
- PDX, patient-derived tumor xenograft
- PK, pharmacokinetics
- PM, pericyte medium
- Pharmacokinetic
- QC, quality control
- RE, values and relative error
- RSD, relative standard deviation
- RTKs, receptor tyrosine kinases
- TGI, tumor growth inhibition rate
- TLC, thin-layer chromatography
- Tmax, time the maximum concentration occurred
- Tumor
- ULOQ, up limit of quantitation
- VEGF, vascular endothelial growth factor
- VEGFRs, vascular endothelial growth factor receptors
- Vdss, volume of distribution at steady state
- i.v., intravenous injection
- p.o., per os
Collapse
Affiliation(s)
- Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan 523325, China
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | - Zhuowei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan 523325, China
- Guangdong Raynovent Biotech Co., Ltd. Dongguan 523325, China
| | - Manyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| | | | - Peng Li
- WuXi AppTec Ltd. Shanghai 200131, China
| | | | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Chaofeng Long
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan 523325, China
- Guangdong Raynovent Biotech Co., Ltd. Dongguan 523325, China
| | - Xiaoxin Chen
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan 523325, China
- Guangdong Raynovent Biotech Co., Ltd. Dongguan 523325, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan 523325, China
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Binding mechanism, conformation, and stability of diflunisal and mycophenolic acid with p300 HAT enzyme using molecular dynamics simulation and binding free energy analysis. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02500-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Hu D, Hu Y, Zhan T, Zheng Y, Ran P, Liu X, Guo Z, Wei W, Wang S. Coenzyme A-aptamer-facilitated label-free electrochemical stripping strategy for sensitive detection of histone acetyltransferase activity. Biosens Bioelectron 2019; 150:111934. [PMID: 31818759 DOI: 10.1016/j.bios.2019.111934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Abnormal histone acetyltransferases (HAT) activity gives rise to all kinds of cellular diseases. Herein, we first report a coenzyme A (CoA)-aptamer-facilitated label-free electrochemical stripping biosensor for sensitive detection of HAT activity via square wave voltammetry (SWV) technique. The presence of HAT can lead to the transfer of the acetyl group from acetyl coenzyme A (Ac-CoA) to lysine residues of substrate peptide, thus generating CoA molecule. Later, CoA, which acts as an initiator, can embrace its aptamer via the typical target-aptamer interaction, then arousing deoxynucleotide terminal transferase (TdT)-induced silver nanoclusters (AgNCs) as signal output. Under optimized conditions, the resultant aptasensor shows obvious electrochemical stripping signal and is employed for HAT p300 analysis in a wide concentration range from 0.01 to 100 nM with a very low detection limit of 0.0028 nM (3δ/slope). The good analytical performances of the biosensor depend on the strong interaction of CoA and its aptamer and abundant stripping resource rooted from AgNCs. Next, the proposed biosensor is used for screening HAT's inhibitors and the practical HAT detection with satisfactory results. Therefore, the new, simple and sensitive HAT biosensor presents a promising direction for HAT-targeted drug discovery and epigenetic research.
Collapse
Affiliation(s)
- Dandan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Tianyu Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yudi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Pingjian Ran
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xinda Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Wenting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|
14
|
Magudeeswaran S, Poomani K. Binding mechanism of spinosine and venenatine molecules with p300 HAT enzyme: Molecular screening, molecular dynamics and free-energy analysis. J Cell Biochem 2019; 121:1759-1777. [PMID: 31633226 DOI: 10.1002/jcb.29412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 10/04/2019] [Indexed: 12/25/2022]
Abstract
The chromatin modification is regulated by the histone acetyltransferase (HAT) and histone deacetyltransferase (HDAC) enzymes; abnormal function of these enzymes leads to several malignant diseases. The inhibition of these enzymes using natural ligand molecules is an emerging technique to cure these diseases. The in vitro analysis of natural molecules, venenatine, spinosine, palmatine and taxodione are giving the best inhibition rate against p300 HAT enzyme. However, the detailed understanding of binding and the stability of these molecules with p300 HAT is not yet known. The aim of the present study is focused to determine the binding strength of the molecules from molecular dynamics simulation analysis. The docking analysis confirms that, the venenatine (-6.97 kcal/mol - conformer 8), spinosine (-6.52 kcal/mol conformer -10), palmatine (-5.72 kcal/mol conformer-3) and taxodione (-4.99 kcal/mol conformer-4) molecules form strong hydrogen bonding interactions with the key amino acid residues (Arg1410, Thr1411 and Trp1466) present in the active site of p300. In the molecular dynamics (MD) simulation, the spinosine retain these key interactions with the active site amino acid residues (Arg1410, Thr1411, and Trp1466) than venenatine and are stable throughout the simulation. The RMSD value of spinosine (0.5 to 1.3 Å) and venenatine (0.3 to 1.3 Å) are almost equal during the MD simulation. However, during the MD simulation, the intermolecular interaction between venenatine and the active site amino acid residues (Arg1410, Thr1411, and Trp1466) decreased on comparing with the spinosine-p300 interaction. The binding free energy of the spinosine (-15.30 kcal/mol) is relatively higher than the venenatine (-11.8 kcal/mol); this increment is attributed to the strong hydrogen bonding interactions of spinosine molecule with the active site amino acid residues of p300.
Collapse
Affiliation(s)
- Sivanandam Magudeeswaran
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
15
|
Liu R, Zhang Z, Yang H, Zhou K, Geng M, Zhou W, Zhang M, Huang X, Li Y. Design, synthesis, and biological evaluation of a new class of histone acetyltransferase p300 inhibitors. Eur J Med Chem 2019; 180:171-190. [DOI: 10.1016/j.ejmech.2019.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
|
16
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
17
|
Huang M, Huang J, Zheng Y, Sun Q. Histone acetyltransferase inhibitors: An overview in synthesis, structure-activity relationship and molecular mechanism. Eur J Med Chem 2019; 178:259-286. [PMID: 31195169 DOI: 10.1016/j.ejmech.2019.05.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023]
Abstract
Acetylation, a key component in post-translational modification regulated by HATs and HDACs, is relevant to many crucial cellular contexts in organisms. Based on crucial pharmacophore patterns and the structure of targeted proteins, HAT inhibitors are designed and modified for higher affinity and better bioactivity. However, there are still some challenges, such as cell permeability, selectivity, toxicity and synthetic availability, which limit the improvement of HAT inhibitors. So far, only few HAT inhibitors have been approved for commercialization, indicating the urgent need for more successful and effective structure-based drug design and synthetic strategies. Here, we summarized three classes of HAT inhibitors based on their sources and structural scaffolds, emphasizing on their synthetic methods and structure-activity relationships and molecular mechanisms, hoping to facilitate the development and further application of HAT inhibitors.
Collapse
Affiliation(s)
- Mengyuan Huang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangkun Huang
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
18
|
Xu L, Zhang Q, Hu Y, Ma S, Hu D, Wang J, Rao J, Guo Z, Wang S, Wu D, Liu Q, Peng J. Ultrasensitive mushroom-like electrochemical immunosensor for probing the activity of histone acetyltransferase. Anal Chim Acta 2019; 1066:28-35. [PMID: 31027532 DOI: 10.1016/j.aca.2019.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
A novel mushroom-like electrochemical immunoassay for the ultrasensitive detection of histone acetyltransferase activity (HAT p300) has been established on account of the new composite graphene oxide (GO) nanolayer. The immunoassay involves immobilization of substrate peptide onto Au electrode, acetylation in lysine of substrate peptide, and the interaction between acetyl group of lysine and acetyl-antibody (AbAc) of the GO nanolayer. The GO nanolayer comprises large amounts of methylene blue molecules (MB), giving rise to large signal amplification. Only in the presence of HAT p300, an obvious electrochemical signal appears and the peak linear current is proportion to the HAT p300 concentrations ranging from 0.01 to 150 nM with a detection limit of 0.0036 nM. The great enhancement on sensitivity of the proposed mushroom-like immunosensor derives from both the constructed Faraday cage and the extended outer Helmholtz plane (OHP). Further, the immunosensor with excellent sensitivity and selectivity can be applied for the HAT p300 activity detection in Hela cell lysates, serum and urine, hinting an improved and splendid analytical performance. Briefly, this stable, simple and ultrasensitive electrochemical immunoassay has considerable promise for further applications in the HATs-interrelated epigenetic studies and drug development.
Collapse
Affiliation(s)
- Lihua Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Qingqing Zhang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Shaohua Ma
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Dandan Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jiao Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jiajia Rao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Di Wu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Qiong Liu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Jianqiao Peng
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
19
|
Yang Z, Zhang Y, Chen X, Li W, Li GB, Wu Y. Total Synthesis and Evaluation of B-Homo Palmatine and Berberine Derivatives as p300 Histone Acetyltransferase Inhibitors. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhongzhen Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Yong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Xin Chen
- Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; 610041 West China Medical School China
| | - Weijian Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education; West China School of Pharmacy; Sichuan University; 610041 Sichuan China
| |
Collapse
|
20
|
Zhou S, Li GB, Luo L, Zhong L, Chen K, Li H, Jiang XJ, Fu Q, Long X, Bao JK. Structure-based discovery of new maternal embryonic leucine zipper kinase inhibitors. Org Biomol Chem 2018; 16:1489-1495. [PMID: 29411820 DOI: 10.1039/c7ob02344h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The new MELK inhibitor16showed no inhibitory effect on cancer growth, but can suppress the phosphorylation of focal adhesion kinase, a key kinase in regulating cancer cell migration and invasion.
Collapse
|
21
|
Yu Z, Taniguchi J, Wei Y, Pandian GN, Hashiya K, Bando T, Sugiyama H. Antiproliferative and apoptotic activities of sequence-specific histone acetyltransferase inhibitors. Eur J Med Chem 2017; 138:320-327. [DOI: 10.1016/j.ejmech.2017.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/30/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
22
|
Liu S, Ji S, Yu ZJ, Wang HL, Cheng X, Li WJ, Jing L, Yu Y, Chen Q, Yang LL, Li GB, Wu Y. Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors. Chem Biol Drug Des 2017; 91:257-268. [PMID: 28756638 DOI: 10.1111/cbdd.13077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 02/05/2023]
Abstract
Human sirtuin 5 (SIRT5) is a protein deacylase regulating metabolic pathways and stress responses and is implicated in metabolism-related diseases. Small-molecule inhibitors for SIRT5 are sought as chemical tools and potential therapeutics. Herein, we proposed a customized virtual screening approach targeting catalytically important and unique residues Tyr102 and Arg105 of SIRT5. Of the 20 tested virtual screening hits, six compounds displayed marked inhibitory activities against SIRT5. For the hit compound 19, a series of newly synthesized (E)-2-cyano-N-phenyl-3-(5-phenylfuran-2-yl)acrylamide derivatives/analogues were carried out structure-activity relationship analyses, resulting in new more potent inhibitors, among which 37 displayed the most potent inhibition to SIRT5 with an IC50 value of 5.59 ± 0.75 μM. The biochemical studies revealed that 37 likely acts via competitive inhibition with the succinyl-lysine substrate, rather than the NAD+ cofactor, and it manifested substantial selectivity for SIRT5 over SIRT2 and SIRT6. This study will aid further efforts to develop new selective SIRT5 inhibitors as tools and therapeutics.
Collapse
Affiliation(s)
- Sha Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Sen Ji
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhu-Jun Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hua-Li Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xu Cheng
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wei-Jian Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Li Jing
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yamei Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Wang HL, Liu S, Yu ZJ, Wu C, Cheng L, Wang Y, Chen K, Zhou S, Chen Q, Yu Y, Li GB. Interactions between sirtuins and fluorogenic small-molecule substrates offer insights into inhibitor design. RSC Adv 2017. [DOI: 10.1039/c7ra05824a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biophysical and crystallographic analyses of small-molecule substrates with sirtuins provide thermodynamic insights and key pharmacophore features for inhibitor design.
Collapse
Affiliation(s)
- Hua-Li Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Sha Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Zhu-Jun Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Chengyong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Linna Cheng
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Yuxi Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Kai Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Shu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Qiang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Yamei Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education
- West China School of Pharmacy, and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu
- China
| |
Collapse
|