1
|
Farajpour B, Alizadeh GB, Majedi S, Moradkhani F, Majedi S, Notash B, Hosseindoust B, Shiri M. Sulfur- and DABCO-Promoted Reaction between Alkylidene Rhodanines and Isothiocyanates: Access to Aminoalkylidene Rhodanines. ACS OMEGA 2024; 9:26607-26615. [PMID: 38911738 PMCID: PMC11191098 DOI: 10.1021/acsomega.4c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
In this work, an efficient sulfur- and DABCO-promoted reaction for the synthesis of aminoalkylidene rhodanines from available alkylidene rhodanines and isothiocyanates is reported. A tandem process including sulfurative annulation/ring-opening by liberation of a CS2 molecule/olefination allows the synthesis of aminoalkylidene rhodanines with acceptable functional group tolerance. Chemo- and stereoselectivity, operational simplicity, and synthetically useful yields are some highlighted advantages of these transformations.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Gul Bahar Alizadeh
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Soma Majedi
- Medical
Analysis Department, Applied Science Faculty, Tishk International University, Kurdistan Region 46001, Iraq
| | - Fatemeh Moradkhani
- Department
of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences
Research Center, Tehran University of Medical
Sciences, Tehran P94V+8MF, Iran
| | - Serveh Majedi
- Department
of Chemistry, Payame Noor University, Tehran RG23+F4X, Iran
| | - Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, Tehran 1983969411, Iran
| | - Benyamin Hosseindoust
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Morteza Shiri
- Department
of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| |
Collapse
|
2
|
Iranfar S, Shiri M, Nosood YL, Keley ZA, Tanbakouchian Z, Amini Z, Al-Harrasi A, Hussain FHS. An efficient and practical approach for the synthesis of indoloquinolines and indolo/pyrroloquinoxalines via a Cu-catalyzed Ugi-C/Ugi- N-arylation sequence. RSC Adv 2024; 14:18271-18276. [PMID: 38854840 PMCID: PMC11157420 DOI: 10.1039/d4ra03248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024] Open
Abstract
A Cu-catalyzed tandem transformation of Ugi adducts through CH/NH bond functionalization reactions was reported for synthesizing a broad spectrum of indolo/pyrrolo-[1,2-a]quinoxaline-6/4-carboxamide, 7H-indolo[2,3-c]quinoline-6-carboxamide, and 1-(cyclohexylamino)-14H-indolo[2,3-c][1,4]oxazino[4,3-a]quinolin-4(3H)-one derivatives in moderate to excellent yields. In this protocol the Ugi condensation of aromatic aldehydes, anilines, acids, and isocyanides leads to the formation of bis-amides in methanol at room temperature. This approach employed simple reaction conditions, including Ugi product as starting material, CuI, l-proline as a ligand, and cesium carbonate, in DMSO for 8 h. This method demonstrated efficiency in synthesizing fused-nitrogen-containing heterocycles through a convenient pathway.
Collapse
Affiliation(s)
- Sheiva Iranfar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Yazdanbakhsh Lotfi Nosood
- Natural and Medical Sciences Research Center, University of Nizwa P. O. Box 33, Birkat Al Mauz Postal Code 616 Nizwa Oman
| | - Zahra Akbari Keley
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Zahra Tanbakouchian
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Zahra Amini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa P. O. Box 33, Birkat Al Mauz Postal Code 616 Nizwa Oman
| | - Faiq H S Hussain
- Medical Analysis Department, Applied Science Faculty, Tishk International University Erbil Kurdistan Region Iraq
| |
Collapse
|
3
|
Hooshmand SE, Amini Z, Shiri M, Al-Harrasi A. Synthesis and Fluorescence Properties of Imidazopyridine-Linked Coumarins via Tandem C(sp 2)-H Functionalization/Decarboxylation Reaction. J Fluoresc 2024; 34:1131-1137. [PMID: 37486561 DOI: 10.1007/s10895-023-03345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
A catalyst-, oxidant-free and green synthetic route for direct access to a series of novel imidazopyridine-linked coumarins has been devised through tandem C(sp2)-H functionalization/decarboxylation reaction in ethyl acetate as a sustainable medium. Moreover, the utilities of ensured products in further organic synthesis were conducted by Suzuki-Miyaura and Sonogashira cross-coupling reactions. The fluorescence characteristics of the produced molecules are appropriate, and the synthesized scaffolds could promisingly garner future attention in clinical diagnostics and bioimaging research.
Collapse
Affiliation(s)
- Seyyed Emad Hooshmand
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Zahra Amini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman.
| |
Collapse
|
4
|
Farajpour B, Heydarzadeh R, Hussain FHS, Notash B, Mirzaei P, Shiri M. Three-Component Reaction between 3-Acetylcoumarins, Amines, and Elemental Sulfur: A Designed Approach to 3-Amino-4 H-thieno[3,2- c]coumarins. J Org Chem 2024; 89:4375-4383. [PMID: 38470427 DOI: 10.1021/acs.joc.3c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In this work, a series of novel 3-amino-4H-thieno[3,2-c]coumarins were designed and synthesized by a one-pot, catalyst-free, and three-component reaction of 3-acetylcoumarins with amines and elemental sulfur. Readily available starting materials, simple heating conditions, facile installation of a sulfur atom into the molecule using S8 as a sulfur source, acceptable functional group tolerance, and synthetically useful yields are some highlighted benefits of this process.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Roujin Heydarzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| | - Faiq H S Hussain
- Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Peiman Mirzaei
- Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran
| |
Collapse
|
5
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
6
|
Hooshmand SE, Baeiszadeh B, Mohammadnejad M, Ghasemi R, Darvishi F, Khatibi A, Shiri M, Hussain FHS. Novel probe based on rhodamine B and quinoline as a naked-eye colorimetric probe for dual detection of nickel and hypochlorite ions. Sci Rep 2023; 13:17038. [PMID: 37813911 PMCID: PMC10562415 DOI: 10.1038/s41598-023-44395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023] Open
Abstract
This work demonstrates the design and straightforward syntheses of several novel probe-based on rhodamine B and 2-mercaptoquinoline-3-carbaldehydes as a naked-eye colorimetric probe, indicating a sensitive and selective recognition towards nickel (II) with a limit of detection 0.30 μmol L-1 (0.02 mg L-1). Further, by employing the oxidation property of hypochlorite (OCl-), this novel probe parallelly has been deployed to detect hypochlorite in laboratory conditions with a limit of detection of 0.19 μmol mL-1 and in living cells. Regarded to negligible cell toxicity toward mammalian cells, this probe has the potential to determine these analytes in in-vivo investigation and foodstuff samples.
Collapse
Affiliation(s)
- Seyyed Emad Hooshmand
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Behnaz Baeiszadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran
| | - Masoumeh Mohammadnejad
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Razieh Ghasemi
- Department of Nanotechnology, Jabir Ibn Hayyan Institute, Technical and Vocational Training Organization, Isfahan, Iran
| | - Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, 1993893973, Iran.
| | - Faiq H S Hussain
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University-Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
7
|
Tajik M, Shiri M, Hussain FHS, Lotfi Nosood Y, Baeiszadeh B, Amini Z, Bikas R, Pyra A. Highly regioselective and diastereoselective synthesis of novel pyrazinoindolones via a base-mediated Ugi- N-alkylation sequence. RSC Adv 2023; 13:16963-16969. [PMID: 37288378 PMCID: PMC10243185 DOI: 10.1039/d3ra02065g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
An efficient base-mediated/metal-free approach has been developed for the synthesis of 1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide derivatives via intramolecular indole N-H alkylation of novel bis-amide Ugi-adducts. In this protocol the Ugi reaction of (E)-cinnamaldehyde derivatives, 2-chloroaniline, indole-2-carboxylic acid and different isocyanides was designed for the preparation of bis-amides. The main highlight of this study is the practical and highly regioselective preparation of new polycyclic functionalized pyrazino derivatives. This system is facilitated by Na2CO3 mediation in DMSO and 100 °C conditions.
Collapse
Affiliation(s)
- Maryam Tajik
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Faiq H S Hussain
- Medical Analysis Department, Applied Science Faculty, Tishk International University Erbil Kurdistan Region Iraq
| | - Yazdanbakhsh Lotfi Nosood
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Behnaz Baeiszadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Zahra Amini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Anna Pyra
- Faculty of Chemistry, University of Wrocław 14 Joliot-Curie 50-383 Wroclaw Poland
| |
Collapse
|
8
|
Farajpour B, Alizadeh A. Base-Promoted Reaction of 4-Chloro-3-vinyl Coumarins, Phenacylpyridinium Bromides, and Elemental Sulfur: A Designed Approach to Thiopyrano[4,3- c]chromen-5(1 H)-ones. J Org Chem 2022; 87:13837-13844. [PMID: 36198088 DOI: 10.1021/acs.joc.2c01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A designed synthesis of thiopyrano[4,3-c]chromen-5(1H)-ones was developed based on a base-promoted three-component reaction between 4-chloro-3-vinyl coumarins, phenacylpyridinium bromides, and elemental sulfur. Readily available starting materials, mild conditions, chemoselectivity, operational simplicity, and synthetically useful yields are some highlighted advantages of these transformations.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, Tehran14115-175, Iran
| | - Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, Tehran14115-175, Iran
| |
Collapse
|
9
|
Faghihi Z, Shiri M, Pourabed R, Heravi MM, Zadsirjan V. Synthesis of Novel Dihydrothieno- and Thiopyrano Quinolines from 3-Formyl-2-Mercaptoquinoline Derivatives. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2018.1553195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zeinab Faghihi
- Department of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Morteza Shiri
- Department of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Raziyeh Pourabed
- Department of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Majid M. Heravi
- Department of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | | |
Collapse
|
10
|
Abass M, Alzandi ARA, Hassan MM, Mohamed N. Recent Advances on Diversity Oriented Heterocycle Synthesis of Fused Quinolines and Its Biological Evaluation. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2019.1710856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohamed Abass
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Abdel Rahman A. Alzandi
- Biology Department, Faculty of Sciences & Arts (Almikhwah), Al Baha University, Al Baha, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Noha Mohamed
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Shiri M, Heravi MM, Zadsirjan V, Ghiasi M, Shintre SA, Koorbanally NA, Singh T. Highly regio- and diastereoselective synthesis of oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indoles, based on a post-Ugi condensation: joint experimental and computational study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01632-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Yasaei Z, Mohammadpour Z, Shiri M, Tanbakouchian Z, Fazelzadeh S. Isocyanide Reactions Toward the Synthesis of 3-(Oxazol-5-yl)Quinoline-2-Carboxamides and 5-(2-Tosylquinolin-3-yl)Oxazole. Front Chem 2019; 7:433. [PMID: 31259168 PMCID: PMC6587330 DOI: 10.3389/fchem.2019.00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
A palladium-catalyzed three-component reaction between 5-(2-chloroquinolin-3-yl) oxazoles, isocyanides, and water to yield 3-(oxazol-5-yl)quinoline-2-carboxamides is described. Interestingly, sulfonylation occurred when the same reaction was performed with toluenesulfonylmethyl isocyanide (TosMIC) as an isocyanide source. The reaction with 5-(2-chloroquinolin-3-yl)oxazoles and TosMIC in the presence of Cs2CO3 in DMSO afforded 5-(2-Tosylquinolin-3-yl)oxazoles. In basic media, TosMIC probably decomposed to generate Ts- species, which were replaced with Cl-. Tandem oxazole formation with subsequent sulfonylation of 2-chloroquinoline-3-carbaldehydes to form directly 5-(2-tosylquinolin-3-yl)oxazoles was also investigated.
Collapse
Affiliation(s)
| | | | - Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | | | | |
Collapse
|
13
|
Tanbakouchian Z, Zolfigol MA, Notash B, Ranjbar M, Shiri M. Synthesis of four series of quinoline‐based heterocycles by reacting 2‐chloroquinoline‐3‐carbonitriles with various types of isocyanides. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Behrouz Notash
- Department of ChemistryShahid Beheshti University G. C. Evin Tehran 1983963113 Iran
| | - Maryam Ranjbar
- Department of Chemistry, Faculty of Physics and ChemistryAlzahra University Vanak Tehran 1993893973 Iran
| | - Morteza Shiri
- Department of Chemistry, Faculty of Physics and ChemistryAlzahra University Vanak Tehran 1993893973 Iran
| |
Collapse
|
14
|
Salehi P, Shiri M. Palladium‐Catalyzed Regioselective Synthesis of 3‐(Hetero)Arylpropynamides from
gem
‐Dibromoalkenes and Isocyanides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800963] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Parvin Salehi
- Department of ChemistryAlzahra University, Vanak Tehran 1993893973 Iran
| | - Morteza Shiri
- Department of ChemistryAlzahra University, Vanak Tehran 1993893973 Iran
| |
Collapse
|
15
|
Shiri M, Ranjbar M, Yasaei Z, Zamanian F, Notash B. Palladium-catalyzed tandem reaction of 2-chloroquinoline-3-carbaldehydes and isocyanides. Org Biomol Chem 2018; 15:10073-10081. [PMID: 29168530 DOI: 10.1039/c7ob02043k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A facile domino reaction of 2-chloroquinoline-3-carbaldehydes in one and two equivalents of isocyanide has been investigated. Three-component reactions of 2-chloroquinoline-3-carbaldehydes, isocyanides and amines are also described. In this Pd-catalyzed reaction under controlled conditions, three novel types of quinoline derivatives were formed via amidation, lactamization or carbamate formation along with the formation of C-C, C-N, and C-O bonds in a one-pot procedure.
Collapse
Affiliation(s)
- Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | | | | | | | | |
Collapse
|
16
|
Shiri M, Heravi MM, Faghihi Z, Zadsirjan V, Mohammadnejad M, Ranjbar M. Tandem and transition metal-free synthesis of novel benzoimidazo-quinazoline as highly selective Hg2+ sensors. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3239-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Shiri M, Fathollahi-Lahroud M, Yasaei Z. A novel strategy for the synthesis of 6H-chromeno [4, 3-b] quinoline by intramolecular Heck cyclization. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|