1
|
Ibrahem MA, Waris M, Miah MR, Shabani F, Canimkurbey B, Unal E, Delikanli S, Demir HV. Orientation-Dependent Photoconductivity of Quasi-2D Nanocrystal Self-Assemblies: Face-Down, Edge-Up Versus Randomly Oriented Quantum Wells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401423. [PMID: 38770984 DOI: 10.1002/smll.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Here, strongly orientation-dependent lateral photoconductivity of a CdSe monolayer colloidal quantum wells (CQWs) possessing short-chain ligands is reported. A controlled liquid-air self-assembly technique is utilized to deliberately engineer the alignments of CQWs into either face-down (FO) or edge-up (EO) orientation on the substrate as opposed to randomly oriented (RO) CQWs prepared by spin-coating. Adapting planar configuration metal-semiconductor-metal (MSM) photodetectors, it is found that lateral conductivity spans ≈2 orders of magnitude depending on the orientation of CQWs in the film in the case of utilizing short ligands. The long native ligands of oleic acid (OA) are exchanged with short-chain ligands of 2-ethylhexane-1-thiol (EHT) to reduce the inter-platelet distance, which significantly improved the photoresponsivity from 4.16, 0.58, and 4.79 mA W-1 to 528.7, 6.17, and 94.2 mA W-1, for the MSM devices prepared with RO, FO, and EO, before and after ligands exchange, respectively. Such CQW orientation control profoundly impacts the photodetector performance also in terms of the detection speed (0.061 s/0.074 s for the FO, 0.048 s/0.060 s for the EO compared to 0.10 s/0.16 s for the RO, for the rise and decay time constants, respectively) and the detectivity (1.7 × 1010, 2.3 × 1011, and 7.5 × 1011 Jones for the FO, EO, and RO devices, respectively) which can be further tailored for the desired optoelectronic device applications. Attributed to charge transportation in colloidal films being proportional to the number of hopping steps, these findings indicate that the solution-processed orientation of CQWs provides the ability to tune the photoconductivity of CQWs with short ligands as another degree of freedom to exploit and engineer their absorptive devices.
Collapse
Affiliation(s)
- Mohammed A Ibrahem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Laser Science and Technology Branch, Applied Sciences Department, University of Technology, Baghdad, 10066, Iraq
| | - Mohsin Waris
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Md Rumon Miah
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Betul Canimkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Serefeddin Health Services Vocational School, Central Research Laboratory, Amasya University, Amasya, 05100, Turkey
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Torimoto T, Kameyama T, Uematsu T, Kuwabata S. Controlling Optical Properties and Electronic Energy Structure of I-III-VI Semiconductor Quantum Dots for Improving Their Photofunctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Li J, Zheng H, Zheng Z, Rong H, Zeng Z, Zeng H. Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2969. [PMID: 36080006 PMCID: PMC9457710 DOI: 10.3390/nano12172969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Mastery over the structure of nanocrystals is a powerful tool for the control of their fluorescence properties and to broaden the range of their applications. In this work, the crystalline structure of CdSe can be tuned by the precursor concentration and the dosage of tributyl phosphine, which is verified by XRD, photoluminescence and UV-vis spectra, TEM observations, and time-correlated single photon counting (TCSPC) technology. Using a TBP-assisted thermal-cycling technique coupled with the single precursor method, core-shell QDs with different shell thicknesses were then prepared. The addition of TBP improves the isotropic growth of the shell, resulting in a high QY value, up to 91.4%, and a single-channel decay characteristic of CdSe/ZnS quantum dots. This work not only provides a facile synthesis route to precisely control the core-shell structures and fluorescence properties of CdSe nanocrystals but also builds a link between ligand chemistry and crystal growth theory.
Collapse
Affiliation(s)
- Jingling Li
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Haixin Zheng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Ziming Zheng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Haibo Rong
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, China
| | - Zhidong Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| | - Hui Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, China
| |
Collapse
|
4
|
Giri RK, Chaki S, Khimani AJ, Vaidya YH, Thakor P, Thakkar AB, Pandya SJ, Deshpande MP. Biocompatible CuInS 2 Nanoparticles as Potential Antimicrobial, Antioxidant, and Cytotoxic Agents. ACS OMEGA 2021; 6:26533-26544. [PMID: 34661008 PMCID: PMC8515567 DOI: 10.1021/acsomega.1c03795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 06/10/2023]
Abstract
A simple hydrothermal route is employed to synthesize pure copper indium disulfide (CIS) and CIS nanoparticles (NPs) mediated by various natural plant extracts. The plant extracts used to mediate are Azadirachta indica (neem), Ocimum sanctum (basil), Cocos nucifera (coconut), Aloe vera (aloe), and Curcuma longa (turmeric). The tetragonal unit cell structure of as-synthesized NPs is confirmed by X-ray diffraction. The analysis by energy-dispersive X-rays shows that all the samples are near-stoichiometric. The morphologies of the NPs are confirmed by high-resolution scanning and transmission modes of electron microscopy. The thermal stability of the synthesized NPs is determined by thermogravimetric analysis. The optical energy band gap is determined from the absorption spectra using Tauc's equation. The antimicrobial activity analysis and the estimation of the minimum inhibitory concentration (MIC) value of the samples are performed for Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Staphylococcus aureus pathogens. It shows that the aloe-mediated CIS NPs possess a broad inhibitory spectrum. The best inhibitory effect is observed against S. aureus, whereas the least effect was exhibited against P. vulgaris. The least MIC value is found for aloe-mediated CIS NPs (0.300 mg/mL) against S. aureus, P. aeruginosa, and E. aerogenes, along with basil-mediated NPs against E. coli. The antioxidant activity study showed that the IC50 value to inhibit the scavenging activity is maximum for the control (vitamin C) and minimum for pure CIS NPs. The in vivo cytotoxicity study using brine shrimp eggs shows that the pure CIS NPs are more lethal to brine shrimp than the natural extract-mediated CIS NPs. The in vitro cytotoxicity study using the human lung carcinoma cell line (A549) shows that the IC50 value of turmeric extract-mediated CIS NPs is minimum (15.62 ± 1.58 μg/mL). This observation reveals that turmeric extract-mediated CIS NPs are the most potent in terms of cytotoxicity toward the A549 cell line.
Collapse
Affiliation(s)
- Ranjan Kr. Giri
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
| | - Sunil Chaki
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
- Department
of Applied & Interdisciplinary Sciences, CISST, Sardar Patel University, Vallabh
Vidyanagar, 388120 Gujarat, India
| | - Ankurkumar J. Khimani
- Department
of Physics, Shri A. N. Patel P. G. Institute
of Science and Research, Anand, 388001 Gujarat, India
| | - Yati H. Vaidya
- Department
of Microbiology, Shri A. N. Patel P. G.
Institute of Science and Research, Anand, 388001 Gujarat, India
| | - Parth Thakor
- P.
G. Department of Biosciences, Sardar Patel
University, Satellite
Campus, Bakrol-Vadtal Road, Bakrol, 388315 Gujarat, India
| | - Anjali B. Thakkar
- Department
of Applied & Interdisciplinary Sciences, CISST, Sardar Patel University, Vallabh
Vidyanagar, 388120 Gujarat, India
- P.
G. Department of Biosciences, Sardar Patel
University, Satellite
Campus, Bakrol-Vadtal Road, Bakrol, 388315 Gujarat, India
| | - Swati J. Pandya
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
| | - Milind P. Deshpande
- P.
G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India
| |
Collapse
|
5
|
Jiang W, Kim B, Chae H. Phenethylamine ligand engineering of red InP quantum dots for improving the efficiency of quantum dot light-emitting diodes. OPTICS LETTERS 2020; 45:5800-5803. [PMID: 33057288 DOI: 10.1364/ol.405520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
In this Letter, red-emitting multi-shelled indium phosphide (InP) quantum dots (QDs) were synthesized using the safe phosphorus precursor tris(dimethylamino)phosphine ((DMA)3P). The long-chain ligands of oleylamine (OAm) in the (DMA)3P phosphide source-based InP QDs were partially exchanged with short-chain ligands of phenethylamine (PEA) in the core formation process, and the resulting InP QDs were applied to quantum dot light-emitting diodes (QLEDs). The short-chain ligands of PEA with the π-conjugated benzene ring improved the charge transport and electrical conduction of the QLEDs with (DMA)3P phosphide source-based InP QDs. The PEA-engineering of InP QDs improved their maximum quantum yield from 71% to 85.5% with the full-width at half-maximum of 62 nm. Furthermore, the maximum external quantum efficiency of QLEDs with the PEA-engineered InP QDs improved from 1.9% to 3.5%, and their maximum power efficiency increased from 2.8 to 6.0 lm/W. This Letter demonstrates that engineering the core formation process with the short-chain ligands of PEA provides an efficient and facile way to improve the charge transport and electrical conduction in (DMA)3P phosphide source-based InP QLEDs for electroluminescent devices.
Collapse
|
6
|
Fu Y, Jiang W, Kim D, Lee W, Chae H. Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17295-17300. [PMID: 29738225 DOI: 10.1021/acsami.8b05092] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we developed a charge control sandwich structure around QD layers for the inverted QLEDs, the performance of which is shown to exceed that of the conventional QLEDs in terms of the external quantum efficiency (EQE) and the current efficiency (CE). The QD light-emitting layer (EML) is sandwiched with two ultrathin interfacial layers: one is a poly(9-vinlycarbazole) (PVK) layer to prevent excess electrons, and the other is a polyethylenimine ethoxylated (PEIE) layer to reduce the hole injection barrier. The sandwich structure resolves the imbalance between injected holes and electrons and brings the level of balanced charge carriers to a maximum. We demonstrated the highly improved performance of 89.8 cd/A of current efficiency, 22.4% of external quantum efficiency, and 72 814 cd m-2 of maximum brightness with the solution-processed inverted QLED. This sandwich structure (PVK/QD/PEIE), as a framework, can be applied to various QLED devices for enhancing performance.
Collapse
Affiliation(s)
- Yan Fu
- College of Materials Science and Engineering , Jilin Institute of Chemical Technology , Jilin 132022 , P. R. China
| | | | | | | | | |
Collapse
|
7
|
Li J, Guo Q, Jin H, Wang K, Xu D, Xu G, Xu X. Low-temperature solution-processed MoOx as hole injection layer for efficient quantum dot light-emitting diodes. RSC Adv 2017. [DOI: 10.1039/c7ra04021k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, quantum dot light-emitting diodes (QD-LEDs) based on a low-temperature solution-processed MoOx hole injection layer were fabricated.
Collapse
Affiliation(s)
- Jingling Li
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Qiling Guo
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Hu Jin
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Kelai Wang
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Dehua Xu
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Gang Xu
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Xueqing Xu
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| |
Collapse
|