1
|
Yang R, Tang S, Xie X, Jin C, Tong Y, Huang W, Zan X. Enhanced Ocular Delivery of Beva via Ultra-Small Polymeric Micelles for Noninvasive Anti-VEGF Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314126. [PMID: 38819852 DOI: 10.1002/adma.202314126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Pathological ocular neovascularization resulting from retinal ischemia constitutes a major cause of vision loss. Current anti-VEGF therapies rely on burdensome intravitreal injections of Bevacizumab (Beva). Herein ultrasmall polymeric micelles encapsulating Beva (P@Beva) are developed for noninvasive topical delivery to posterior eye tissues. Beva is efficiently loaded into 11 nm micelles fabricated via self-assembly of hyperbranched amphiphilic copolymers. The neutral, brush-like micelles demonstrate excellent drug encapsulation and colloidal stability. In vitro, P@Beva enhances intracellular delivery of Beva in ocular cells versus free drug. Ex vivo corneal and conjunctival-sclera-choroidal tissues transport after eye drops are improved 23-fold and 7.9-fold, respectively. Anti-angiogenic bioactivity is retained with P@Beva eliciting greater inhibition of endothelial tube formation and choroid sprouting over Beva alone. Remarkably, in an oxygen-induced retinopathy (OIR) model, topical P@Beva matching efficacy of intravitreal Beva injection, is the clinical standard. Comprehensive biocompatibility verifies safety. Overall, this pioneering protein delivery platform holds promise to shift paradigms from invasive intravitreal injections toward simplified, noninvasive administration of biotherapeutics targeting posterior eye diseases.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Chaofan Jin
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| | - Yuhua Tong
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, 324000, China
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou, Zhejiang Province, 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001, China
| |
Collapse
|
2
|
Sonmez UM, Frey N, LeDuc PR, Minden JS. Fly Me to the Micron: Microtechnologies for Drosophila Research. Annu Rev Biomed Eng 2024; 26:441-473. [PMID: 38959386 DOI: 10.1146/annurev-bioeng-050423-054647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.
Collapse
Affiliation(s)
- Utku M Sonmez
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Current affiliation: Department of Neuroscience, Scripps Research, San Diego, California, USA
- Current affiliation: Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Nolan Frey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Wang W, van Niekerk EA, Zhang Y, Du L, Ji X, Wang S, Baker JD, Groeniger K, Raymo FM, Mattoussi H. Compact, “Clickable” Quantum Dots Photoligated with Multifunctional Zwitterionic Polymers for Immunofluorescence and In Vivo Imaging. Bioconjug Chem 2020; 31:1497-1509. [DOI: 10.1021/acs.bioconjchem.0c00169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Erna A. van Niekerk
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Liang Du
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Xin Ji
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Sisi Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - James D. Baker
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kimberly Groeniger
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
4
|
Zhang Y, Tang S, Thapaliya ER, Sansalone L, Raymo FM. Fluorescence activation with switchable oxazines. Chem Commun (Camb) 2018; 54:8799-8809. [DOI: 10.1039/c8cc03094d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activatable fluorophores allow the spatiotemporal control of fluorescence required to acquire subdiffraction images, highlight cancer cells and monitor dynamic events
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Sicheng Tang
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Ek Raj Thapaliya
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Lorenzo Sansalone
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| |
Collapse
|
5
|
Thapaliya ER, Zhang Y, Dhakal P, Brown AS, Wilson JN, Collins KM, Raymo FM. Bioimaging with Macromolecular Probes Incorporating Multiple BODIPY Fluorophores. Bioconjug Chem 2017; 28:1519-1528. [PMID: 28430413 DOI: 10.1021/acs.bioconjchem.7b00166] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Seven macromolecular constructs incorporating multiple borondipyrromethene (BODIPY) fluorophores along a common poly(methacrylate) backbone with decyl and oligo(ethylene glycol) side chains were synthesized. The hydrophilic oligo(ethylene glycol) components impose solubility in aqueous environment on the overall assembly. The hydrophobic decyl chains effectively insulate the fluorophores from each other to prevent detrimental interchromophoric interactions and preserve their photophysical properties. As a result, the brightness of these multicomponent assemblies is approximately three times greater than that of a model BODIPY monomer. Such a high brightness level is maintained even after injection of the macromolecular probes in living nematodes, allowing their visualization with a significant improvement in signal-to-noise ratio, relative to the model monomer, and no cytotoxic or behavioral effects. The covalent scaffold of these macromolecular constructs also permits their subsequent conjugation to secondary antibodies. The covalent attachment of polymer and biomolecule does not hinder the targeting ability of the latter and the resulting bioconjugates can be exploited to stain the tubulin structure of model cells to enable their visualization with optimal signal-to-noise ratios. These results demonstrate that this particular structural design for the incorporation of multiple chromophores within the same covalent construct is a viable one to preserve the photophysical properties of the emissive species and enable the assembly of bioimaging probes with enhanced brightness.
Collapse
Affiliation(s)
- Ek Raj Thapaliya
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Yang Zhang
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Pravat Dhakal
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Adrienne S Brown
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - James N Wilson
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Kevin M Collins
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
6
|
Tang S, Zhang Y, Thapaliya ER, Brown AS, Wilson JN, Raymo FM. Highlighting Cancer Cells with Halochromic Switches. ACS Sens 2017; 2:92-101. [PMID: 28722445 DOI: 10.1021/acssensors.6b00592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Halochromic coumarin-oxazine prefluorophores and targeting folate ligands can be connected covalently to the side chains of amphiphilic polymers. The resulting macromolecular constructs assemble into nanoparticles in aqueous environments. The prefluorophores do not produce any detectable fluorescence at neutral pH, but are converted into fluorophores with intense visible emission at acidic pH. Protonation opens the oxazine heterocycle to shift bathochromically the coumarin absorption and activate fluorescence with a brightness per nanoparticle approaching 5 × 105 M-1 cm-1. This value translates into a 170-fold enhancement relative to the isolated fluorophores dissolved in organic solvent. The folate ligands direct these multicomponent constructs into acidic intracellular compartments of folate-positive cells, where the prefluorophores switch to the corresponding fluorophores and produce fluorescence. The pH-induced activation of the signaling units ensures negligible background fluorescence from the extracellular matrix, which instead limits considerably the contrast accessible with model systems incorporating conventional nonactivatable fluorophores. Furthermore, no intracellular fluorescence can be detected when the very same measurements are performed with folate-negative cells. Nonetheless, control experiments demonstrate that the covalent connection of the prefluorophores to the polymer backbone of the amphiphilic constructs is essential to ensure selectivity. Model systems with prefluorophores noncovalently encapsulated cannot discriminate folate-positive from -negative cells. Thus, our structural design for the covalent integration of activatable signaling units and targeting ligands within the same nanostructured assembly together with the photophysical properties engineered into the emissive components offer the opportunity to highlight cancer cells selectively with high brightness and optimal contrast.
Collapse
Affiliation(s)
- Sicheng Tang
- Laboratory for Molecular
Photonics, Department of Chemistry, University of Miami, 1301 Memorial
Drive, Coral Gables, Florida 33146-0431, United States
| | - Yang Zhang
- Laboratory for Molecular
Photonics, Department of Chemistry, University of Miami, 1301 Memorial
Drive, Coral Gables, Florida 33146-0431, United States
| | - Ek Raj Thapaliya
- Laboratory for Molecular
Photonics, Department of Chemistry, University of Miami, 1301 Memorial
Drive, Coral Gables, Florida 33146-0431, United States
| | - Adrienne S. Brown
- Laboratory for Molecular
Photonics, Department of Chemistry, University of Miami, 1301 Memorial
Drive, Coral Gables, Florida 33146-0431, United States
| | - James N. Wilson
- Laboratory for Molecular
Photonics, Department of Chemistry, University of Miami, 1301 Memorial
Drive, Coral Gables, Florida 33146-0431, United States
| | - Françisco M. Raymo
- Laboratory for Molecular
Photonics, Department of Chemistry, University of Miami, 1301 Memorial
Drive, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
7
|
Zhang Y, Tang S, Sansalone L, Baker JD, Raymo FM. A Photoswitchable Fluorophore for the Real-Time Monitoring of Dynamic Events in Living Organisms. Chemistry 2016; 22:15027-15034. [PMID: 27571689 DOI: 10.1002/chem.201603545] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 12/12/2022]
Abstract
This study reports the synthesis of a photoactivatable fluorophore with optimal photochemical and photophysical properties for the real-time tracking of motion in vivo. The photoactivation mechanism designed into this particular compound permits the conversion of an emissive reactant into an emissive product with resolved fluorescence, under mild illumination conditions that are impossible to replicate with conventional switching schemes based on bleaching. Indeed, the supramolecular delivery of these photoswitchable probes into the cellular blastoderm of Drosophila melanogaster embryos allows the real-time visualization of translocating molecules with no detrimental effects on the developing organisms. Thus, this innovative mechanism for fluorescence photoactivation can evolve into a general chemical tool to monitor dynamic processes in living biological specimens.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - Sicheng Tang
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - Lorenzo Sansalone
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - James D Baker
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146-0431, USA.
| |
Collapse
|
8
|
Tang S, Donaphon B, Levitus M, Raymo FM. Structural Implications on the Properties of Self-Assembling Supramolecular Hosts for Fluorescent Guests. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8676-8687. [PMID: 27490893 DOI: 10.1021/acs.langmuir.6b01549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nine amphiphilic macromolecules with decyl and oligo(ethylene glycol) side chains, randomly distributed along a common poly(methacrylate) backbone, were synthesized from the radical copolymerization of appropriate methacrylate monomers. The resulting amphiphilic constructs differ in (1) the ratio between their hydrophobic and hydrophilic components, (2) the length of their oligo(ethylene glycol) chains, and/or (3) the molecular weight. When the ratio between hydrophobic and hydrophilic segments is comprised between 6:1 and 1:2, the macromolecules assemble spontaneously into particles with nanoscaled dimensions in neutral buffer and capture hydrophobic borondipyrromethene chromophores in their interior. However, the critical concentration required for the assembly of these supramolecular hosts as well as their hydrodynamic diameter, supramolecular weight, and number of constituent macromolecular building blocks all vary monotonically with the ratio between hydrophobic and hydrophilic components. Specifically, the critical concentration decreases and the other three parameters increase as the relative hydrophobic content raises. Furthermore, an increase in the relative hydrophobic content also discourages interchromophoric interactions between entrapped guests in both ground and excited states as well as delays access of potential quenchers. In fact, these observations demonstrate that the hydrophobic components must be in excess over their hydrophilic counterparts for optimal supramolecular hosts to assemble. Indeed, a ratio of 6:1 between the numbers of decyl and oligo(ethylene glycol) side chains appears to be ideal for this particular structural design. Under these conditions, supramolecular hosts assemble spontaneously even at relatively low polymer concentrations and their fluorescent guests do not escape into the bulk aqueous solution, despite the reversibility of the noncovalent interactions holding the supramolecular container together. Thus, these systematic investigations provide invaluable structural guidelines to design self-assembling supramolecular hosts with optimal composition for the effective encapsulation of fluorescent guests and can lead to ideal delivery vehicles for the transport of imaging probes to target locations in biological samples.
Collapse
Affiliation(s)
- Sicheng Tang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Bryan Donaphon
- School of Molecular Sciences and The Biodesign Institute, Arizona State University , Tempe, Arizona 85287-5601, United States
| | - Marcia Levitus
- School of Molecular Sciences and The Biodesign Institute, Arizona State University , Tempe, Arizona 85287-5601, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|