1
|
|
2
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
3
|
Affiliation(s)
- Jukka Niskanen
- Université de MontréalDépartement de chimie, C.P. 6128 Succursale Centre-Ville Montréal, QC H3 C 3 J7 Canada
| | - Jaana Vapaavuori
- Université de MontréalDépartement de chimie, C.P. 6128 Succursale Centre-Ville Montréal, QC H3 C 3 J7 Canada
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 FI-00076 AALTO Finland
| |
Collapse
|
4
|
Dunne A, Delaney C, McKeon A, Nesterenko P, Paull B, Benito-Lopez F, Diamond D, Florea L. Micro-Capillary Coatings Based on Spiropyran Polymeric Brushes for Metal Ion Binding, Detection, and Release in Continuous Flow. SENSORS 2018; 18:s18041083. [PMID: 29617290 PMCID: PMC5949026 DOI: 10.3390/s18041083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 11/17/2022]
Abstract
Micro-capillaries, capable of light-regulated binding and qualitative detection of divalent metal ions in continuous flow, have been realised through functionalisation with spiropyran photochromic brush-type coatings. Upon irradiation with UV light, the coating switches from the passive non-binding spiropyran form to the active merocyanine form, which binds different divalent metal ions (Zn2+, Co2+, Cu2+, Ni2+, Cd2+), as they pass through the micro-capillary. Furthermore, the merocyanine visible absorbance spectrum changes upon metal ion binding, enabling the ion uptake to be detected optically. Irradiation with white light causes reversion of the merocyanine to the passive spiropyran form, with simultaneous release of the bound metal ion from the micro-capillary coating.
Collapse
Affiliation(s)
- Aishling Dunne
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | - Colm Delaney
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | - Aoife McKeon
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | - Pavel Nesterenko
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, Hobart, Tasmania 7001, Australia.
| | - Brett Paull
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, Hobart, Tasmania 7001, Australia.
| | - Fernando Benito-Lopez
- Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Microfluidics Cluster UPV/EHU, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain.
| | - Dermot Diamond
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | - Larisa Florea
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
5
|
Holmes R, Yang XB, Dunne A, Florea L, Wood D, Tronci G. Thiol-Ene Photo-Click Collagen-PEG Hydrogels: Impact of Water-Soluble Photoinitiators on Cell Viability, Gelation Kinetics and Rheological Properties. Polymers (Basel) 2017; 9:E226. [PMID: 30970903 PMCID: PMC6431953 DOI: 10.3390/polym9060226] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/23/2022] Open
Abstract
Thiol-ene photo-click hydrogels were prepared via step-growth polymerisation using thiol-functionalised type-I collagen and 8-arm poly(ethylene glycol) norbornene-terminated (PEG-NB), as a potential injectable regenerative device. Type-I collagen was thiol-functionalised by a ring opening reaction with 2-iminothiolane (2IT), whereby up to 80 Abs.% functionalisation and 90 RPN% triple helical preservation were recorded via 2,4,6-Trinitrobenzenesulfonic acid (TNBS) colorimetric assay and circular dichroism (CD). Type, i.e., either 2-Hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (I2959) or lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), and concentration of photoinitiator were varied to ensure minimal photoinitiator-induced cytotoxicity and to enable thiol-ene network formation of collagen-PEG mixtures. The viability of G292 cells following 24 h culture in photoinitiator-supplemented media was largely affected by the photoinitiator concentration, with I2959-supplemented media observed to induce higher toxic response (0.1 → 0.5% (w/v) I2959, cell survival: 62 → 2 Abs.%) compared to LAP-supplemented media (cell survival: 86 → 8 Abs.%). In line with the in vitro study, selected photoinitiator concentrations were used to prepare thiol-ene photo-click hydrogels. Gelation kinetics proved to be largely affected by the specific photoinitiator, with LAP-containing thiol-ene mixtures leading to significantly reduced complete gelation time (τ: 187 s) with respect to I2959-containing mixtures (τ: 1683 s). Other than the specific photoinitiator, the photoinitiator concentration was key to adjusting the hydrogel storage modulus (G'), whereby 15-fold G' increase (232 → 3360 Pa) was observed in samples prepared with 0.5% (w/v) compared to 0.1% (w/v) LAP. Further thiol-ene formulations with 0.5% (w/v) LAP and varied content of PEG-NB were tested to prepare photo-click hydrogels with porous architecture, as well as tunable storage modulus (G': 540⁻4810 Pa), gelation time (τ: 73⁻300 s) and swelling ratio (SR: 1530⁻2840 wt %). The photoinitiator-gelation-cytotoxicity relationships established in this study will be instrumental to the design of orthogonal collagen-based niches for regenerative medicine.
Collapse
Affiliation(s)
- Róisín Holmes
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, UK.
| | - Xue-Bin Yang
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, UK.
| | - Aishling Dunne
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Glasnevin, Ireland.
| | - Larisa Florea
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Glasnevin, Ireland.
| | - David Wood
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, UK.
| | - Giuseppe Tronci
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St James' University Hospital, Leeds LS9 7TF, UK.
- Textile Technology Research Group, School of Design, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties. MICROMACHINES 2016. [PMCID: PMC6189910 DOI: 10.3390/mi8010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a new type of temperature sensor device was developed. The circular electrode of the thermally sensitive sensor was modified with tetramethyltin (TMT) and O2 plasma to form a thin SnOxCy conductive layer on the electrode surface. The nano-Au particles (AuNPs) were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The thermally sensitive sensor made by mixing the treated AuNPs with N-isopropylacrylamide (NIPAAm) solution and then applying UV-induced grafting polymerization of the NIPAAm-containing solution onto the electrode substrate. The composite hydrogels on the electrode introduce thermo-sensitive polymeric surface films for temperature sensing. Using the ambient environment resistance test to measure the resistance, the lower critical solution temperature (LCST) of AuNPs mixed with NIPAAm hydrogel was found to be 32 °C. In common metallic materials, the resistance increased during environmental temperature enhancement. In this study, at ambient temperatures higher than the LCST, the electrode resistance decreases linearly due to the shrinkage structure with AuNPs contacting the circuit electrode.
Collapse
|