1
|
Zhang Q, Li F, Zuo P. Two-Step Chemical Vapor Deposition for Fabrication of FAPbI 3 Single-Crystal Microsheets with High Exciton Binding Energy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39540319 DOI: 10.1021/acs.langmuir.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hybrid perovskites exhibit highly efficient optoelectronic properties and find widespread applications in areas such as solar cells, light-emitting diodes, photodetectors, and lasers. Here, we report the innovative synthesis of formamidinium lead iodide (FAPbI3) single-crystal microsheets via a two-step chemical vapor deposition (CVD) method. The microsheets exhibit hexagonal and trapezoidal shapes, with hexagonal FAPbI3 growing parallel to the substrate and trapezoidal FAPbI3 growing perpendicular to the substrate. The dominant role of single-exciton recombination in the photoluminescence (PL) of these microsheets is observed, especially pronounced at low temperatures, attributed to the relatively large exciton binding energies of the samples. Calculations reveal exciton binding energies as high as 110.8 meV for hexagonal and 133.3 meV for trapezoidal FAPbI3 single-crystal microsheets, attributed to reduced rotational freedom of the formamidinium (FA) ions. Further investigation into low-temperature phase transitions indicates lower transition temperatures (around 100 K) for these microsheets, suggesting reduced FA ion rotational freedom and consequently higher exciton binding energies.
Collapse
Affiliation(s)
- Qianpeng Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Fang Li
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
2
|
Han C, Lee SH, Lee K, Chang H, Jo H, Seo S, Park H, Hahn SK, Kim YH, Kwon W. Long-Lived Room-Temperature Phosphorescence from Silica Nanoparticles with In Situ Generated Carbonaceous Defects for Blue Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39541242 DOI: 10.1021/acsami.4c14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, in situ formed silica nanoparticles (SNPs) emitting second-level phosphorescence at room temperature without a phosphorescent dopant have been achieved for the first time. This phosphorescence is achieved through the simple in situ formation of carbonaceous defects (CDs) within the SNPs, followed by passivation of the CDs by a robust silica matrix. The CD in the SNPs, termed CD@SNPs, are synthesized by cross-linking tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES), and these cross-linked components create a porous structure within the silica matrix. Upon calcination, the carbon-related structures within the pores deform, leading to the formation of CDs. Confined within a robust silica matrix, the molecular motion of the CD is restricted, facilitating the generation of a stable triplet state and suppressing nonradiative decay. Moreover, the robust silica matrix passivates the CD confined in the SNPs at a nanoscale. These comprehensive effects enable prolonged phosphorescence emission from the SNPs. In addition, these phosphorescence-emitting SNPs have been applied as dopants in the emissive layer of organic light-emitting diodes to realize blue light emission. This feature suggests the possibility of utilizing luminescent SNPs as light emitters in display technologies.
Collapse
Affiliation(s)
- Chaewon Han
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Su Hwan Lee
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kyurim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Heemin Chang
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
- Department of Materials Engineering, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo-gu, Tokyo 113-8656, Japan
| | - Hyunda Jo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Sejeong Seo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Hyeonjin Park
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Young-Hoon Kim
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, South Korea
| |
Collapse
|
3
|
Mahamu H, Asahi S, Kita T. Intraband transitions at a CsPbBr 3/GaAs heterointerface in a two-step photon upconversion solar cell. Sci Rep 2024; 14:26897. [PMID: 39506006 PMCID: PMC11541914 DOI: 10.1038/s41598-024-78257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Two-step photon upconversion solar cells (TPU-SCs) based on III-V semiconductors can achieve enhanced sub-bandgap photon absorption because of intraband transitions at the heterointerface. From a technological aspect, the question arose whether similar intraband transitions can be realized by using perovskite/III-V semiconductor heterointerfaces. In this article, we demonstrate a TPU-SC based on a CsPbBr3/GaAs heterointerface. Such a solar cell can ideally achieve an energy conversion efficiency of 48.5% under 1-sun illumination. This is 2.1% higher than the theoretical efficiency of an Al0.3Ga0.7As/GaAs-based TPU-SC. Experimental results of the CsPbBr3/GaAs-based TPU-SC show that both the short-circuit current JSC and the open-circuit voltage VOC increase with additional illumination of sub-bandgap photons. We analyze the excitation power dependence of JSC for different excitation conditions to discuss the mechanisms behind the enhancement. In addition, the observed voltage-boost clarifies that the JSC enhancement is caused by an adiabatic optical process at the CsPbBr3/GaAs heterointerface, where sub-bandgap photons efficiently pump the electrons accumulated at the heterointerface to the conduction band of CsPbBr3. Besides the exceptional optoelectronic properties of CsPbBr3 and GaAs, the availability of a CsPbBr3/GaAs heterointerface for two-step photon upconversion paves the way for the development of high-efficiency perovskite/III-V semiconductor-based single-junction solar cells.
Collapse
Affiliation(s)
- Hambalee Mahamu
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Shigeo Asahi
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takashi Kita
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
4
|
Zhao C, Sun Q, Xu P, Chen L, Shi R, Meng L, Liang Y, Yin Y, Yao G, Zhang X, Lu Z, Tian W, Jin S. Highly Diffusive Nonluminescent Carriers in Hybrid Phase Lead Triiodide Perovskite Nanowires. Angew Chem Int Ed Engl 2024:e202411499. [PMID: 39166900 DOI: 10.1002/anie.202411499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Crystal structural rearrangements unavoidably introduce defects into materials, where even these small changes in local lattice structure could arouse a prominent impact on the overall nature of crystals. Contrary to the traditional notion that defects obstruct carrier transport, herein, we report a promoted transport mechanism of nonluminescent carriers in single-crystalline CH3NH3PbI3 nanowires (1345.2 cm2 V-1 s-1, about a 14-fold improvement), enabled by the phase transition induced defects (PTIDs). Carriers captured by PTIDs evade both the radiative and non-radiative recombinations during the incomplete tetragonal-to-orthorhombic phase transition at low temperatures, forming a specific nonluminescent state that exhibits an efficient long-distance transport and thereby realize a prominent enhancement of photocurrent responsivity for photodetector applications. The findings provide broader insights into the carrier transport mechanism in perovskite semiconductors and have significant implications for their rational design for photoelectronic applications at varied operating temperatures.
Collapse
Affiliation(s)
- Chunyi Zhao
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, the Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Peng Xu
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Longwen Chen
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, the Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Rumeng Shi
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, the Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Lingchen Meng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, the Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yongfu Liang
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Guanxin Yao
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, the Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Xianyi Zhang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, the Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zhou Lu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, the Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
5
|
De A, Bhunia S, Cai Y, Binyamin T, Etgar L, Ruhman S. Spectator Exciton Effects in Nanocrystals III: Unveiling the Stimulated Emission Cross Section in Quantum Confined CsPbBr 3 Nanocrystals. J Am Chem Soc 2024; 146:20241-20250. [PMID: 39007415 PMCID: PMC11273341 DOI: 10.1021/jacs.4c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Quantifying stimulated emission in semiconductor nanocrystals (NCs) remains challenging due to masking of its effects on pump-probe spectra by excited state absorption and ground state bleaching signals. The absence of this defining photophysical parameter in turn impedes assignment of band edge electronic structure in many of these important fluorophores. Here we employ a generally applicable 3-pulse ultrafast spectroscopic method coined the "Spectator Exciton" (SX) approach to measure stimulated-emission efficiency in quantum confined inorganic perovskite CsPbBr3 NCs, the band edge electronic structure of which is the subject of lively ongoing debate. Our results show that in 5-6 nm CsPbBr3 NCs, a single exciton bleaches more than half of the intense band edge absorption band, while the cross section for stimulated emission from the same state is nearly 6 times weaker. Discussion of these findings in light of several recent electronic structure models for this material proves them unable to simultaneously explain both measures, proving the importance of this new input to resolving this debate. Along with femtosecond time-resolved photoluminescence measurements on the same sample, SX results also verify that biexciton interaction energy is intensely attractive with a magnitude of ∼80 meV. In light of this observation, our previous suggestion that biexciton interaction is repulsive is reassigned to hot phonon induced slowdown of carrier relaxation leading to direct Auger recombination from an excited state. The mechanism behind the extreme slowing of carrier cooling after several stages of exciton recombination remains to be determined.
Collapse
Affiliation(s)
- Apurba De
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem-91904, Israel
| | - Soumyadip Bhunia
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem-91904, Israel
| | - Yichao Cai
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem-91904, Israel
| | - Tal Binyamin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem-91904, Israel
| | - Lioz Etgar
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem-91904, Israel
| | - Sanford Ruhman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem-91904, Israel
| |
Collapse
|
6
|
Yu H, Zhang F, Chen Q, Zhou PK, Xing W, Wang S, Zhang G, Jiang Y, Chen X. Vinyl-Group-Anchored Covalent Organic Framework for Promoting the Photocatalytic Generation of Hydrogen Peroxide. Angew Chem Int Ed Engl 2024; 63:e202402297. [PMID: 38488772 DOI: 10.1002/anie.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 04/17/2024]
Abstract
The artificial photosynthesis of H2O2 from water and oxygen using semiconductor photocatalysts is attracting increasing levels of attention owing to its green, environmentally friendly, and energy-saving characteristics. Although covalent organic frameworks (COFs) are promising materials for promoting photocatalytic H2O2 production owing to their structural and functional diversity, they typically suffer from low charge-generation and -transfer efficiencies as well as rapid charge recombination, which restricts their use as catalysts for photocatalytic H2O2 production. Herein, we report a strategy for anchoring vinyl moieties to a COF skeleton to facilitate charge separation and migration, thereby promoting photocatalytic H2O2 generation. This vinyl-group-bearing COF photocatalyst exhibits a H2O2-production rate of 84.5 μmol h-1 (per 10 mg), which is ten-times higher than that of the analog devoid of vinyl functionality and superior to most reported COF photocatalysts. Both experimental and theoretical studies provide deep insight into the origin of the improved photocatalytic performance. These findings are expected to facilitate the rational design and modification of organic semiconductors for use in photocatalytic applications.
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fengtao Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qian Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Pan-Ke Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
7
|
Farrow T, Dhawan AR, Marshall AR, Ghorbal A, Son W, Snaith HJ, Smith JM, Taylor RA. Ultranarrow Line Width Room-Temperature Single-Photon Source from Perovskite Quantum Dot Embedded in Optical Microcavity. NANO LETTERS 2023; 23:10667-10673. [PMID: 38016047 PMCID: PMC10722583 DOI: 10.1021/acs.nanolett.3c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.
Collapse
Affiliation(s)
- Tristan Farrow
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Amit R. Dhawan
- Department
of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Ashley R. Marshall
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Alexander Ghorbal
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Wonmin Son
- Sogang
University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South
Korea
| | - Henry J. Snaith
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Jason M. Smith
- Department
of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Robert A. Taylor
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
8
|
Chen J, Lou YH, Wang ZK. Characterizing Spatial and Energetic Distributions of Trap States Toward Highly Efficient Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305064. [PMID: 37635401 DOI: 10.1002/smll.202305064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Indexed: 08/29/2023]
Abstract
Due to their greater opt electric performance, perovskite photovoltaics (PVs) present huge potential to be commercialized. Perovskite PV's high theoretical efficiency expands the available development area. The passivation of defects in perovskite films is crucial for approaching the theoretical limit. In addition to creating efficient passivation techniques, it is essential to direct the passivation approach by getting precise and real-time information on the trap states through measurements. Therefore, it is necessary to establish quantitative characterization methods for the trap states in energy and 3D spaces. The authors cover the characterization of the spatial and energy distributions of trap states in this article with an eye toward high-efficiency perovskite photovoltaics. After going over the strategies that have been created for characterizing and evaluating trap states, the authors will concentrate on how to direct the creative development of characterization techniques for trap states assessment and highlight the opportunities and challenges of future development. The 3D space and energy distribution mappings of trap states are anticipated to be realized. The review will give key guiding importance for further approaching the theoretical efficiency of perovskite photovoltaics, offering some future research direction and technological assistance for the development of appropriate targeted passivation technologies.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Khatun MF, Okamoto T, Biju V. Self-assembled halide perovskite quantum dots in polymer thin films showing temperature-controlled exciton recombination. Chem Commun (Camb) 2023; 59:13831-13834. [PMID: 37859494 DOI: 10.1039/d3cc02621c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Rationally assembled supramolecular structures of organic chromophores or semiconductor nanomaterials show excitonic properties different from individual molecules or nanoparticles. We report polymer-assisted assembly formation and thermal modulation of excitonic recombination in self-assembled formamidinium lead bromide perovskite quantum dots.
Collapse
Affiliation(s)
- Most Farida Khatun
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Takuya Okamoto
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
10
|
Cherrette VL, Babbe F, Cooper JK, Zhang JZ. Octahedral Distortions Generate a Thermally Activated Phonon-Assisted Radiative Recombination Pathway in Cubic CsPbBr 3 Perovskite Quantum Dots. J Phys Chem Lett 2023; 14:8717-8725. [PMID: 37737107 DOI: 10.1021/acs.jpclett.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Exciton-phonon interactions elucidate structure-function relationships that aid in the control of color purity and carrier diffusion, which is necessary for the performance-driven design of solid-state optical emitters. Temperature-dependent steady-state photoluminescence (PL) and time-resolved PL (TRPL) reveal that thermally activated exciton-phonon interactions originate from structural distortions related to vibrations in cubic CsPbBr3 perovskite quantum dots (PQDs) at room temperature. Exciton-phonon interactions cause performance-degrading PL line width broadening and slower electron-hole recombination. Structural distortions in cubic PQDs at room temperature exist as the bending and stretching of the PbBr6 octahedra subunit. The PbBr6 octahedral distortions cause symmetry breaking, resulting in thermally activated longitudinal optical (LO) phonon coupling to the photoexcited electron-hole pair that manifests as inhomogeneous PL line width broadening. At cryogenic temperatures, the line width broadening is minimized due to a decrease in phonon-assisted recombination through shallow traps. A fundamental understanding of these intrinsic exciton-phonon interactions gives insight into the polymorphic nature of the cubic phase and the origins of performance degradation in PQD optical emitters.
Collapse
Affiliation(s)
- Vivien L Cherrette
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Finn Babbe
- Chemical Science Division, Liquid Sunlight Alliance (LiSA), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jason K Cooper
- Chemical Science Division, Liquid Sunlight Alliance (LiSA), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
11
|
Zuo W, Byranvand MM, Kodalle T, Zohdi M, Lim J, Carlsen B, Magorian Friedlmeier T, Kot M, Das C, Flege JI, Zong W, Abate A, Sutter-Fella CM, Li M, Saliba M. Coordination Chemistry as a Universal Strategy for a Controlled Perovskite Crystallization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302889. [PMID: 37312254 DOI: 10.1002/adma.202302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/26/2023] [Indexed: 06/15/2023]
Abstract
The most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g., by vacuum, an airstream, or a so-called antisolvent. Unfortunately, most oversaturation triggers do not expel the lingering (and highly coordinating) dimethyl sulfoxide (DMSO), which is used as a precursor solvent, from the thin films; this detrimentally affects long-term stability. In this work, (the green) dimethyl sulfide (DMS) is introduced as a novel nucleation trigger for perovskite films combining, uniquely, high coordination and high vapor pressure. This gives DMS a universal scope: DMS replaces other solvents by coordinating more strongly and removes itself once the film formation is finished. To demonstrate this novel coordination chemistry approach, MAPbI3 PSCs are processed, typically dissolved in hard-to-remove (and green) DMSO achieving 21.6% efficiency, among the highest reported efficiencies for this system. To confirm the universality of the strategy, DMS is tested for FAPbI3 as another composition, which shows higher efficiency of 23.5% compared to 20.9% for a device fabricated with chlorobenzene. This work provides a universal strategy to control perovskite crystallization using coordination chemistry, heralding the revival of perovskite compositions with pure DMSO.
Collapse
Affiliation(s)
- Weiwei Zuo
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569, Stuttgart, Germany
| | - Mahdi Malekshahi Byranvand
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569, Stuttgart, Germany
- Helmholtz Young Investigator Group FRONTRUNNER, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Tim Kodalle
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Mohammadreza Zohdi
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569, Stuttgart, Germany
| | - Jaekeun Lim
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569, Stuttgart, Germany
| | - Brian Carlsen
- Laboratory of Photomolecular Science, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Theresa Magorian Friedlmeier
- Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Meitnerstrasse 1, 70563, Stuttgart, Germany
| | - Małgorzata Kot
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Strasse 1, 03046, Cottbus, Germany
| | - Chittaranjan Das
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569, Stuttgart, Germany
- Helmholtz Young Investigator Group FRONTRUNNER, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jan Ingo Flege
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Strasse 1, 03046, Cottbus, Germany
| | - Wansheng Zong
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, pzz.le Vincenzo Tecchio 80, Naples, 80125, Italy
| | - Carolin M Sutter-Fella
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Meng Li
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Michael Saliba
- Institute for Photovoltaics (ipv), University of Stuttgart, Pfaffenwaldring 47, 70569, Stuttgart, Germany
- Helmholtz Young Investigator Group FRONTRUNNER, IEK5-Photovoltaik, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
12
|
Prabhakaran A, Dang Z, Dhall R, Camerin F, Marín-Aguilar S, Dhanabalan B, Castelli A, Brescia R, Manna L, Dijkstra M, Arciniegas MP. Real-Time In Situ Observation of CsPbBr 3 Perovskite Nanoplatelets Transforming into Nanosheets. ACS NANO 2023. [PMID: 37406164 PMCID: PMC10373526 DOI: 10.1021/acsnano.3c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The manipulation of nano-objects through heating is an effective strategy for inducing structural modifications and therefore changing the optoelectronic properties of semiconducting materials. Despite its potential, the underlying mechanism of the structural transformations remains elusive, largely due to the challenges associated with their in situ observations. To address these issues, we synthesize temperature-sensitive CsPbBr3 perovskite nanoplatelets and investigate their structural evolution at the nanoscale using in situ heating transmission electron microscopy. We observe the morphological changes that start from the self-assembly of the nanoplatelets into ribbons on a substrate. We identify several paths of merging nanoplates within ribbons that ultimately lead to the formation of nanosheets dispersed randomly on the substrate. These observations are supported by molecular dynamics simulations. We correlate the various paths for merging to the random orientation of the initial ribbons along with the ligand mobility (especially from the edges of the nanoplatelets). This leads to the preferential growth of individual nanosheets and the merging of neighboring ones. These processes enable the creation of structures with tunable emission, ranging from blue to green, all from a single material. Our real-time observations of the transformation of perovskite 2D nanocrystals reveal a route to achieve large-area nanosheets by controlling the initial orientation of the self-assembled objects with potential for large-scale applications.
Collapse
Affiliation(s)
- Aarya Prabhakaran
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Zhiya Dang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Rohan Dhall
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fabrizio Camerin
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Susana Marín-Aguilar
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | | | - Andrea Castelli
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | | |
Collapse
|
13
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
14
|
Carwithen BP, Hopper TR, Ge Z, Mondal N, Wang T, Mazlumian R, Zheng X, Krieg F, Montanarella F, Nedelcu G, Kroll M, Siguan MA, Frost JM, Leo K, Vaynzof Y, Bodnarchuk MI, Kovalenko MV, Bakulin AA. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials. ACS NANO 2023; 17:6638-6648. [PMID: 36939330 PMCID: PMC10100565 DOI: 10.1021/acsnano.2c12373] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.
Collapse
Affiliation(s)
- Ben P. Carwithen
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ziyuan Ge
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Rozana Mazlumian
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Franziska Krieg
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Georgian Nedelcu
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Martin Kroll
- Center
for
Advancing Electronics Dresden, Technische
Universität Dresden, 01069 Dresden, Germany
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Miguel Albaladejo Siguan
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jarvist M. Frost
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Karl Leo
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Yana Vaynzof
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
15
|
Trotsiuk LL, Ton ES, Tsvirka VI, Survilo LN, Lishik SI, Kulakovich OS, Ramanenka AA, Krukov VV, Trofimov YV, Gaponenko SV. Photoluminescent Properties of Phosphor Based on Perovskite CsPbBr 3 Nanocrystals Combined with Violet Leds. JOURNAL OF APPLIED SPECTROSCOPY 2022; 89:869-873. [PMID: 36405432 PMCID: PMC9652129 DOI: 10.1007/s10812-022-01440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The characteristics of an LED lighting system consisting of a commercial violet LED and a green phosphor based on CsPbBr3 nanocrystals are studied in the context of development of LED illumination sources with antibacterial effects but without harmful effects on human health. The internal efficiency of the nanocrystalline phosphor in a silicone compound was found to exceed 40%, dropping noticeably because of heating for an electric current of ~0.1 A (phosphor excitation intensity ~0.1 W/mm2). This undesirable feature can be diminished by using a remote phosphor design for the illuminators and by using chemical techniques to improve the thermal stability of the nanocrystals.
Collapse
Affiliation(s)
- L. L. Trotsiuk
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | - E. S. Ton
- Center of LED and Optoelectronic Technologies, National Academy of Sciences of Belarus, Minsk, Belarus
| | - V. I. Tsvirka
- Center of LED and Optoelectronic Technologies, National Academy of Sciences of Belarus, Minsk, Belarus
| | - L. N. Survilo
- Center of LED and Optoelectronic Technologies, National Academy of Sciences of Belarus, Minsk, Belarus
| | - S. I. Lishik
- Center of LED and Optoelectronic Technologies, National Academy of Sciences of Belarus, Minsk, Belarus
| | - O. S. Kulakovich
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | - A. A. Ramanenka
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | - V. V. Krukov
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Yu. V. Trofimov
- Center of LED and Optoelectronic Technologies, National Academy of Sciences of Belarus, Minsk, Belarus
| | - S. V. Gaponenko
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
16
|
Xu Y, Hu X, Chen H, Tang H, Hu Q, Chen T, Jiang W, Wang L, Jiang W. In situ passivation of Pb 0 traps by fluoride acid-based ionic liquids enables enhanced emission and stability of CsPbBr 3 nanocrystals for efficient white light-emitting diodes. NANOSCALE 2022; 14:13779-13789. [PMID: 36102672 DOI: 10.1039/d2nr03861g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A great hurdle restricting the optoelectronic applications of cesium lead halide perovskite (CsPbX3) nanocrystals (NCs) is due to the uncoordinated lead atoms (Pb0) on the surface, where most attempts to address the challenges in the literature depend on complicated post-treatment processes. Here we report a simple in situ surface engineering strategy to obtain highly fluorescent and stable perovskite NCs, wherein the introduction of the multifunctional additive 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim]BF4) can significantly eliminate the Pb0 traps. The photoluminescence quantum yield (PLQY) of the as-synthesized NCs was improved from 63.82% to 94.63% due to the good passivation of the surface defects. We also confirm the universality of this in situ passivation pathway to remove Pb0 deep traps by using fluoride acid-based ionic liquids (ILs). Due to the high hydrophobicity of the cations of ILs, the as-prepared CsPbBr3 NCs exhibit robust water resistance stability, maintaining 67.5% of the initial photoluminescence (PL) intensity after immersion in water for 21 days. A white light emitting diode (LED), assembled by mixing the as-synthesized CsPbBr3 NCs and red K2SiF6:Mn4+ phosphors onto a blue chip, exhibits high luminous efficiency (100.07 lm W-1) and wide color gamut (140.64% of the National Television System Committee (NTSC) standard). This work provides a promising and facile technique to eliminate the Pb0 traps and improve the optical performance and stability of halide perovskite NCs, facilitating their applications in optoelectronic fields.
Collapse
Affiliation(s)
- Yanqiao Xu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Xiaobo Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haijie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Huidong Tang
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Ting Chen
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Weihui Jiang
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
17
|
Sánchez-Alarcón RI, Noguera-Gomez J, Chirvony VS, Pashaei Adl H, Boix PP, Alarcón-Flores G, Martínez-Pastor JP, Abargues R. Spray-driven halide exchange in solid-state CsPbX 3 nanocrystal films. NANOSCALE 2022; 14:13214-13226. [PMID: 36047914 DOI: 10.1039/d2nr03262g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CsPbI3 perovskite nanocrystals (NCs) are promising building blocks for photovoltaics and optoelectronics. However, they exhibit an essential drawback in the form of phase stability: α-phase, with a ∼1.80 eV bandgap, can easily experience a phase transition to a non-radiative orthorhombic δ-phase in an ambient environment. This leads to the need to carry out the CsPbI3-based device fabrication in an inert atmosphere, which is technologically inconvenient and expensive. One of the most successful approaches proposed to overcome this problem is synthesizing mixed halide CsPbBr3-xIx NCs to improve the stability of the α-phase perovskite structure. However, the formation of high-quality thin films of CsPbBr3-xIx NCs with high PLQY is challenging owing to the degradation of their optical properties after deposition on a substrate. This work presents spray coating to carry out a solid-state anion exchange in CsPbBr3 NCs thin films at ambient conditions with low-demanding reaction conditions. This constitutes a novel open-air and annealing-free technology to manufacture CsPbBr3-xIx NC thin films with high optical quality and record high photoluminescence quantum yields (PLQY) based on spray-driven halide (Br- to I-) anion exchange in a solid-state phase. Besides, tunable emission wavelengths between 520 and 670 nm can be obtained from CsPbBr3-xIx NC films using accurate tuning volumes of HI solution sprayed over the initial surface of CsPbBr3 film to provide the halide exchange. The optical quality of the halide-exchanged PNCs films remains practically identical to that of initial Br-containing layers, with a remarkable PLQY enhancement after anion exchange, from ∼61% for CsPbBr3 thin films emitting at 520 nm to ∼84% for mixed halide CsPbBr3-xIx film emitting at 640 nm. The huge potential of the system is confirmed by demonstrating a low-threshold amplified spontaneous emission.
Collapse
Affiliation(s)
- R I Sánchez-Alarcón
- UMDO Instituto de Ciencia de los Materiales-Universidad de Valencia, PO Box 22085, 46071, Valencia, España, Spain.
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Legaría, Legaría #694 Col. Irrigación, Ciudad de México, Mexico, 11500
| | - J Noguera-Gomez
- UMDO Instituto de Ciencia de los Materiales-Universidad de Valencia, PO Box 22085, 46071, Valencia, España, Spain.
| | - V S Chirvony
- UMDO Instituto de Ciencia de los Materiales-Universidad de Valencia, PO Box 22085, 46071, Valencia, España, Spain.
| | - H Pashaei Adl
- UMDO Instituto de Ciencia de los Materiales-Universidad de Valencia, PO Box 22085, 46071, Valencia, España, Spain.
| | - Pablo P Boix
- UMDO Instituto de Ciencia de los Materiales-Universidad de Valencia, PO Box 22085, 46071, Valencia, España, Spain.
| | - G Alarcón-Flores
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Legaría, Legaría #694 Col. Irrigación, Ciudad de México, Mexico, 11500
| | - J P Martínez-Pastor
- UMDO Instituto de Ciencia de los Materiales-Universidad de Valencia, PO Box 22085, 46071, Valencia, España, Spain.
| | - R Abargues
- UMDO Instituto de Ciencia de los Materiales-Universidad de Valencia, PO Box 22085, 46071, Valencia, España, Spain.
| |
Collapse
|
18
|
Li XZ, Aihemaiti N, Fang HH, Huang GY, Zhou YK, Wang XJ, Zhang Y, Xing R, Peng S, Bai B, Sun HB. Optical Visualization of Photoexcitation Diffusion in All-Inorganic Perovskite at High Temperature. J Phys Chem Lett 2022; 13:7645-7652. [PMID: 35959945 DOI: 10.1021/acs.jpclett.2c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-inorganic halide perovskites are promising candidates for optoelectronic and photovoltaic devices because of their good thermal stability and remarkable optoelectronic properties. Among those properties, carrier transport properties are critical as they inherently dominate the device performance. The transport properties of perovskites have been widely studied at room and lower temperatures, but their high-temperature (i.e., tens of degrees above room temperature) characteristics are not fully understood. Here, the photoexcitation diffusion is optically visualized by transient photoluminescence microscopy (TPLM), through which the temperature-dependent transport characteristics from room temperature to 80 °C are studied in all-inorganic CsPbBr3 single-crystalline microplates. We reveal the decreasing trend of diffusion coefficient and the almost unchanged trend of diffusion length when heating the sample to high temperature. The phonon scattering in combination with the variation of effective mass is proposed for the explanation of the temperature-dependent diffusion behavior.
Collapse
Affiliation(s)
- Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | | | - Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Guan-Yao Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yun-Ke Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yan Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Renhao Xing
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | | | - Benfeng Bai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Sun C, Wang X, Qiu P, Mou X, Lu W, Teng X, Fu G, Yu W. Low Temperature Photoluminescence Properties of α‐CsPbI
3
Nanocrystals with High Quantum Yield. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunyu Sun
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Xinzhan Wang
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Pengfei Qiu
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Xuejiao Mou
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Wanbing Lu
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Xiaoyun Teng
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Guangsheng Fu
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Wei Yu
- College of Physics Science and Technology Institute of Life Science and Green Development Hebei University Baoding 071002 China
| |
Collapse
|
20
|
A Zero-Dimensional Organic Lead Bromide of (TPA)2PbBr4 Single Crystal with Bright Blue Emission. NANOMATERIALS 2022; 12:nano12132222. [PMID: 35808057 PMCID: PMC9268179 DOI: 10.3390/nano12132222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022]
Abstract
Blue-luminescence materials are needed in urgency. Recently, zero-dimensional (0D) organic metal halides have attractive much attention due to unique structure and excellent optical properties. However, realizing blue emission with near-UV-visible light excitation in 0D organic metal halides is still a great challenge due to their generally large Stokes shifts. Here, we reported a new (0D) organic metal halides (TPA)2PbBr4 single crystal (TPA+ = tetrapropylammonium cation), in which the isolated [PbBr4]2− tetrahedral clusters are surrounded by organic ligand of TPA+, forming a 0D framework. Upon photoexcitation, (TPA)2PbBr4 exhibits a blue emission peaking at 437 nm with a full width at half-maximum (FWHM) of 50 nm and a relatively small Stokes shift of 53 nm. Combined with density functional theory (DFT) calculations and spectral analysis, it is found that the observed blue emission in (TPA)2PbBr4 comes from the combination of free excitons (FEs) and self-trapped exciton (STE), and a small Stokes shift of this compound are caused by the small structure distortion of [PbBr4]2− cluster in the excited state confined by TPA molecules, in which the multi-phonon effect take action. Our results not only clarify the important role of excited state structure distortion in regulating the STEs formation and emission, but also focus on 0D metal halides with bright blue emission under the near-UV-visible light excitation.
Collapse
|
21
|
Facile fabrication of oxygen-doped carbon nitride with enhanced visible-light photocatalytic degradation of methyl mercaptan. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Li Y, Chen L, Ouyang X, Zhao K, Xu Q. Cryogenic Scintillation Performance of Cs 4PbI 6 Perovskite Single Crystals. Inorg Chem 2022; 61:7553-7559. [PMID: 35503991 DOI: 10.1021/acs.inorgchem.2c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All-inorganic Cs4PbI6 single crystals (SCs) is emerging scintillators for radiation detection. In this study, we report on the X-ray scintillation properties of Cs4PbI6 SCs at the temperature range of 50-290 K. The temperature-dependent radioluminescence (RL) spectrum and decay time were investigated. It was found that the RL spectra show very pronounced temperature-dependent changes in the overall shape. The RL intensity increases with a decrease in the temperature under X-ray excitation. The emission bands at 318, 360, and 554 nm are attributed to the near-band-edge emission in Cs4PbI6 SCs, the 3P1 → 1S0 transition of the Pb2+ ion, and the emission of δ-CsPbI3 aggregates dispersed in the Cs4PbI6 SC matrix, respectively. With decreasing temperature, the fast and slow decay times tend to slow down and are estimated to be 46.0 ns (33.22%) and 820 ns (66.78%) at 50 K, which are far superior to that of the common cryogenic scintillator. These cryogenic scintillation characteristics of Cs4PbI6 SCs demonstrate its potential for cryogenic detection.
Collapse
Affiliation(s)
- Yang Li
- The Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Liang Chen
- States Key Laboratory of Intense Pulsed Radiation Simulation and Effect and Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Xiaoping Ouyang
- States Key Laboratory of Intense Pulsed Radiation Simulation and Effect and Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Kuo Zhao
- Xi'an Research Institute of Hi-Tech, Xi'an 710025, China
| | - Qiang Xu
- The Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
23
|
Peng H, Tian Y, Wang X, Huang T, Yu Z, Zhao Y, Dong T, Wang J, Zou B. Pure White Emission with 91.9% Photoluminescence Quantum Yield of [(C 3H 7) 4N] 2Cu 2I 4 out of Polaronic States and Ultra-High Color Rendering Index. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12395-12403. [PMID: 35235303 DOI: 10.1021/acsami.2c00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, cuprous halide perovskite-type materials have drawn tremendous attention for their intriguing optical properties. Here, a zero-dimensional (0D) Cu(I)-based compound of [(C3H7)4N]2Cu2I4 ([C3H7)4N]+ = tetrapropylammonium cation) was synthesized by a facile solution method, a monoclinic system of P21/n symmetry with a Cu2I42- cluster as the confined structure. The as-synthesized [(C3H7)4N]2Cu2I4 exhibits bright dual-band pure white emission with a photoluminescence quantum yield (PLQY) of 91.9% and CIE color coordinates of (0.33, 0.35). Notably, this compound also exhibits an ultrahigh color rendering index (CRI) of 92.2, which is comparable to the highest value of single-component metal halides reported recently. Its Raman spectra provide a clear spectral profile of strong electron-phonon interaction after [(C3H7)4N]+ incorporation, favoring the self-trapped exciton (STE) formation. [(C3H7)4N]2Cu2I4 can give dual-STE bands at the same time because of the Cu-Cu metal bond in a Cu2I42- cluster, whose populations could be scaled by temperature, together with the local dipole orientation modulation of neighboring STEs and phase transition related emission color coordinate change. Particularly, the outstanding chemical- and antiwater stability of this compound was also demonstrated. This work illustrates the potential of such cuprous halide perovskite-type materials in multifunctional applications, such as lighting in varied environments.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Xinxin Wang
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Zongmian Yu
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Yueting Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
24
|
Wu X, Shao H, Zhong Y, Li L, Chen W, Dong B, Xu L, Xu W, Zhou D, Wu Z, Song H, Bai X. Synergistic Regulation Effect of Nitrate and Calcium Ions for Highly Luminescent and Robust α-CsPbI 3 Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106147. [PMID: 34985192 DOI: 10.1002/smll.202106147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Indexed: 05/08/2023]
Abstract
The α-CsPbI3 nanocrystals (NCs) easily transform into yellow non-perovskite, accompanying with declining photoelectric properties that restricting their practical applications in diverse fields. Herein, the highly luminescent and robust α-CsPbI3 NCs is achieved through engineering the lattice symmetry of perovskite, enabled by the synergistic effect of NO3- ion passivation and Ca2+ ion doping. The introduced NO3- ions enhance the phase-change energy barrier and the surface steric hindrance, thus promoting the formation of α-CsPbI3 NCs with hyper-symmetric crystal structure, while the Ca2+ ion doping contributes to improving their lattice symmetry by significant regulation of the tolerance factor. As a result, the obtained α-CsPbI3 NCs display an outstanding photoluminescence quantum yield of 96.6%, together with the reduced defect state density and eminent conductivity. Most importantly, the as-engineered α-CsPbI3 NCs exhibit excellent stability under ambient conditions for 9 months and UV illumination for 32 h. It displays brilliant thermal stability, maintaining luminous intensity for 15 min under 140 °C, and performing desired durability and reversibility, evidenced by 160 °C cyclic test and 120 °C reversibility test. Given enhanced robustness, the as-engineered α-CsPbI3 NCs based light-emitting-diode devices are constructed, exhibiting a power efficiency of 105.3 lm W-1 and the excellent working stability for 18 h.
Collapse
Affiliation(s)
- Xiufeng Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - He Shao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Lifang Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Wenda Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Lin Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Wen Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
25
|
Singh A, Dey P, Kumari A, Sikdar MK, Sahoo PK, Das R, Maiti T. Temperature-dependent excitonic emission characteristics of lead-free inorganic double perovskites and their third-order optical nonlinearities. Phys Chem Chem Phys 2022; 24:4065-4076. [PMID: 35103739 DOI: 10.1039/d1cp04896a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report temperature-dependent photoluminescence (PL) in the temperature range between 77 K and 300 K, and room temperature nonlinear optical (NLO) properties of solution processed lead-free Cs2NaBiI6 (CNBI) and Cs2KBiI6 (CKBI) perovskite films. The de-convolution analysis of temperature-dependent PL spectra showed thermal quenching behavior of free-exciton (FX) emission, an unusual blue-shift of PL emission, and line broadening with increasing temperature as a consequence of strong exciton-phonon interaction. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) of both the CNBI and CKBI films are determined using a closed aperture (CA) and open aperture (OA) Z-scan technique, respectively. Both the CNBI and CKBI perovskites exhibited features of saturable absorption (SA) with β ∼ -6.23 × 10-12 cm W-1, and -1.14× 10-12 cm W-1, respectively. The CA measurements depicted a self-defocusing effect in both the samples with n2 values ∼-1.06 × 10-14 cm2 W-1 and -1.337× 10-14 cm2 W-1, respectively. With such emission and NLO characteristics, CNBI and CKBI perovskite films can be used for designing eco-friendly optoelectronic and NLO devices.
Collapse
Affiliation(s)
- Avanendra Singh
- Plasmonics and Perovskites Laboratory (PPL), Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, UP, India.
| | - Pritam Dey
- Plasmonics and Perovskites Laboratory (PPL), Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, UP, India.
| | - Anupa Kumari
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha, India
| | - Mrinal Kanti Sikdar
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha, India
| | - Pratap K Sahoo
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha, India
| | - Ritwick Das
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha, India
| | - Tanmoy Maiti
- Plasmonics and Perovskites Laboratory (PPL), Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, UP, India.
| |
Collapse
|
26
|
Kim H, Park JH, Kim K, Lee D, Song MH, Park J. Highly Emissive Blue Quantum Dots with Superior Thermal Stability via In Situ Surface Reconstruction of Mixed CsPbBr 3 -Cs 4 PbBr 6 Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104660. [PMID: 34957694 PMCID: PMC8844471 DOI: 10.1002/advs.202104660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 06/07/2023]
Abstract
Although metal halide perovskites are candidate high-performance light-emitting diode (LED) materials, blue perovskite LEDs are problematic: mixed-halide materials are susceptible to phase segregation and bromide-based perovskite quantum dots (QDs) have low stability. Herein, a novel strategy for highly efficient, stable cesium lead bromide (CsPbBr3 ) QDs via in situ surface reconstruction of CsPbBr3 -Cs4 PbBr6 nanocrystals (NCs) is reported. By controlling precursor reactivity, the ratio of CsPbBr3 to Cs4 PbBr6 NCs is successfully modulated. A high photoluminescence quantum yield (PLQY) of >90% at 470 nm is obtained because octahedron CsPbBr3 QD surface defects are removed by the Cs4 PbBr6 NCs. The defect-engineered QDs exhibit high colloidal stability, retaining >90% of their initial PLQY after >120 days of ambient storage. Furthermore, thermal stability is demonstrated by a lack of heat-induced aggregation at 120 °C. Blue LEDs fabricated from CsPbBr3 QDs with reconstructed surfaces exhibit a maximum external quantum efficiency of 4.65% at 480 nm and excellent spectral stability.
Collapse
Affiliation(s)
- Hyeonjung Kim
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50Ulsan44919Republic of Korea
| | - Jong Hyun Park
- Department of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50Ulsan44919Republic of Korea
| | - Kangyong Kim
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50Ulsan44919Republic of Korea
| | - Dongryeol Lee
- Department of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50Ulsan44919Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50Ulsan44919Republic of Korea
| | - Jongnam Park
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50Ulsan44919Republic of Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50Ulsan44919Republic of Korea
| |
Collapse
|
27
|
Improved One- and Multiple-Photon Excited Photoluminescence from Cd 2+-Doped CsPbBr 3 Perovskite NCs. NANOMATERIALS 2022; 12:nano12010151. [PMID: 35010101 PMCID: PMC8746976 DOI: 10.3390/nano12010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Metal halide perovskite nanocrystals (NCs) attract much attention for light-emitting applications due to their exceptional optical properties. More recently, perovskite NCs have begun to be considered a promising material for nonlinear optical applications. Numerous strategies have recently been developed to improve the properties of metal halide perovskite NCs. Among them, B-site doping is one of the most promising ways to enhance their brightness and stability. However, there is a lack of study of the influence of B-site doping on the nonlinear optical properties of inorganic perovskite NCs. Here, we demonstrate that Cd2+ doping simultaneously improves both the linear (higher photoluminescence quantum yield, larger exciton binding energy, reduced trap states density, and faster radiative recombination) and nonlinear (higher two- and three-photon absorption cross-sections) optical properties of CsPbBr3 NCs. Cd2+ doping results in a two-photon absorption cross-section, reaching 2.6 × 106 Goeppert-Mayer (GM), which is among the highest reported for CsPbBr3 NCs.
Collapse
|
28
|
Pan F, Li J, Ma X, Nie Y, Liu B, Ye H. Free and self-trapped exciton emission in perovskite CsPbBr 3 microcrystals. RSC Adv 2021; 12:1035-1042. [PMID: 35425136 PMCID: PMC8978929 DOI: 10.1039/d1ra08629d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
The all-inorganic perovskite CsPbBr3 has been capturing extensive attention due to its high quantum yield in luminescence devices and relatively high stability. Its luminescence is dominated by free exciton (FE) recombination but additional emission peaks were also commonly observed. In this work, a CsPbBr3 microcrystal sample in the orthorhombic phase was prepared by the chemical vapor deposition method. In addition to the FE peak, a broad emission peak was found in this sample and it was attributed to self-trapped excitons (STEs) based on its photophysical properties. The STE emission can only be observed below 70 K. The derived Huang-Rhys factor is ∼12 and the corresponding phonon energy is 15.3 meV. Its lifetime is 123 ns at 10 K, much longer than that of FE emission. The STE emission is thought to be an intrinsic property of CsPbBr3.
Collapse
Affiliation(s)
- Fang Pan
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Jinrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Xiaoman Ma
- School of Physical Science and Technology, Xinjiang University Urumqi 830046 People's Republic of China
| | - Yang Nie
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Beichen Liu
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| | - Honggang Ye
- Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 People's Republic of China
| |
Collapse
|
29
|
Zhou Q, Ren J, Xiao J, Lei L, Liao F, Di H, Wang C, Yang L, Chen Q, Yang X, Zhao Y, Han X. Highly efficient copper halide scintillators for high-performance and dynamic X-ray imaging. NANOSCALE 2021; 13:19894-19902. [PMID: 34761770 DOI: 10.1039/d1nr03996b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Progress towards high performance X-ray detection and dynamic imaging applications, including nondestructive inspection, homeland security, and medical diagnostics, requires scintillators with a high light yield, a reasonable decay time, low cost, and eco-friendliness. Recently, copper halide scintillators have drawn tremendous attention due to their outstanding radioluminescence performance. Here, we first employed β-Cs3Cu2Cl5 as a high-performance scintillator, with a photoluminescence quantum yield (PLQY) of 94.6%, a radioluminescence light yield of 34 000 ± 4000 photons per MeV, a low detection limit of 81.7 nGyair s-1, and good operational stability under a total X-ray dose of 174.6 Gyair in air. In addition, this scintillator presents a high spatial resolution of 9.6 lp mm-1 at the modulation transfer function of 0.2 and a superb performance at 60 frames per second in our X-ray imaging system. Overall, this highly efficient scintillator demonstrates outstanding comprehensive performance and shows great potential for broad applications in X-ray detection and dynamic imaging.
Collapse
Affiliation(s)
- Quan Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Jiwei Ren
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
| | - Jiawen Xiao
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Lin Lei
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
| | - Feiyi Liao
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
| | - Haipeng Di
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
| | - Chao Wang
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Lijun Yang
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
| | - Qi Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaofang Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yiying Zhao
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
| | - Xiaodong Han
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
30
|
Nie J, Li C, Zhou S, Huang J, Ouyang X, Xu Q. High Photoluminescence Quantum Yield Perovskite/Polymer Nanocomposites for High Contrast X-ray Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54348-54353. [PMID: 34735128 DOI: 10.1021/acsami.1c15613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A surface modified-CsPbBr3/polybutylmethacrylate (PBMA) nanocomposite is reported to be a scintillator that enables us to provide a high contrast X-ray image using a common charge-coupled device (CCD) camera. Bis(2-(methacryloyloxy)ethyl) phosphate (BMEP) was employed to alter the ratio of the original ligands on the CsPbBr3 nanocrystal (NC) surface for optimizing the optical performance of the CsPbBr3/PBMA nanocomposites. The nanocomposites with a concentration of 0.02 wt % NCs exhibit more than 70% transmittance in the visible region and show a green emission at 515 nm, the fast decay time is 13 ns, while the photoluminescence quantum yield value is 99.2%. Under X-ray excitation, the emission peak wavelength is centered at 524 nm and shows a narrow full width at half-maximum of 26.6 nm; the result nicely matches with the peak quantum efficiency of most commercial CCD/complementary metal oxide semiconductor cameras. The high contrast X-ray image is recorded at a low dose rate of 4.6 μGyair/s, which enables read out with software. Our results demonstrate that these CsPbBr3/PBMA nanocomposites have promising application prospects for ionizing radiation detection, especially for X-ray imaging.
Collapse
Affiliation(s)
- Jing Nie
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Chen Li
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shuai Zhou
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jie Huang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaoping Ouyang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China
- Northwest Institute of Nuclear Technology, Xi'an 710024, China
| | - Qiang Xu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
31
|
Shcherbakov-Wu W, Sercel PC, Krieg F, Kovalenko MV, Tisdale WA. Temperature-Independent Dielectric Constant in CsPbBr 3 Nanocrystals Revealed by Linear Absorption Spectroscopy. J Phys Chem Lett 2021; 12:8088-8095. [PMID: 34406780 DOI: 10.1021/acs.jpclett.1c01822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fundamental photophysical behavior in CsPbBr3 nanocrystals (NCs), especially at low temperatures, is under active investigation. While many studies have reported temperature-dependent photoluminescence, comparatively few have focused on understanding the temperature-dependent absorption spectrum. Here, we report the temperature-dependent (35-300 K) absorption and photoluminescence spectra of zwitterionic ligand-capped CsPbBr3 NCs with four different edge lengths (d = 4.9, 7.2, 8.1, and 13.2 nm). The two lowest-energy excitonic transitions are quantitatively modeled over the full temperature range within the effective mass approximation considering the quasi-cubic NC shape and nonparabolicity of the electronic bands. Significantly, we find that the effective dielectric constant determined from the best fit model parameters is independent of temperature. Moreover, we observe a temperature-dependent Stokes shift that saturates at a finite value of Δ ≈ 10 meV at low temperatures for d = 7.2 nm NCs, which is absent in bulk CsPbBr3 films. Overall, these observations highlight differences between the temperature-dependent dielectric behavior of NC and bulk perovskites and point to the need for a more unified theoretical understanding of absorption and emission in halide perovskites.
Collapse
Affiliation(s)
- Wenbi Shcherbakov-Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Peter C Sercel
- Center for Hybrid Organic Inorganic Semiconductors for Energy, Golden, Colorado 80401, United States
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Franziska Krieg
- Department of Chemistry and Applied Bioscience, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Bioscience, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Qin C, Jiang Z, Zhou Z, Liu Y, Jiang Y. Multiexciton dynamics in CsPbBr 3nanocrystals: the dependence on pump fluence and temperature. NANOTECHNOLOGY 2021; 32:455702. [PMID: 34325407 DOI: 10.1088/1361-6528/ac18d7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Multiexcitons generation is a process of generating electron-hole pairs in nanostructured semiconductors by absorbing a single high-energy photon. The multiexciton process is essential for the performance of optoelectronic devices based on perovskite nanomaterials. In this paper, ultrafast time-resolved transient absorption spectroscopy is used to study the ultrafast dynamics of CsPbBr3nanocrystals. It is found that the multiexcitons Auger recombination lifetime increases with the decrease of pump fluence, while it is on the contrary for the hot carrier cooling time. The increase in the number of photons absorbed by each nanocrystal under high pump fluence slows down the relaxation of hot carriers to the band edge. The hot carrier cooling lifetime increases from 0.25 to 0.85 ps when the pump fluence increases from 6 to 127μJ cm-2. Temperature-dependent transient absorption spectroscopy exhibits that the relaxation process of hot carriers slows down sharply when the lattice temperature decreases from 280 to 80 K. Moreover, the exciton binding energy 46 meV of CsPbBr3nanocrystals is obtained by temperature-dependent steady-state photoluminescence spectroscopy. These findings provide insights for applications such as solar cells and light-emitting devices based on CsPbBr3nanocrystals.
Collapse
Affiliation(s)
- Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zhinan Jiang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zhongpo Zhou
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yufang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yuhai Jiang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, 453007, People's Republic of China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| |
Collapse
|
33
|
Lan ZA, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang X. A Fully Coplanar Donor-Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angew Chem Int Ed Engl 2021; 60:16355-16359. [PMID: 33945196 DOI: 10.1002/anie.202103992] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Charge generation and separation are regarded as the major constraints limiting the photocatalytic activity of polymeric photocatalysts. Herein, two new linear polyarylether-based polymers (PAE-CPs) with distinct linking patterns between their donor and acceptor motifs were tailor-made to investigate the influence of different linking patterns on the charge generation and separation process. Theoretical and experimental results revealed that compared to the traditional single-stranded linker, the double-stranded linking pattern strengthens donor-acceptor interactions in PAE-CPs and generates a coplanar structure, facilitating charge generation and separation, and enabling red-shifted light absorption. With these prominent advantages, the PAE-CP interlinked with a double-stranded linker exhibits markedly enhanced photocatalytic activity compared to that of its single-strand-linked analogue. Such findings can facilitate the rational design and modification of organic semiconductors for charge-induced reactions.
Collapse
Affiliation(s)
- Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xu Chi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
34
|
Ji S, Yuan X, Zheng J, Cao S, Ji W, Li H, Zhao J, Zhang H. Near-unity blue-orange dual-emitting Mn-doped perovskite nanocrystals with metal alloying for efficient white light-emitting diodes. J Colloid Interface Sci 2021; 603:864-873. [PMID: 34242990 DOI: 10.1016/j.jcis.2021.06.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
The tunable dual-color emitting Mn2+ doped CsPbCl3-xBrx nanocrystals (NCs) with near-unity photoluminescence quantum yield (PL QY) were synthesized through post-treatment of metal bromide at room temperature for fabrication of efficient warm white light-emitting diodes (WLEDs). Especially, the CdBr2 treated blue-orange emitting Mn doped NCs with various Mn/Pb molar feed ratios exhibit higher PL QY of 97% and longer Mn2+ PL lifetime of 0.9 ms. It is surprisingly found that the X-ray diffraction peak at 31.9° is almost not changed with increasing Br composition, meaning formation of metal alloying due to incorporation of amount of divalent cation in NCs. The strong and stable Mn2+ PL at temperature ranging from 80 K to 360 K are revealed and the temperature-dependent energy transfer efficiencies in Mn2+ doped CsPbCl1.5Br1.5 NCs are obtained. The enhancement mechanism of Mn2+ PL QY was attributed to improved energy transfer from exciton to Mn2+ d-d transition and suppressed defect state density after post-treatment. The efficient warm WLEDs with color rendering index of 90 and luminous efficacy of 92 lm/W at 10 mA were fabricated by combining blue-orange dual-emitting Mn2+ doped CsPbCl3-xBrx@SiO2 and green emissive CsPbBr3@SiO2 NCs with violet GaN chips.
Collapse
Affiliation(s)
- Sihang Ji
- College of Physics, Jilin University, Changchun 130023, China; Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; School of Physical Science and Technology, MOE Key Lab of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China
| | - Xi Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Jinju Zheng
- Institute of Materials, Ningbo University of Technology, Ningbo 315016, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Lab of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China
| | - Wenyu Ji
- College of Physics, Jilin University, Changchun 130023, China
| | - Haibo Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Lab of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China.
| | - Hanzhuang Zhang
- College of Physics, Jilin University, Changchun 130023, China.
| |
Collapse
|
35
|
Quy H, Truyen DH, Kim S, Bark CW. Reduced Defects and Enhanced Performance of (FAPbI 3) 0.97(MAPbBr 3) 0.03-Based Perovskite Solar Cells by Trimesic Acid Additives. ACS OMEGA 2021; 6:16151-16158. [PMID: 34179660 PMCID: PMC8223416 DOI: 10.1021/acsomega.1c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
A high-quality organolead trihalide perovskite film with large-sized crystalline grains and smooth surfaces is required to obtain efficient perovskite solar cells (PSCs). Herein, high-quality (FAPbI3)0.97(MAPbBr3)0.03 perovskite films were fabricated using trimesic acid (TMA) additives in a halide perovskite precursor solution to obtain efficient PSCs. The X-ray diffraction analysis and scanning electron microscopy of the films revealed that the TMA had a significant effect on the roughness of the films by acting as a surface link, thus reducing the surface defects and recombination at the grain boundaries. In addition, with the addition of the TMA additive, a smooth perovskite film with a flat surface and no pinholes was obtained. The perovskite film was used to fabricate a PSC device, and the device exhibited a high power conversion efficiency of 17.26%, which was higher than that of the control device (15.15%) under the same conditions. This study demonstrates a facile method to passivate defects on the perovskite layer via surface modification.
Collapse
Affiliation(s)
- Hoang
V. Quy
- Department
of Electrical Engineering, Gachon University, 13120 Seongnam, Korea
| | - Dang H. Truyen
- Department
of Electrical Engineering, Gachon University, 13120 Seongnam, Korea
| | - Sangmo Kim
- School
of Intelligent Mechatronics Engineering, Sejong University, 05006 Seoul, Korea
| | - Chung W. Bark
- Department
of Electrical Engineering, Gachon University, 13120 Seongnam, Korea
| |
Collapse
|
36
|
Lan Z, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang X. A Fully Coplanar Donor–Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi‐An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xu Chi
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| |
Collapse
|
37
|
Buizza LRV, Herz LM. Polarons and Charge Localization in Metal-Halide Semiconductors for Photovoltaic and Light-Emitting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007057. [PMID: 33955594 DOI: 10.1002/adma.202007057] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Indexed: 05/13/2023]
Abstract
Metal-halide semiconductors have shown excellent performance in optoelectronic applications such as solar cells, light-emitting diodes, and detectors. In this review the role of charge-lattice interactions and polaron formation in a wide range of these promising materials, including perovskites, double perovskites, Ruddlesden-Popper layered perovskites, nanocrystals, vacancy-ordered, and other novel structures, is summarized. The formation of Fröhlich-type "large" polarons in archetypal bulk metal-halide ABX3 perovskites and its dependence on A-cation, B-metal, and X-halide composition, which is now relatively well understood, are discussed. It is found that, for nanostructured and novel metal-halide materials, a larger variation in the strengths of polaronic effects is reported across the literature, potentially deriving from variations in potential barriers and the presence of interfaces at which lattice relaxation may be enhanced. Such findings are further discussed in the context of different experimental approaches used to explore polaronic effects, cautioning that firm conclusions are often hampered by the presence of alternate processes and interactions giving rise to similar experimental signatures. Overall, a complete understanding of polaronic effects will prove essential given their direct influence on optoelectronic properties such as charge-carrier mobilities and emission spectra, which are critical to the performance of energy and optoelectronic applications.
Collapse
Affiliation(s)
- Leonardo R V Buizza
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | - Laura M Herz
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
- TUM Institute for Advanced Study (IAS), Lichtenbergstraße 2 a, Garching bei München, 85748, Germany
| |
Collapse
|
38
|
Anni M, Cretí A, De Giorgi ML, Lomascolo M. Local Morphology Effects on the Photoluminescence Properties of Thin CsPbBr 3 Nanocrystal Films. NANOMATERIALS 2021; 11:nano11061470. [PMID: 34206075 PMCID: PMC8227478 DOI: 10.3390/nano11061470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
Lead halide perovskites are emerging as extremely interesting active materials for a wide variety of optoelectronic and photonic devices. A deep understanding of their photophysics is thus fundamental in order to properly understand the origins of the materials active properties and to provide strategies for improving them. In this work, we exploit the local morphological variations in a drop-cast thin CsPbBr3 nanocrystal film to show that the aggregation of NCs has strong effects on the peak wavelengths of PL spectra, the linewidth, and the intensity of dependence on temperature. An analysis based on models that are frequently used in the literature led to completely different conclusions about the intrinsic NC emission properties extracted from spectra measured in points with different contribution of the PL from the aggregates. Our results demonstrate that extreme care has to be used in order to correctly correlate the spectral PL features with the intrinsic emission properties of lead halide perovskite NC films.
Collapse
Affiliation(s)
- Marco Anni
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy;
- Correspondence:
| | - Arianna Cretí
- IMM-CNR Institute for Microelectronic and Microsystems, Via per Monteroni, 73100 Lecce, Italy; (A.C.); (M.L.)
| | - Maria Luisa De Giorgi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy;
| | - Mauro Lomascolo
- IMM-CNR Institute for Microelectronic and Microsystems, Via per Monteroni, 73100 Lecce, Italy; (A.C.); (M.L.)
| |
Collapse
|
39
|
Gao Y, Prodanov MF, Kang C, Vashchenko VV, Gupta SK, Chan CCS, Wong KS, Srivastava AK. Stable bright perovskite nanoparticle thin porous films for color enhancement in modern liquid crystal displays. NANOSCALE 2021; 13:6400-6409. [PMID: 33537691 DOI: 10.1039/d0nr07313j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cesium-lead halide perovskite nanoparticles are a promising class of luminescent materials for color and efficient displays. However, material stability is the key issue to solve before we can use these materials in modern displays. Encapsulation is one of the most efficient methods that can markedly improve the stability of perovskite nanoparticles against moisture, heat, oxygen, and light. Thus, we urgently need a low-cost, reliable, and device-compatible encapsulation method for the integration of nanomaterials into display devices. Here, we propose a facile encapsulation method to stabilize perovskite nanoparticles in thin polymer porous films. Using porous polymer films, we achieved good photoluminescence stability in the harsh environment of high temperature, high humidity and strong UV illumination. The good UV stability benefitted from the unique optical properties of the porous film. Besides, we observed photoluminescence enhancement of CsPbBr3 nanoparticle films in a high humidity environment. The stable CsPbBr3 nanoparticle thin porous film provides high brightness (236 nits) and great color enhancement for LCDs and is characterized by simple fabrication with easy scalability, thus it is very suitable for modern LCDs.
Collapse
Affiliation(s)
- Yiyang Gao
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, and Centre for Display Research, Department of Electronics and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong S.A.R, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Qin C, Jiang Z, Zhou Z, Liu Y, Jiang Y. Excitation Wavelength and Intensity-Dependent Multiexciton Dynamics in CsPbBr 3 Nanocrystals. NANOMATERIALS 2021; 11:nano11020463. [PMID: 33670301 PMCID: PMC7918819 DOI: 10.3390/nano11020463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022]
Abstract
CsPbBr3 has attracted great attention due to unique optical properties. The understanding of the multiexciton process is crucial for improving the performance of the photoelectric devices based on CsPbBr3 nanocrystals. In this paper, the ultrafast dynamics of CsPbBr3 nanocrystals is investigated by using femtosecond transient absorption spectroscopy. It is found that Auger recombination lifetime increases with the decrease of the excitation intensity, while the trend is opposite for the hot-exciton cooling time. The time of the hot-carriers cooling to the band edge is increased when the excitation energy is increased from 2.82 eV (440 nm) to 3.82 eV (325 nm). The lifetime of the Auger recombination reaches the value of 126 ps with the excitation wavelength of 440 nm. The recombination lifetime of the single exciton is about 7 ns in CsPbBr3 nanocrystals determined by nanosecond time-resolved photoluminescence spectroscopy. The exciton binding energy is 44 meV for CsPbBr3 nanocrystals measured by the temperature-dependent steady-state photoluminescence spectroscopy. These findings provide a favorable insight into applications such as solar cells and light-emitting devices based on CsPbBr3 nanocrystals.
Collapse
Affiliation(s)
- Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China; (C.Q.); (Z.J.); (Y.L.)
| | - Zhinan Jiang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China; (C.Q.); (Z.J.); (Y.L.)
| | - Zhongpo Zhou
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China; (C.Q.); (Z.J.); (Y.L.)
- Correspondence: (Z.Z.); (Y.J.)
| | - Yufang Liu
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China; (C.Q.); (Z.J.); (Y.L.)
| | - Yuhai Jiang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China; (C.Q.); (Z.J.); (Y.L.)
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Correspondence: (Z.Z.); (Y.J.)
| |
Collapse
|
41
|
Zhu Y, Cui Q, Chen J, Chen F, Shi Z, Zhao X, Xu C. Inhomogeneous Trap-State-Mediated Ultrafast Photocarrier Dynamics in CsPbBr 3 Microplates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6820-6829. [PMID: 33476517 DOI: 10.1021/acsami.0c20733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantitatively elucidating photocarrier dynamics mediated by trap states in perovskites is crucial for establishing a structure-performance relation and understanding the interfacial photocarrier transport mechanism. Here, trap-state-mediated photocarrier dynamics in defect-rich CsPbBr3 microplates are noninvasively investigated by ultrafast laser spectroscopy. Time-resolved photoluminescense (TRPL) measurements as a function of sample thickness indicate that trap densities of surface and bulk regions are inhomogeneous, leading to fast and slow decay components of TRPL, respectively. Fast and slow PL lifetimes present the same decreasing trend as the thickness is decreased from 5 to 0.1 μm, suggesting that both surface and bulk trap densities dramatically increase in sub-micrometer thick microplates. Furthermore, dynamical competition of ultrafast photocarrier energy relaxations between surface and bulk regions is studied in a 1.6 μm-thick sample by temporally correlating pump fluence-dependent TRPL with transient absorption signals. Strikingly, long-lived hot carriers (20 ps) are observed and complete filling of mid-gap trap states in the surface region can markedly enhance PL emission in the bulk region. By control measurements, we attribute these anomalous phenomena to the polaron-assisted ultrafast energy transfer process across the surface-bulk interface. Our results provide new insights into dynamical photocarrier energy relaxations and interfacial energy transport for inorganic perovskites.
Collapse
Affiliation(s)
- Yizhi Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiannan Cui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinping Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feng Chen
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Zengliang Shi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
42
|
Kumbhakar P, Roy Karmakar A, Das GP, Chakraborty J, Tiwary CS, Kumbhakar P. Reversible temperature-dependent photoluminescence in semiconductor quantum dots for the development of a smartphone-based optical thermometer. NANOSCALE 2021; 13:2946-2954. [PMID: 33503086 DOI: 10.1039/d0nr07874c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoluminescence (PL) intensity-based non-contact optical temperature sensors are in great demand due to their non-contact nature, rapid response, sensitivity, as well as thermal and chemical stability at different environmental conditions. However, herein, reversible temperature dependent PL emission quenching properties of chemically synthesized Mn2+-doped ZnS QDs (MZQDs) have been advantageously utilized for achieving the development of a smartphone-based optical thermometer. The temperature dependent variations of PL have been studied by taking MZQDs in various forms, such as in aqueous dispersion, powder form, and a polymer-encapsulated thin film. The origin of the PL quenching of MZQD in the polymer film has been cross-verified through temperature-dependent electrical conductivity measurement and the movement of charge carriers has also been confirmed by the first-principles DFT simulation. Through thermal cycling experiments on QD-encapsulated polymer film and by utilizing an indigenously-developed Android App based on color coordinates, a novel smartphone-based colorimetric imaging method for the measurement of temperature has been demonstrated in this work. The synthesized smart QDs might be suitable candidates for temperature sensing and the colorimetric thermometer probe may be utilized in various photonics applications as a smart optical sensor for daily life applications.
Collapse
Affiliation(s)
- Partha Kumbhakar
- Nanoscience Laboratory, Department of Physics, National Institute of Technology Durgapur, 713209, India.
| | | | | | | | | | | |
Collapse
|
43
|
Emission dynamics of conjugated oligomer (BECV-DHF)/quantum dot perovskite (CsPbBr3) composites in solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Rubino A, Francisco-López A, Barker AJ, Petrozza A, Calvo ME, Goñi AR, Míguez H. Disentangling Electron-Phonon Coupling and Thermal Expansion Effects in the Band Gap Renormalization of Perovskite Nanocrystals. J Phys Chem Lett 2021; 12:569-575. [PMID: 33382272 DOI: 10.1021/acs.jpclett.0c03042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The complex electron-phonon interaction occurring in bulk lead halide perovskites gives rise to anomalous temperature dependences, like the widening of the electronic band gap as temperature increases. However, possible confinement effects on the electron-phonon coupling in the nanocrystalline version of these materials remain unexplored. Herein, we study the temperature (ranging from 80 K to ambient) and hydrostatic pressure (from atmospheric to 0.6 GPa) dependence of the photoluminescence of ligand-free methylammonium lead triiodide nanocrystals with controlled sizes embedded in a porous silica matrix. This analysis allowed us to disentangle the effects of thermal expansion and electron-phonon interaction. As the crystallite size decreases, the electron-phonon contribution to the gap renormalization gains in importance. We provide a plausible explanation for this observation in terms of quantum confinement effects, showing that neither thermal expansion nor electron-phonon coupling effects may be disregarded when analyzing the temperature dependence of the optoelectronic properties of perovskite lead halide nanocrystals.
Collapse
Affiliation(s)
- Andrea Rubino
- Institute of Materials Science of Seville, Spanish National Research Council-University of Seville, C/Américo Vespucio 49, 41092 Seville, Spain
| | - Adrián Francisco-López
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Alex J Barker
- Center for Nano Science and Technology @PoliMi, Instituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milan, Italy
| | - Annamaria Petrozza
- Center for Nano Science and Technology @PoliMi, Instituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133 Milan, Italy
| | - Mauricio E Calvo
- Institute of Materials Science of Seville, Spanish National Research Council-University of Seville, C/Américo Vespucio 49, 41092 Seville, Spain
| | - Alejandro R Goñi
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Hernán Míguez
- Institute of Materials Science of Seville, Spanish National Research Council-University of Seville, C/Américo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
45
|
Granada-Ramirez DA, Arias-Cerón JS, Pérez-González M, Luna-Arias JP, Cruz-Orea A, Rodríguez-Fragoso P, Herrera-Pérez JL, Gómez-Herrera ML, Tomás SA, Vázquez-Hernández F, Durán-Ledezma AA, Mendoza-Alvarez JG. Chemical synthesis and optical, structural, and surface characterization of InP-In 2O 3 quantum dots. APPLIED SURFACE SCIENCE 2020; 530:147294. [PMID: 32834267 DOI: 10.1016/j.apsusc.2020.147224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 05/24/2023]
Abstract
InP-In2O3 colloidal quantum dots (QDs) synthesized by a single-step chemical method without injection of hot precursors (one-pot) were investigated. Specifically, the effect of the tris(trimethylsilyl)phosphine, P(TMS)3, precursor concentration on the QDs properties was studied to effectively control the size and shape of the samples with a minimum size dispersion. The effect of the P(TMS)3 precursor concentration on the optical, structural, chemical surface, and electronic properties of InP-In2O3 QDs is discussed. The absorption spectra of InP-In2O3 colloids, obtained by both UV-Vis spectrophotometry and photoacoustic spectroscopy, showed a red-shift in the high-energy regime as the concentration of the P(TMS)3 increased. In addition, these results were used to determine the band-gap energy of the InP-In2O3 nanoparticles, which changed between 2.0 and 2.9 eV. This was confirmed by Photoluminescence spectroscopy, where a broad-band emission displayed from 2.0 to 2.9 eV is associated with the excitonic transition of the InP and In2O3 QDs. In2O3 and InP QDs with diameters ranging approximately from 8 to 10 nm and 6 to 9 nm were respectively found by HR-TEM. The formation of the InP and In2O3 phases was confirmed by X-ray Photoelectron Spectroscopy.
Collapse
Affiliation(s)
- D A Granada-Ramirez
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - J S Arias-Cerón
- Cátedra CONACYT-Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado Sólido, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - M Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Col. Carboneras, C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del I.P.N., Av. Instituto Politécnico Nacional, Col. San Pedro Zacatenco, C.P. 07340 Ciudad de México, Mexico
| | - J P Luna-Arias
- Departamento de Biología Celular, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
- Programa de Doctorado de Nanociencias y Nanotecnología, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - A Cruz-Orea
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - P Rodríguez-Fragoso
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - J L Herrera-Pérez
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del I.P.N., Av. Instituto Politécnico Nacional, Col. San Pedro Zacatenco, C.P. 07340 Ciudad de México, Mexico
| | - M L Gómez-Herrera
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, C.P. 76010 Santiago de Querétaro, Querétaro, Mexico
| | - S A Tomás
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - F Vázquez-Hernández
- Universidad del Ejército y Fuerza Aérea, Escuela Militar de Ingenieros, Av. Industria Militar 261, Campo Militar No. 1-K, Lomas de San Isidro, Naucalpan, Edo. de México, Mexico
- Universidad Autónoma de la Ciudad de México, Av. La Corona 320, Col. Loma de la Palma, C.P. 07160 Ciudad de México, Mexico
| | - A A Durán-Ledezma
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico
| | - J G Mendoza-Alvarez
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| |
Collapse
|
46
|
Yadav SK, Grandhi GK, Dubal DP, de Mello JC, Otyepka M, Zbořil R, Fischer RA, Jayaramulu K. Metal Halide Perovskite@Metal-Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004891. [PMID: 33125820 DOI: 10.1002/smll.202004891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Metal halide perovskites (MHPs) have excellent optoelectronic and photovoltaic applications because of their cost-effectiveness, tunable emission, high photoluminescence quantum yields, and excellent charge carrier properties. However, the potential applications of the entire MHP family are facing a major challenge arising from its weak resistance to moisture, polar solvents, temperature, and light exposure. A viable strategy to enhance the stability of MHPs could lie in their incorporation into a porous template. Metal-organic frameworks (MOFs) have outstanding properties, with a unique network of ordered/functional pores, which render them promising for functioning as such a template, accommodating a wide range of MHPs to the nanosized region, alongside minimizing particle aggregation and enhancing the stability of the entrapped species. This review highlights recent advances in design strategies, synthesis, characterization, and properties of various hybrids of MOFs with MHPs. Particular attention is paid to a critical review of the emergence of MHP@MOF for comprehensive studies of next-generation materials for various technological applications including sensors, photocatalysis, encryption/decryption, light-emitting diodes, and solar cells. Finally, by summarizing the state-of-the-art, some promising future applications of reported hybrids are proposed. Considering the inherent correlation and synergic functionalities of MHPs and MOFs, further advancement; new functional materials; and applications can be achieved through designing MHP@MOF hybrids.
Collapse
Affiliation(s)
- Surendra K Yadav
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, NO-7491, Norway
| | - G Krishnamurthy Grandhi
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere, 33014, Finland
| | - Deepak P Dubal
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - John C de Mello
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, NO-7491, Norway
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, 85748, Germany
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Head of the Department, Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir, 181221, India
| |
Collapse
|
47
|
Haque A, Chonamada TD, Dey AB, Santra PK. Insights into the interparticle mixing of CsPbBr 3 and CsPbI 3 nanocubes: halide ion migration and kinetics. NANOSCALE 2020; 12:20840-20848. [PMID: 33043328 DOI: 10.1039/d0nr05771a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anion exchange of CsPbX3 nanocrystals (NCs) is an easy pathway to tune the bandgap over the entire visible region. Even the mixing of pre-synthesized CsPbBr3 and CsPbI3 NCs at room temperature leads to the formation of mixed halide CsPbBr3-xIx NCs. Understanding the reaction mechanism and the kinetics of interparticle mixing is essential for fundamental aspects and device applications. Here, we probed the kinetics of ion migration through time-dependent steady-state photoluminescence (PL) spectroscopy. We found three primary PL peaks after the mixing of NCs-bromide side peak, iodide side peak, and a new peak that emerges during the reaction. The reaction follows first-order kinetics and the activation energy is 0.75 ± 0.05 eV. We propose that the free oleylammonium halides which are in dynamic equilibrium with the NCs, eventually promote interparticle mixing that follows the anion migration from the surface to the core of the nanocrystal, which is the rate-limiting step. Overall, the inherent reaction rate between the halide anions and the nanocrystals governs the reaction kinetics.
Collapse
Affiliation(s)
- Anamul Haque
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru, India-560013. and Manipal Academy of Higher Education (MAHE), Manipal, India-576104
| | - Trupthi Devaiah Chonamada
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru, India-560013. and Manipal Academy of Higher Education (MAHE), Manipal, India-576104
| | - Arka Bikash Dey
- Surface Physics & Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India-700064
| | - Pralay K Santra
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru, India-560013.
| |
Collapse
|
48
|
Delmas WG, Vickers ET, DiBenedetto AC, Lum C, Hernandez IN, Zhang JZ, Ghosh S. Modulating Charge Carrier Dynamics and Transfer via Surface Modifications in Organometallic Halide Perovskite Quantum Dots. J Phys Chem Lett 2020; 11:7886-7892. [PMID: 32870009 DOI: 10.1021/acs.jpclett.0c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the effect of functionalization by acid/amine combinations of four aromatic capping ligands on the optoelectronic properties of CH3NH3PbBr3 perovskite quantum dots (PQDs). These include benzoic acid (BA), phenylacetic acid (PAA), benzylamine, and isopropyl benzylamine. We observe that charge transfer efficiency in PQD films comprising BA-ligated samples varies between 12% and 95% as the dot density is tuned from 102 to 105 dots/μm2 but is consistently ∼92% over that entire range for PAA-ligated PQDs. As temperature T decreases, initially, recombination is dominated by bound or trapped excitons, but below 80 K, spectral broadening, accompanied by free excitonic behavior, is observed. Our results indicate enhanced charge delocalization at lower values of T, which reduces the level of exciton confinement and recombination decay rates and underlines the importance of investigating PQD-ligand interactions at a fundamental level given the significant effect minute changes in ligand structures have on the optoelectronic properties of quantum dots.
Collapse
Affiliation(s)
- William G Delmas
- Department of Physics, School of Natural Sciences, University of California, Merced, California 95344, United States
| | - Evan T Vickers
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Albert C DiBenedetto
- Department of Physics, School of Natural Sciences, University of California, Merced, California 95344, United States
| | - Calista Lum
- Department of Physics, School of Natural Sciences, University of California, Merced, California 95344, United States
| | - Isaak N Hernandez
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Sayantani Ghosh
- Department of Physics, School of Natural Sciences, University of California, Merced, California 95344, United States
| |
Collapse
|
49
|
Liu X, Zhang X, Yu S, Li L, Xu J, Gong X, Ding R, Zhang J, Yin H. Epitaxial growth of highly stable perovskite CsPbBr 3/nZnS/Al core/multi-shell quantum dots with aluminium self-passivation. NANOTECHNOLOGY 2020; 31:375703. [PMID: 32480393 DOI: 10.1088/1361-6528/ab9868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a new type of colloidal nanocrystals, perovskite quantum dots (QDs) have received widespread attention. Water and oxygen in the air can affect the luminous efficiency of quantum dots, which can degrade the surface of QDs and affect their luminescence efficiency. Herein we discuss the synthesis of high-quality QDs using an uncomplicated coating method by which an ultrathin epitaxial Al self-passivation layer bearing homogeneous ligands can be coated on the QDs. The core/shell perovskite QDs maintain high luminescence efficiency and photostability. The CsPbBr3/2ZnS/Al QDs were only attenuated by 10% after 14 h of exposure to LED light. The temperature-dependent photoluminescence properties of the all-inorganic perovskite QDs, such as the PL intensity, emission peak position, and the full width at half maximum (FWHM), were investigated. The results indicated that the activation energy of QDs increases with the increase of the number of ZnS shell layers, its stability increases significantly. The introduction of Al does not change the luminescence mechanism of QDs. Finally, we have made flexible light-emitting device with CsPbBr3/2ZnS/Al QDs.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, and National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramírez D, Riveros G, Díaz P, Verdugo J, Núñez G, Lizama S, Lazo P, Dalchiele EA, Gau DL, Marotti RE, Anta JA, Contreras‐Bernal L, Riquelme A, Idigoras J. Electrochemically Assisted Growth of CsPbBr
3
‐Based Solar Cells Without Selective Contacts. ChemElectroChem 2020. [DOI: 10.1002/celc.202000782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Ramírez
- Instituto de Química y Bioquímica, Facultad de Ciencias Universidad de Valparaíso Avenida Gran Bretaña 1111, Playa Ancha Valparaíso Chile
| | - Gonzalo Riveros
- Instituto de Química y Bioquímica, Facultad de Ciencias Universidad de Valparaíso Avenida Gran Bretaña 1111, Playa Ancha Valparaíso Chile
| | - Patricia Díaz
- Instituto de Química y Bioquímica, Facultad de Ciencias Universidad de Valparaíso Avenida Gran Bretaña 1111, Playa Ancha Valparaíso Chile
| | - Javier Verdugo
- Instituto de Química y Bioquímica, Facultad de Ciencias Universidad de Valparaíso Avenida Gran Bretaña 1111, Playa Ancha Valparaíso Chile
| | - Gerard Núñez
- Instituto de Química y Bioquímica, Facultad de Ciencias Universidad de Valparaíso Avenida Gran Bretaña 1111, Playa Ancha Valparaíso Chile
| | - Susy Lizama
- Instituto de Química y Bioquímica, Facultad de Ciencias Universidad de Valparaíso Avenida Gran Bretaña 1111, Playa Ancha Valparaíso Chile
| | - Pamela Lazo
- Instituto de Química y Bioquímica, Facultad de Ciencias Universidad de Valparaíso Avenida Gran Bretaña 1111, Playa Ancha Valparaíso Chile
| | - Enrique A. Dalchiele
- Instituto de Física, Facultad de Ingeniería Universidad de la República Julio Herrera y Reissig 565, C.C. 30 11000 Montevideo Uruguay
| | - Daniel L. Gau
- Instituto de Física, Facultad de Ingeniería Universidad de la República Julio Herrera y Reissig 565, C.C. 30 11000 Montevideo Uruguay
| | - Ricardo E. Marotti
- Instituto de Física, Facultad de Ingeniería Universidad de la República Julio Herrera y Reissig 565, C.C. 30 11000 Montevideo Uruguay
| | - Juan A. Anta
- Departamento de Sistemas Físicos, Químicos y Naturales Universidad Pablo de Olavide 41013 Sevilla Spain
| | - Lidia Contreras‐Bernal
- Departamento de Sistemas Físicos, Químicos y Naturales Universidad Pablo de Olavide 41013 Sevilla Spain
| | - Antonio Riquelme
- Departamento de Sistemas Físicos, Químicos y Naturales Universidad Pablo de Olavide 41013 Sevilla Spain
| | - Jesús Idigoras
- Departamento de Sistemas Físicos, Químicos y Naturales Universidad Pablo de Olavide 41013 Sevilla Spain
| |
Collapse
|