Wang R, Li Z, Tian Q, Ma Z, Zhu M. Making graphene oxide (GO)-cladded SiO
2 spheres (SiO
2 @GO) as inorganic fillers for dental restorative resin composites.
Dent Mater 2023;
39:1076-1084. [PMID:
37827873 DOI:
10.1016/j.dental.2023.10.006]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE
Graphene oxide (GO) is of great interest in dentistry as the functional filler, mainly owing to its ability to inhibit the formation of cariogenic bacteria and possess low cytotoxicity to different cells, such as human dental pulp cells, HeLa cells, etc. However, its typical brown color limits the practical application.
METHODS
Here, the refractive-index-matched monodisperse SiO2 were used as the supporting substrates to synthesize GO-cladded SiO2 spheres (xSiO2 @ yGO) through a mild electrostatic self-assembly process, where x and y represent the amount of SiO2 and GO in the reaction mixture, respectively. The morphology and the optical performance of the obtained xSiO2 @ yGO particles were modulated by varying the mass ratio of SiO2 and GO (5:1, 10:1, 50:1, and 100:1). All developed hybrid particles were silanized and formulated with dimethacrylate-based resins. These were tested for curing depth, polymerization conversion, mechanical performance, in vitro cell viability, and antibacterial activity.
RESULTS
Of all xSiO2 @ yGO materials, increasing the mass ratio to 100:1 made the 100SiO2 @GO particles appear light brown and possess the lowest light absorbance from 300 to 800 nm. The results of CIEL*a*b* system showed that all these hybrid particles exhibited obvious discoloration compared with SiO2 and GO, where 100SiO2 @GO possessed the smallest color difference. Furthermore, following the results of curing depth, polymerization conversion, and mechanical performance of dental composites, the optimal filler composition was 100SiO2 @GO at 5 wt% filler loading. The resultant 100SiO2 @GO-filled composite produced the highest flexural strength (115 ± 12 MPa) and the lowest bacterial concentration (6.7 × 108 CFU/mL) than those of the resin matrix (78 ± 11 MPa; 9.2 × 108 CFU/mL) and 5 wt% SiO2-filled composite (106 ± 9 MPa; 9.1 × 108 CFU/mL), respectively, without affecting in vitro cell viability.
SIGNIFICANCE
The facile and mild synthesis of xSiO2 @ yGO hybrid particles provided a convenient way to tune their optical property. The optimal 100SiO2 @GO particles could be considered as the promising antibacterial filler to be applied in dental care and therapy.
Collapse