1
|
Bharti A, Turchet A, Marmiroli B. X-Ray Lithography for Nanofabrication: Is There a Future? FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.835701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
X-ray lithography has been first proposed almost 50 years ago, and the related LIGA process around 25 years ago. It is therefore a good time to make an analysis of the technique, with its pros and cons. In this perspective article, we describe X-ray lithography’s latest advancements. First, we report the improvement in the fabrication of the high aspect ratio and high-resolution micro/nanostructures. Then, we present the radiation-assisted synthesis and processing of novel materials for the next generation of functional devices. We finally draw our conclusion on the future prospects of the technique.
Collapse
|
2
|
Gupta T, Strelcov E, Holland G, Schumacher J, Yang Y, Esch MB, Aksyuk V, Zeller P, Amati M, Gregoratti L, Kolmakov A. Electron and X-ray Focused Beam-Induced Cross-Linking in Liquids: Toward Rapid Continuous 3D Nanoprinting and Interfacing using Soft Materials. ACS NANO 2020; 14:12982-12992. [PMID: 32935540 PMCID: PMC7986474 DOI: 10.1021/acsnano.0c04266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiphoton polymer cross-linking evolves as the core process behind high-resolution additive microfabrication with soft materials for implantable/wearable electronics, tissue engineering, microrobotics, biosensing, drug delivery, etc. Electrons and soft X-rays, in principle, can offer even higher resolution and printing rates. However, these powerful lithographic tools are difficult to apply to vacuum incompatible liquid precursor solutions used in continuous additive fabrication. In this work, using biocompatible hydrogel as a model soft material, we demonstrate high-resolution in-liquid polymer cross-linking using scanning electron and X-ray microscopes. The approach augments the existing solid-state electron/X-ray lithography and beam-induced deposition techniques with a wider class of possible chemical reactions, precursors, and functionalities. We discuss the focused beam cross-linking mechanism, the factors affecting the ultimate feature size, and layer-by-layer printing possibilities. The potential of this technology is demonstrated on a few practically important applications such as in-liquid encapsulation of nanoparticles for plasmonic sensing and interfacing of viable cells with hydrogel electrodes.
Collapse
Affiliation(s)
- Tanya Gupta
- NIST, Gaithersburg, MD 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - Evgheni Strelcov
- NIST, Gaithersburg, MD 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Späth A. Additive Nano-Lithography with Focused Soft X-rays: Basics, Challenges, and Opportunities. MICROMACHINES 2019; 10:E834. [PMID: 31801198 PMCID: PMC6953100 DOI: 10.3390/mi10120834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
Focused soft X-ray beam induced deposition (FXBID) is a novel technique for direct-write nanofabrication of metallic nanostructures from metal organic precursor gases. It combines the established concepts of focused electron beam induced processing (FEBIP) and X-ray lithography (XRL). The present setup is based on a scanning transmission X-ray microscope (STXM) equipped with a gas flow cell to provide metal organic precursor molecules towards the intended deposition zone. Fundamentals of X-ray microscopy instrumentation and X-ray radiation chemistry relevant for FXBID development are presented in a comprehensive form. Recently published proof-of-concept studies on initial experiments on FXBID nanolithography are reviewed for an overview on current progress and proposed advances of nanofabrication performance. Potential applications and advantages of FXBID are discussed with respect to competing electron/ion based techniques.
Collapse
Affiliation(s)
- Andreas Späth
- Friedrich-Alexander-University Erlangen-Nuremberg, Physical Chemistry II, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Fallica R, Watts B, Rösner B, Della Giustina G, Brigo L, Brusatin G, Ekinci Y. Changes in the near edge x-ray absorption fine structure of hybrid organic-inorganic resists upon exposure. NANOTECHNOLOGY 2018; 29:36LT03. [PMID: 29901453 DOI: 10.1088/1361-6528/aaccd4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the near edge x-ray absorption fine structure (NEXAFS) spectroscopy of hybrid organic-inorganic resists. These materials are nonchemically amplified systems based on Si, Zr, and Ti oxides, synthesized from organically modified precursors and transition metal alkoxides by a sol-gel route and designed for ultraviolet, extreme ultraviolet (EUV) and electron beam lithography. The experiments were conducted using a scanning transmission x-ray microscope (STXM) which combines high spatial-resolution microscopy and NEXAFS spectroscopy. The absorption spectra were collected in the proximity of the carbon edge (∼290 eV) before and after in situ exposure, enabling the measurement of a significant photo-induced degradation of the organic group (phenyl or methyl methacrylate, respectively), the degree of which depends on the configuration of the ligand. Photo-induced degradation was more efficient in the resist synthesized with pendant phenyl substituents than it was in the case of systems based on bridging phenyl groups. The degradation of the methyl methacrylate group was relatively efficient, with about half of the initial ligands dissociated upon exposure. Our data reveal that such dissociation can produce different outcomes, depending on the structural configuration. While all the organic groups were expected to detach and desorb from the resist in their entirety, a sizeable amount of them remained and formed undesired byproducts such as alkene chains. In the framework of the materials synthesis and engineering through specific building blocks, these results provide a deeper insight into the photochemistry of resists, in particular for EUV lithography.
Collapse
|