1
|
Badazhkova VD, Savela R, Leino R. Selective modification of hydroxyl groups in lignin model compounds by ruthenium-catalyzed transfer hydrogenation. Dalton Trans 2022; 51:6587-6596. [PMID: 35315857 DOI: 10.1039/d2dt00267a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective ruthenium-catalyzed oxidation of lignin diol model compounds and lignin was accomplished by a transfer hydrogenation methodology. The developed procedure allows us to selectively oxidize benzylic secondary alcohols in model diols and spruce milled wood lignin in the presence of a commercially available Shvo catalyst under aerobic conditions. Six ketoalcohols were obtained in 70-92% yields from the model compounds, which also included lignin monomers containing 5-5' and β-O-4 linkages. The developed method can be used as an intermediate step for the introduction of new functional groups into lignin-type structures and lignin to allow their further modifications.
Collapse
Affiliation(s)
- Veronika D Badazhkova
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500 Åbo, Finland.
| | - Risto Savela
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500 Åbo, Finland.
| | - Reko Leino
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500 Åbo, Finland.
| |
Collapse
|
2
|
Zhang Z, Yin G, Andrioletti B. Advances in value-added aromatics by oxidation of lignin with transition metal complexes. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00498-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Kumar A, Biswas B, Kaur R, Krishna BB, Bhaskar T. Hydrothermal oxidative valorisation of lignin into functional chemicals: A review. BIORESOURCE TECHNOLOGY 2021; 342:126016. [PMID: 34582987 DOI: 10.1016/j.biortech.2021.126016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Lignin is a waste by-product of bio-refineries and paper-pulp industries. It has an attractive potential to produce numerous valuable chemicals due to its highly aromatic character. At present, large amount of lignin is burnt as a source of energy due to lack of suitable efficient lignin valorisation processes. The challenge exists in handling its complex heterogeneous structure and bond breaking at selective locations. The production of high value chemicals/petrochemical feedstocks will improve the economic viability of a bio-refinery. Oxidative depolymerization is a promising way to produce functional compounds from lignin. The aim of the current review is to present the novel methodologies currently used in the area of lignin oxidative depolymerization including effect of temperature, residence time, solvent, oxidizing agents, homogeneous and heterogeneous catalysis etc. It aims to present an insight into the structure of lignin and its breakdown mechanism.
Collapse
Affiliation(s)
- Avnish Kumar
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bijoy Biswas
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramandeep Kaur
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya B Krishna
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thallada Bhaskar
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Li W, Wang Y, Li D, Jiang J, Li K, Zhang K, An Q, Zhai S, Wei L. 1-Ethyl-3-methylimidazolium acetate ionic liquid as simple and efficient catalytic system for the oxidative depolymerization of alkali lignin. Int J Biol Macromol 2021; 183:285-294. [PMID: 33894259 DOI: 10.1016/j.ijbiomac.2021.04.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
The oxidative depolymerization of alkali lignin (AL) in 1-ethyl-3-methylimidazolium acetate ([C2C1im]OAc) system without additional catalyst was investigated under mild conditions (initial O2 pressure of 1.5 MPa, 80 °C-100 °C). Compared with other ionic liquids (ILs), the cooperation of imidazolium cation and acetate anion successfully enhanced AL conversion. Among the investigated imidazolium acetate ILs with ethyl- to octyl-side chains, [C2C1im]OAc presented the best catalytic capacity for AL oxidative depolymerization. Adding an appropriate amount of water to [C2C1im]OAc can further improve the reaction efficiency. In the [C2C1im]OAc system with the addition of 0.10-0.25 mL of water, approximately 77 wt% AL was depolymerized into small molecule soluble products at 100 °C for 2 h. The extracted oil was composed mainly of phenolic derived compounds. With the use of the [C2C1im]OAc-based system, the specific inter-unit linkages of lignin were broken down, and residual lignin with low molecular weight and narrow polydispersity index (1.88-1.96) was obtained. Compared with that in AL conversion with fresh [C2C1im]OAc, only a minimal decrease (~3.2%) was observed with the recovered IL until the fifth cycle. These findings revealed that [C2C1im]OAc-based system is a simple and efficient catalytic system for lignin oxidative depolymerization.
Collapse
Affiliation(s)
- Wenbo Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yilin Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongchen Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachi Jiang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kunlan Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kaili Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ligang Wei
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Cao Y, Zhang C, Tsang DC, Fan J, Clark JH, Zhang S. Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01617] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yang Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Cheng Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - James H. Clark
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials–A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112417] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Klapiszewski Ł, Szalaty TJ, Kurc B, Stanisz M, Zawadzki B, Skrzypczak A, Jesionowski T. Development of Acidic Imidazolium Ionic Liquids for Activation of Kraft Lignin by Controlled Oxidation: Comprehensive Evaluation and Practical Utility. Chempluschem 2018; 83:361-374. [PMID: 31957359 DOI: 10.1002/cplu.201800123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 11/11/2022]
Abstract
A novel, eco-friendly method for the activation of lignin by controlled oxidation was studied. The results obtained for six acidic imidazolium ionic liquids containing the hydrogen sulfate anion were compared. The key goal of this research was to increase the content of carbonyl groups in the lignin structure because these may play the main role in the transport of protons and electrons in active materials for electrochemical applications. By means of a variety of analytical techniques (FTIR, 13 C CP/MAS NMR, and X-ray photoelectron spectroscopy; selected reactions to determine the presence of carbonyl groups; SEM; zeta-potential analysis; thermogravimetric analysis/differential thermogravimetric analysis; and porous structure analysis), it was determined that the product obtained after treatment with 3-cyclohexyloxymethy-1-methylimidazolium hydrogen sulfate had favorable properties, in terms of the target application. Electrochemical tests proved that the obtained materials could be used as anodes in lithium batteries. The results show that the activation of lignin with ionic liquids can increase its capacity and maintain stability.
Collapse
Affiliation(s)
- Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Tadeusz J Szalaty
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Beata Kurc
- Institute of Chemical and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Małgorzata Stanisz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Bartosz Zawadzki
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Andrzej Skrzypczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland
| |
Collapse
|
8
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Fang Z, Meier MS. Toward the oxidative deconstruction of lignin: oxidation of β-1 and β-5 linkages. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00409a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of monomers and other products from the oxidation of β-1 and β-5 lignin models.
Collapse
Affiliation(s)
- Zhen Fang
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Mark S. Meier
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| |
Collapse
|
10
|
Zhao X, Zhang Y, Wei L, Hu H, Huang Z, Yang M, Huang A, Wu J, Feng Z. Esterification mechanism of lignin with different catalysts based on lignin model compounds by mechanical activation-assisted solid-phase synthesis. RSC Adv 2017. [DOI: 10.1039/c7ra10482k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Four lignin model compounds were used in the reaction with acetic anhydride, with 4-dimethyl amino pyridine, sodium acetate, and sulfuric acid as catalysts to learn about the esterification mechanism of lignin by MASPS technology.
Collapse
Affiliation(s)
- Xiaohong Zhao
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
- College of Materials and Environmental Engineering
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Liping Wei
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Mei Yang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Aimin Huang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Juan Wu
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| | - Zhenfei Feng
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- China
| |
Collapse
|