1
|
Li X, Zhao S, Lu C, Shen Y. New secondary metabolites produced by an engineered strain Streptomyces sp. XZQH13OEΔastC. Nat Prod Res 2024:1-6. [PMID: 39105411 DOI: 10.1080/14786419.2024.2385701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Two previously undescribed alkaloids (1-2), five known alkaloids (3-7) and five cyclodipeptides (8-12) were obtained from an ansatrienin-producing mutant strain Streptomyces sp. XZQH13OEΔ astC. Their structures were elucidated by analysis of the 1D, 2D NMR and ESI HRMS data and by comparison with the reported data. The antibacterial activities of compounds 1-12 were evaluated.
Collapse
Affiliation(s)
- Xiaomei Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengliang Zhao
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Yang X, Wu W, Li H, Zhang M, Chu Z, Wang X, Sun P. Natural occurrence, bioactivity, and biosynthesis of triene-ansamycins. Eur J Med Chem 2022; 244:114815. [DOI: 10.1016/j.ejmech.2022.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
3
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
4
|
Li H, Chen S, Wang J, Zhang M, Wu W, Liu W, Sun P. Ansafurantrienins, Unprecedented Ansatrienin Derivatives Formed via Photocatalytic Intramolecular [3 + 2] Oxidative Cycloaddition. Org Lett 2022; 24:592-596. [PMID: 34981945 DOI: 10.1021/acs.orglett.1c04032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ansafurantrienins A-H, bearing a unique 5/6/8 dihydrofuran-fused benzo[b]azocine chromophore, were isolated from Streptomyces flaveolus. Their structures, especially in the dihydrofuran unit, were unambiguously established by spectroscopic analyses, molecular modeling, and TDDFT/ECD calculations. The ansafurantrienins were proposed to be generated via intramolecular [3 + 2] oxidative cycloaddition, which was achieved by photocatalytic reaction with UV light and oxygen and found to have solvent-dependent stereoselectivity. Ansafurantrienins showed significant antiproliferative effects against pancreatic cancer cells. The results led to a structural revision of strecacansamycins.
Collapse
Affiliation(s)
- Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Shuo Chen
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Mengxue Zhang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
5
|
Dai LP, Li W, Wang HX, Lu CH. Three new polyketides from vasR2 gene over-expressed mutant strain of Verrucosispora sp. NS0172. Chin J Nat Med 2021; 19:536-539. [PMID: 34247777 DOI: 10.1016/s1875-5364(21)60053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 10/20/2022]
Abstract
Over-expression of the pathway specific positive regulator gene is an effective way to activate silent gene cluster. In the curret study, the SARP family regulatory gene, vasR2, was over-expressed in strain Verrucosispora sp. NS0172 and the cryptic gene cluster responsible for the biosynthesis of pentaketide ansamycin was partially activated. Two tetraketides (1 and 2) and a triketide (3) ansamycins, together with five known compounds (4-8), were isolated and elucidated from strain NS0172OEvasR2. Their NMR data were completely assigned by analysis of their HR-ESI-MS and 1H, 13C NMR, HMQC, HMBC and 1H-1H COSY spectra.
Collapse
Affiliation(s)
- Li-Ping Dai
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wen Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hao-Xin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Chun-Hua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
6
|
Liu LL, Chen ZF, Liu Y, Tang D, Gao HH, Zhang Q, Gao JM. Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins from Streptomyces cacaoi subsp. asoensis. Org Chem Front 2020. [DOI: 10.1039/d0qo00557f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins.
Collapse
Affiliation(s)
- Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Zhi-Fan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Yao Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Dan Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Hua-Hua Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- People's Republic of China
| |
Collapse
|
7
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
8
|
Tang D, Liu LL, He QR, Yan W, Li D, Gao JM. Ansamycins with Antiproliferative and Antineuroinflammatory Activity from Moss-Soil-Derived Streptomyces cacaoi subsp. asoensis H2S5. JOURNAL OF NATURAL PRODUCTS 2018; 81:1984-1991. [PMID: 30132670 DOI: 10.1021/acs.jnatprod.8b00203] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three new 21-membered macrocyclic benzenoid ansamycins, trienomycins J-L (1-3), together with seven known analogues, trienomycins A-G (4-10), were isolated from liquid culture of the moss soil-derived actinomycete Streptomyces cacaoi subsp. asoensis H2S5. The structures of the new compounds were elucidated by extensive NMR spectroscopic analysis and HRESIMS data. The absolute configurations of trienomycins were established by Marfey's method. Antiproliferative assays showed that compound 1 had the greatest activity against HepG2 cells, with an IC50 value of 0.1 μM. The induction of apoptosis of HepG2 cells by 1 was investigated by flow cytometry and evaluation of nuclear morphology. In addition, all of the compounds inhibited nitric oxide production with IC50 values of 0.02 to 8.3 μM, and compounds 1, 4, and 7 were the most potent inhibitors. These findings will facilitate the development of new antineuroinflammatory agents.
Collapse
Affiliation(s)
- Dan Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Wen Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| |
Collapse
|
9
|
Fan Y, Wang C, Wang L, Chairoungdua A, Piyachaturawat P, Fu P, Zhu W. New Ansamycins from the Deep-Sea-Derived Bacterium Ochrobactrum sp. OUCMDZ-2164. Mar Drugs 2018; 16:md16080282. [PMID: 30111735 PMCID: PMC6117703 DOI: 10.3390/md16080282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/19/2023] Open
Abstract
Two new ansamycins, trienomycins H (1) and I (2), together with the known trienomycinol (3), were isolated from the fermentation broth of the deep-sea-derived bacterium Ochrobactrum sp. OUCMDZ-2164. Their structures, including their absolute configurations, were elucidated based on spectroscopic analyses, ECD spectra, and Marfey’s method. Compound 1 exhibited cytotoxic effects on A549 and K562 cell lines with IC50 values of 15 and 23 μM, respectively.
Collapse
Affiliation(s)
- Yaqin Fan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Cong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| |
Collapse
|
10
|
Wang J, Li X, Lu C, Shen Y. Diversity of Polyketide Chains Achieved by Deleting the Tailoring Genes in the Biosynthesis of Ansatrienins. Chembiochem 2018; 19:256-262. [PMID: 29193538 DOI: 10.1002/cbic.201700528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 11/06/2022]
Abstract
The ast gene cluster (GenBank accession numbers KF813023.1 and KP284551) was characterized to be responsible for the biosynthesis of ansatrienins in Streptomyces sp. XZQH13, which contains astC, astF1, and astF2 genes involved in the assembly of the N-cyclohexanoyl d-alanyl side chain and the hydroxylation of C-19, respectively. Further to investigating the biosynthetic mechanism of ansatrienins, herein we constructed the mutant strains XZQH13OEΔastF2 and XZQH13OEΔastCΔastF2. Three new ansatrienin analogues, namely, ansatrienols I-K (1-3), along with trienomycinol (4) and 3-O-demethyltrienomycinol (5), were isolated from the XZQH13OEΔastCΔastF2 strain, and trienomycin A (6) and trienomycin G (7) were isolated from the XZQH13OEΔastF2 strain. Their structures were determined by a combination of high-resolution MS (ESI) and 1D and 2D NMR spectroscopy. Accordingly, a pathway for the biosynthesis of these new ansatrienins was proposed.
Collapse
Affiliation(s)
- Jianxiong Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoman Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
11
|
Zhang Z, Zhang J, Song R, Guo Z, Wang H, Zhu J, Lu C, Shen Y. Ansavaricins A–E: five new streptovaricin derivatives from Streptomyces sp. S012. RSC Adv 2017. [DOI: 10.1039/c6ra27405f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Five new polyketides of the ansamycin class, named ansavaricins A–E (1–5), together with three known streptovaricins 6–8, were isolated from the Streptomyces sp. S012 strain.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Chemical Biology
- Ministry of Education
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| | - Juanli Zhang
- Department of Pharmacy
- Xijing Hospital
- The Fourth Military Medical University
- Xi'an
- P. R. China
| | - Rentai Song
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Zhixing Guo
- Key Laboratory of Chemical Biology
- Ministry of Education
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology
- Ministry of Education
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| | - Yuemao Shen
- Key Laboratory of Chemical Biology
- Ministry of Education
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
| |
Collapse
|
12
|
Zhang Z, Wu X, Song R, Zhang J, Wang H, Zhu J, Lu C, Shen Y. Ansavaricins F–I, new DNA topoisomerase inhibitors produced by Streptomyces sp. S012. RSC Adv 2017. [DOI: 10.1039/c7ra00961e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ansamycins are a family of macrolactams characterized by an aromatic chromophore with an aliphatic chain (ansa chain) connected back to a nonadjacent position through an amide bond.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Xingkang Wu
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Rentai Song
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Juanli Zhang
- Department of Pharmacy
- Xijing Hospital
- The Fourth Military Medical University
- Xi'an
- P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|
13
|
Abstract
Neoansamycins D–I with unusual extender units and diverse post-PKS modifications were isolated from the Streptomyces sp. SR201nam1OE strain.
Collapse
Affiliation(s)
- Mengyujie Liu
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Ruocong Tang
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Shanren Li
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology
- Shandong University
- Jinan
- P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|