1
|
Butovych H, Keshavarz F, Barbiellini B, Lähderanta E, Ilnytskyi J, Patsahan T. Role of EDTA protonation in chelation-based removal of mercury ions from water. Phys Chem Chem Phys 2024; 26:25402-25411. [PMID: 39318161 DOI: 10.1039/d4cp02980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A robust method of hazardous metal ion removal from an aqueous environment involves the use of chelating agents, such as ethylenediaminetetraacetic acid (EDTA). Here, we focus on mercury (Hg2+) uptake by EDTA using both molecular dynamics and density functional theory simulations. Our results indicate that the deprotonation of the EDTA carboxylate groups improves the localization of negative charge on the deprotonated sites. This mechanism facilitates charge transfer between the metal ions and EDTA, and provides a stronger and more stable EDTA-Hg2+ complex formation improving the efficiency of the chelation process. The best metal removal conditions are achieved using the fully deprotonated form of EDTA, which naturally occurs at pH levels above 3.
Collapse
Affiliation(s)
- Halyna Butovych
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Fatemeh Keshavarz
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Erkki Lähderanta
- Department of Physics, School of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
- Department of Physics, Universitat de les Illes Balears, Cra Valldemossa, km. 7.5, 07122 Palma, Spain
| | - Jaroslav Ilnytskyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 S. Bandera str., 79013 Lviv, Ukraine
| | - Taras Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii str., 79011 Lviv, Ukraine.
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 S. Bandera str., 79013 Lviv, Ukraine
| |
Collapse
|
2
|
Carroll L, Holt D, Cha H, Catazaro J, Thorley KJ, Dannals RF, Pomper MG. Investigating the Mechanism of Aluminum Fluoride Chelation. Inorg Chem 2024; 63:9831-9841. [PMID: 38739498 DOI: 10.1021/acs.inorgchem.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Aluminum fluoride (AlF) complexes have been used over the past decade to incorporate [18F]fluoride into large biomolecules in a highly selective fashion by using relatively facile conditions. However, despite their widespread usage, there are a large number of variations in the reaction conditions, without a definitive discussion provided on the mechanism to understand how these changes would alter the end result. Herein, we report a detailed mechanistic investigation of the reaction, using a mixture of theoretical studies, fluorine-19 and fluorine-18 chemistry, and the consequences it has on the efficient clinical translation of AlF-containing imaging agents.
Collapse
Affiliation(s)
- Laurence Carroll
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Daniel Holt
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Hyojin Cha
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Jonathan Catazaro
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Karl J Thorley
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| |
Collapse
|
3
|
U NKP, K JV, K M. Complexation behaviour of piceatannol ligand with Ti(IV) and Zr(IV) metal ions: a combined DFT and deep learning investigation. Struct Chem 2023. [DOI: 10.1007/s11224-023-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Ani FE, Ibeji CU, Obasi NL, Kelani MT, Ukogu K, Tolufashe GF, Ogundare SA, Oyeneyin OE, Maguire GEM, Kruger HG. Crystal, spectroscopic and quantum mechanics studies of Schiff bases derived from 4-nitrocinnamaldehyde. Sci Rep 2021; 11:8151. [PMID: 33854091 PMCID: PMC8046777 DOI: 10.1038/s41598-021-87370-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Two Schiff bases, (E)-1-(4-methoxyphenyl)-N-((E)-3-(4-nitrophenyl)allylidene)methanamine (compound 1) and (E)-N-((E)-3-(4-nitrophenyl)allylidene)-2-phenylethanamine (compound 2) have been synthesized and characterized using spectroscopic methods; time of flight MS, 1H and 13C NMR, FT-IR, UV-VIS, photoluminescence and crystallographic methods. The structural and electronic properties of compounds 1 and 2 in the ground state were also examined using the DFT/B3LYP functional and 6-31 + G(d,p) basis set, while the electronic transitions for excited state calculations were carried out using the TD-DFT/6-31 + G(d,p) method. The Schiff base compounds, 1 and 2 crystallized in a monoclinic crystal system and the P21/c space group. The emission spectra of the compounds are attributed to conjugated π-bond interaction while the influence of the intra-ligand charge transfer resulted in a broad shoulder for 1 and a double emission peak for 2. The calculated transitions at 450 and 369 nm for 1 and 2 respectively are in reasonable agreement with the experimental results. The higher values of dipole moment, linear polarizability and first hyperpolarizability of 1, suggest a better optical property and better candidate for the development of nonlinear optical (NLO) materials.
Collapse
Affiliation(s)
- Friday E. Ani
- grid.10757.340000 0001 2108 8257Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001 Enugu State Nigeria ,grid.16463.360000 0001 0723 4123Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa
| | - Collins U. Ibeji
- grid.10757.340000 0001 2108 8257Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001 Enugu State Nigeria ,grid.16463.360000 0001 0723 4123Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa
| | - Nnamdi L. Obasi
- grid.10757.340000 0001 2108 8257Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001 Enugu State Nigeria
| | - Monsuru T. Kelani
- grid.16463.360000 0001 0723 4123Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa
| | - Kingsley Ukogu
- grid.10757.340000 0001 2108 8257Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001 Enugu State Nigeria
| | - Gideon F. Tolufashe
- grid.16463.360000 0001 0723 4123Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa ,grid.5808.50000 0001 1503 7226Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Segun A. Ogundare
- grid.412320.60000 0001 2291 4792Department of Chemical Sciences, Olabisi Onabanjo University, P. M. B. 2002, Ago-Iwoye, Nigeria ,grid.16463.360000 0001 0723 4123School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041 South Africa
| | - Oluwatoba E. Oyeneyin
- grid.442500.70000 0001 0591 1864Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Ondo State Nigeria
| | - Glenn E. M. Maguire
- grid.16463.360000 0001 0723 4123Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa ,grid.16463.360000 0001 0723 4123School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041 South Africa
| | - Hendrik G. Kruger
- grid.16463.360000 0001 0723 4123Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa
| |
Collapse
|
5
|
Nwokelo MO, Izuogu DC, Okpareke OC, Ibeji CU, Oyeka EE, Lane JR, Asegbeloyin JN. Structural, computational and antimicrobial studies of 2–[(E)–[2–(2,4,6-trimethylbenzenesulfonyl)-hydrazinylidene] methyl] benzoic acid and its Cu(II), Zn(II) and Co(II) complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Adeowo FY, Ejalonibu MA, Elrashedy AA, Lawal MM, Kumalo HM. Multi-target approach for Alzheimer's disease treatment: computational biomolecular modeling of cholinesterase enzymes with a novel 4- N-phenylaminoquinoline derivative reveal promising potentials. J Biomol Struct Dyn 2020; 39:3825-3841. [PMID: 33030113 DOI: 10.1080/07391102.2020.1826129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The identification of dual inhibitors targeting the active sites of the cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), have lately surfaced as a multi-approach towards Alzheimer treatment. More recently, a novel series of 4-N-phenylaminoquinolines was synthesized and evaluated against AChE and BuChE in which one of the compounds displayed appreciable inhibition compared to the standard compound, galantamine. To provide a clearer picture of the inhibition mechanism of this potent compound at the molecular level, computational biomolecular modeling was carried out. The investigation was initiated with the exploration of the chemical properties of the identified compound 11 b and reference drug, galantamine. Density functional theory (DFT) calculations reveal some conceptual parameters that provide information on the stability and reactivity of the compounds as potential inhibitors. To unveil the binding mechanism, energetics and enzyme-ligand interactions, molecular dynamics (MD) simulations of six different systems were executed over a period. Calculated binding free energy values are in the same order with experimental IC50 data. Identification of the main residues driving optimum binding of the active compound 11 b to the binding region of both AChE and BuChE showed Trp81 and Trp110 as the most important, respectively. It was proposed that the studied compound could serve as a dual inhibitor for AChE and BuChE, therefore, would potentially be a promising moiety in a multi-target approach for the treatment of Alzheimer's disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Y Adeowo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Murtala A Ejalonibu
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A Elrashedy
- Molecular Bio-computational and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monsurat M Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Yusuf TL, Ibeji CU, van Zyl WE. Nickel(II) complexes from phosphor-dichalcogenide (P/Se2 and P/S2) type ligands: Synthesis, structure and theoretical calculations. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Synthesis, spectral, structure and computational studies of novel transition Metal(II) complexes of (Z)-((dimethylcarbamothioyl)thio) ((1,1,1-trifluoro-4-(naphthalen-2-yl)-4-oxobut-2-en-2-yl)oxy). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Chioma F, Ibeji CU, Okpareke O. Novel 3d divalent metallic complexes of 3-[(2-hydroxy-5-methyl-phenylimino)-methyl]-napthalen-2-ol: Synthesis, spectral characterization, antimicrobial and computational studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Drug repurposing: Fusidic acid as a potential inhibitor of M. tuberculosis FtsZ polymerization – Insight from DFT calculations, molecular docking and molecular dynamics simulations. Tuberculosis (Edinb) 2020; 121:101920. [DOI: 10.1016/j.tube.2020.101920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022]
|
11
|
Shi S, Yao L, Li L, Wu Z, Zha Z, Kung HF, Zhu L, Fang DC. Synthesis of novel technetium-99m tricarbonyl-HBED-CC complexes and structural prediction in solution by density functional theory calculation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191247. [PMID: 31827858 PMCID: PMC6894603 DOI: 10.1098/rsos.191247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
HBED-CC (N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylene diamine-N,N'-diacetic acid, L1 ) is a common bifunctional chelating agent in preparation of 68Ga-radiopharmaceuticals. Due to its high stability constant for the Ga3+ complex (logKGaL = 38.5) and its acyclic structure, it is well known for a rapid and efficient radiolabelling at ambient temperature with Gallium-68 and its high in vivo stability. [99mTc][Tc(CO)3(H2O)3]+ is an excellent precursor for radiolabelling of biomolecules. The aim of this study was to develop a novel preparation method of 99mTc-HBED-CC complexes. In this study, HBED-CC-NI (2,2'-(ethane-1,2-diylbis((2-hydroxy-5-(3-((2-(2-nitro-1H-imidazol-1-yl)ethyl)amino)-3-oxopropyl)benzyl)-azanediyl))-diacetic acid, L2 ), a derivative of HBED-CC, was designed and synthesized. Both L1 and L2 were radiolabelled by [99mTc][Tc(CO)3(H2O)3]+ successfully for the first time. In order to explore the coordination mode of metal and chelates, non-radioactive Re(CO)3 L1 and Re(CO)3 L2 were synthesized and characterized spectroscopically. Tc(CO)3 L1 and Tc(CO)3 L2 in solution were calculated by density functional theory and were analysed with radio-HPLC chromatograms. It showed that [99mTc]Tc(CO)3 L2 forms two stable diastereomers in solution, which is similar to those of [68Ga]Ga-HBED-CC complexes. Natural bond orbital analysis through the natural population charges revealed a charge transfer between [99mTc][Tc(CO)3]+ and L1 or L2 . The experimental results showed that tricarbonyl technetium might form stable complex with HBED-CC derivatives, which is useful for the future application of using HBED-CC as a bifunctional chelating agent in developing new 99mTc-radiopharmaceuticals as diagnostic imaging agents.
Collapse
Affiliation(s)
- Shengyu Shi
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lifeng Yao
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, People's Republic of China
| | - Linlin Li
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, People's Republic of China
| | - Zhihao Zha
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hank F. Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, People's Republic of China
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
12
|
Ibeji CU. Molecular dynamics and DFT study on the structure and dynamics of N-terminal domain HIV-1 capsid inhibitors. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1674850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Collins U. Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
13
|
Ibeji CU, Lawal MM, Tolufashe GF, Govender T, Naicker T, Maguire GEM, Lamichhane G, Kruger HG, Honarparvar B. The Driving Force for the Acylation of β-Lactam Antibiotics by L,D-Transpeptidase 2: Quantum Mechanics/Molecular Mechanics (QM/MM) Study. Chemphyschem 2019; 20:1126-1134. [PMID: 30969480 DOI: 10.1002/cphc.201900173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Indexed: 11/06/2022]
Abstract
β-lactam antibiotics, which are used to treat infectious diseases, are currently the most widely used class of antibiotics. This study focused on the chemical reactivity of five- and six-membered ring systems attached to the β-lactam ring. The ring strain energy (RSE), force constant (FC) of amide (C-N), acylation transition states and second-order perturbation stabilization energies of 13 basic structural units of β-lactam derivatives were computed using the M06-2X and G3/B3LYP multistep method. In the ring strain calculations, an isodesmic reaction scheme was used to obtain the total energies. RSE is relatively greater in the five-(1a-2c) compared to the six-membered ring systems except for 4b, which gives a RSE that is comparable to five-membered ring lactams. These variations were also observed in the calculated inter-atomic amide bond distances (C-N), which is why the six-membered ring lactams C-N bond are more rigid than those with five-membered ring lactams. The calculated ΔG# values from the acylation reaction of the lactams (involving the S-H group of the cysteine active residue from L,D transpeptidase 2) revealed a faster rate of C-N cleavage in the five-membered ring lactams especially in the 1-2 derivatives (17.58 kcal mol-1 ). This observation is also reflected in the calculated amide bond force constant (1.26 mDyn/A) indicating a weaker bond strength, suggesting that electronic factors (electron delocalization) play more of a role on reactivity of the β-lactam ring, than ring strain.
Collapse
Affiliation(s)
- Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Monsurat M Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
14
|
Honarparvar B, Kanchi S, Bisetty K. Theoretical insights into the competitive metal bioaffinity of lactoferrin as a metal ion carrier: a DFT study. NEW J CHEM 2019. [DOI: 10.1039/c9nj03786a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metal–protein complexes, specifically lactoferrin (Lf), an iron-binding glycoprotein found naturally in milk and several other body fluids play a pivotal role in all living organisms.
Collapse
Affiliation(s)
- Bahareh Honarparvar
- Department of Chemistry
- Durban University of Technology
- Durban 4000
- South Africa
| | - Suvardhan Kanchi
- Department of Chemistry
- Durban University of Technology
- Durban 4000
- South Africa
| | - Krishna Bisetty
- Department of Chemistry
- Durban University of Technology
- Durban 4000
- South Africa
| |
Collapse
|
15
|
Clinical aspects of radiolabeled aptamers in diagnostic nuclear medicine: A new class of targeted radiopharmaceuticals. Bioorg Med Chem 2018; 27:2282-2291. [PMID: 30502114 DOI: 10.1016/j.bmc.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
Abstract
Targeted radiopharmaceuticals offer the possibility of improved imaging with reduced side effects. Up to now, a variety of biological receptors such as aptamers have been successfully radiolabeled and applied to diagnostic imaging of cancers. The concept of using radio-labeled aptamers for binding to their targets has stimulated an immense body of research in diagnostic nuclear medicine. These biological recognition elements are single-stranded oligonucleotides that interact with their target molecules with high affinity and specificity in unique three-dimensional structures. Because of their high affinity and specificity, the receptor-binding aptamers labeled with gamma emitters such as 99mTc, 64Cu, 111In, 18F and 67Ga can facilitate the visualization of receptor-expressing tissues noninvasively. Compared to the antibody-based radiopharmaceuticals, the radiolabeled aptamers provide a number of advantages for clinical diagnostics including high stability, low cost, and ease of production and modification, low immunogenicity and, especially, superior tissue penetration because of their smaller size. In this review, we present recent progresses and challenges in aptamer-based diagnostic radiopharmaceuticals and highlight some representative applications of aptamers in nuclear medicine.
Collapse
|
16
|
Ibeji CU, Tolufashe GF, Ntombela T, Govender T, Maguire GEM, Lamichhane G, Kruger HG, Honarparvar B. The catalytic role of water in the binding site of l,d-transpeptidase 2 within acylation mechanism: A QM/MM (ONIOM) modelling. Tuberculosis (Edinb) 2018; 113:222-230. [PMID: 30514506 DOI: 10.1016/j.tube.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of Tuberculosis. Formation of 3 → 3 crosslinks in the peptidoglycan layer of M. tuberculosis is catalyzed by l,d-transpeptidases. These enzymes can confer resistance against classical β-lactams that inhibit enzymes that generate 4 → 3 peptidoglycan crosslinks. The focus of this study is to investigate the catalytic role of water molecules in the acylation mechanism of the β-lactam ring within two models; 4- and 6-membered ring systems using two-layered our Own N-layer integrated Molecular Mechanics ONIOM (B3LYP/6-311++G(2d,2p): AMBER) model. The obtained thermochemical parameters revealed that the 6-membered ring model best describes the inhibition mechanism of acylation which indicates the role of water in the preference of 6-membered ring reaction pathway. This finding is in accordance with experimental data for the rate-limiting step of cysteine protease with the same class of inhibitor and binding affinity for both inhibitors. As expected, the ΔG# results also reveal that the 6-membered ring reaction pathway is the most favourable. The electrostatic potential (ESP) and the natural bond orbital analysis (NBO) showed stronger interactions in 6-membered ring transition state (TS-6) mechanism involving water in the active site of the enzyme. This study could be helpful in the development of novel antibiotics against l,d-transpeptidase.
Collapse
Affiliation(s)
- Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa; Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
17
|
Ekennia AC, Osowole AA, Onwudiwe DC, Babahan I, Ibeji CU, Okafor SN, Ujam OT. Synthesis, characterization, molecular docking, biological activity and density functional theory studies of novel 1,4-naphthoquinone derivatives and Pd(II), Ni(II) and Co(II) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anthony C. Ekennia
- Department of Chemistry; Federal University Ndufu-Alike Ikwo (FUNAI); PMB 1010 Abakaliki Ebonyi State Nigeria
| | - Aderoju A. Osowole
- Inorganic Unit, Department of Chemistry; University of Ibadan; Oyo State Nigeria
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus); Private Bag X2046 Mmabatho South Africa
- Department of Chemistry, School of Mathematical and Physical Sciences, Faculty of Agriculture, Science and Technology; North-West University (Mafikeng Campus); Private Bag X2046 Mmabatho 2735 South Africa
| | - Ilknur Babahan
- Department of Chemistry; Adnan Menderes University; Aydin 09010 Turkey
- Department of Polymer Engineering; University of Akron; Akron Ohio 44325 U.S.A
| | - Collins U. Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4041 South Africa
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences; University of Nigeria; Nsukka 410001 Enugu State Nigeria
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry; University of Nigeria; Nsukka Nigeria
| | - Oguejiofo T. Ujam
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences; University of Nigeria; Nsukka 410001 Enugu State Nigeria
| |
Collapse
|
18
|
Adeowo FY, Honarparvar B, Skelton AA. Density Functional Theory Study on the Complexation of NOTA as a Bifunctional Chelator with Radiometal Ions. J Phys Chem A 2017; 121:6054-6062. [PMID: 28737914 DOI: 10.1021/acs.jpca.7b01017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,4,7-Triazacyclononane-1,4,7-triacetic acid (NOTA) is a key bifunctional chelator utilized for the complexation of metal ions in radiopharmaceutical applications; the ability of these chelators depends on the strength of their binding with ions. The focus of the present work is to evaluate the complexation of Cu2+, Ga3+, Sc3+, and In3+ radiometal ions with NOTA using density functional theory (B3LYP functional) and 6-311+G(2d,2p)/DGDZVP basis sets. The significant role of ion-water interactions in the chelation interaction energies in solution reflects the competition between ion-water and NOTA-ion interaction in the chelation process. There is reasonable agreement between experimental and theoretical binding constants, geometries, and 1H NMR chemical shifts. Chelation interaction energies, Gibbs free energies, and entropies in solution show that the NOTA-Ga3+ and NOTA-Cu2+ are the most and least stable complexes, respectively. The natural atomic charges and second order perturbation analysis reveal charge transfer between NOTA and radiometal ions. The theoretical 1H NMR chemical shifts of NOTA are in good agreement with experiment; these values are influenced by the presence of the ions, which have a deshielding effect on the protons of NOTA. Global scalar properties such as EHOMO/ELUMO, ΔELUMO-HOMO, and chemical hardness/softness confirm that the NOTA-Cu2+ complex, which has a singly occupied molecular orbital, has the lowest ΔELUMO-HOMO value, the least chemical hardness, and the highest chemical softness. The significant variation of the hardness and ΔELUMO-HOMO values of the complexes can be attributed to the different positions of the metal ions on the periodic table. This study affirms that, among the radiometal ions, Ga3+ can be used to effectively radiolabel NOTA chelator for radiopharmaceutical usage as it binds most stably with NOTA.
Collapse
Affiliation(s)
- F Y Adeowo
- School of Health Sciences, Discipline of Pharmacy, University of KwaZulu-Natal , Durban 4001, South Africa
| | - B Honarparvar
- School of Health Sciences, Discipline of Pharmacy, University of KwaZulu-Natal , Durban 4001, South Africa
| | - A A Skelton
- School of Health Sciences, Discipline of Pharmacy, University of KwaZulu-Natal , Durban 4001, South Africa
| |
Collapse
|
19
|
Wang L, Yao F, Kang XF. Nanopore Single-Molecule Analysis of Metal Ion–Chelator Chemical Reaction. Anal Chem 2017; 89:7958-7965. [DOI: 10.1021/acs.analchem.7b01119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linlin Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Xiao-feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| |
Collapse
|