Yang G, Xie Z, Cran M, Wu C, Gray S. Dimensional Nanofillers in Mixed Matrix Membranes for Pervaporation Separations: A Review.
MEMBRANES 2020;
10:E193. [PMID:
32825195 PMCID:
PMC7559426 DOI:
10.3390/membranes10090193]
[Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Pervaporation (PV) has been an intriguing membrane technology for separating liquid mixtures since its commercialization in the 1980s. The design of highly permselective materials used in this respect has made significant improvements in separation properties, such as selectivity, permeability, and long-term stability. Mixed-matrix membranes (MMMs), featuring inorganic fillers dispersed in a polymer matrix to form an organic-inorganic hybrid, have opened up a new avenue to facilely obtain high-performance PV membranes. The combination of inorganic fillers in a polymer matrix endows high flexibility in designing the required separation properties of the membranes, in which various fillers provide specific functions correlated to the separation process. This review discusses recent advances in the use of nanofillers in PV MMMs categorized by dimensions including zero-, one-, two- and three-dimensional nanomaterials. Furthermore, the impact of the nanofillers on the polymer matrix is described to provide in-depth understanding of the structure-performance relationship. Finally, the applications of nanofillers in MMMs for PV separation are summarized.
Collapse