1
|
Ardhayanti LI, Islam MS, Fukuda M, Liu X, Zhang Z, Sekine Y, Hayami S. Thermally stable proton conductivity from nanodiamond oxide. Chem Commun (Camb) 2023. [PMID: 37325912 DOI: 10.1039/d3cc02016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we report nanodiamond oxide (NDOx), obtained from modified Hummers' oxidation of nanodiamond (ND), showing excellent proton conductivity and thermal stability. NDOx possesses hydrophilicity resulting in higher water adsorption and the retention of functional groups at elevated temperatures can be attributed to the high proton conductivity and thermal stability, respectively.
Collapse
Affiliation(s)
- Lutfia Isna Ardhayanti
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
| | - Md Saidul Islam
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masahiro Fukuda
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Xinyao Liu
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Zhongyue Zhang
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Tan W, Zhang F, Yu K, Qu F. High proton conductivity of the phosphate-linked graphene oxide monolith over a wide range from subzero to moderate temperature. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Mabrouk W, Jebri S, Charradi K, Silimi B, Alzahrani AYA, Boubakri A, Ghodbane O, Raouafi N, Keshk SMAS. Fabrication and characterization of graphene/sulfonated polyether sulfone octyl sulfonamide hybrid film with improved proton conductivity performance. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Ngadiwiyana, Gunawan, Prasetya NB, Kusworo TD, Susanto H. Synthesis and characterization of sulfonated poly(eugenol-co-allyleugenol) membranes for proton exchange membrane fuel cells. Heliyon 2022; 8:e12401. [PMID: 36590487 PMCID: PMC9801125 DOI: 10.1016/j.heliyon.2022.e12401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The research of sulfonated eugenol-allyleugenol copolymer (SPEAE) based membrane for fuel cell from eugenol derivate had been conducted. First, eugenol was reacted with various weights of allyl eugenol to form eugenol-allyleugenol copolymer (PEAE). Determination of the optimum composition of PEAE was done by testing the swelling properties. Then, PEAE was sulfonated using concentrated sulfuric acid with time variations of 1, 2, 3, 4, and 5 h to form SPEAE. The SPEAE produced was tested for the degree of sulfonation, water uptake, cation exchange capacity, and membrane proton conductivity. In addition, the characteristics of the PEAE and SPEAE copolymer membranes were also analyzed using FTIR spectrophotometers, 1H-NMR, TGA, and DSC. The results showed that the copolymerization of eugenol:allyleugenol (EG:AEG) with a ratio of 10:1 gave the lowest swelling degree. The best SPEAE copolymer was obtained from sulfonation for 2 h with yield, degree of sulfonation, water absorption value, proton conductivity, and cation exchange capacity of 90.6%, 12.87%, 50.7%, 1.83 × 10-5 S cm-1 and 0.356 meq/g, respectively. FTIR analysis shows the formation of PEAE with the loss of the vinyl eugenol groups used to form the polymer and shows the formation of SPEAE in the presence of sulfonate groups from the sulfonation reaction. 1H-NMR also confirmed the presence of the PEAE and SPEAE copolymers. In addition, analysis of thermal properties with TGA and DSC also showed that sulfonate treatment could improve membrane stability.
Collapse
Affiliation(s)
- Ngadiwiyana
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Gunawan
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Nor B.A. Prasetya
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
| | - Tutuk D. Kusworo
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| | - Heru Susanto
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| |
Collapse
|
5
|
Baltag L, Cojocaru C, Enache AC, Samoila P, Harabagiu V. Ultrasonic-Assisted Rapid Preparation of Sulfonated Polyether Ether Ketone (PEEK) and Its Testing in Adsorption of Cationic Species from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7558. [PMID: 36363150 PMCID: PMC9654382 DOI: 10.3390/ma15217558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report a new approach for the sulfonation of polyether ether ketone (PEEK) following a shorter path of reaction undertaken at 60 °C under ultrasonication. The application of this method enabled the reduction of the reaction time from several hours to less than one hour, achieving a relevant sulfonation degree. The sulfonated-PEEK (SPEEK) was characterized by advanced chemical and physical instrumental methods. According to 1H-NMR analysis, the degree of sulfonation of the polymer was equal to 70.3%. Advanced microscopy (SEM) showed that the fabricated SPEEK beads (2-4 mm) were porous inside with a log-normal distribution of pore sizes within the range 1.13-151.44 μm. As an application, the SPEEK polymer was tested for the adsorption of a cationic organic pollutant (Methylene blue, MB) from aqueous solutions. The equilibrium studies (isotherms) disclosed maximum adsorption capacities of 217 mg/g, 119 mg/g, and 68 mg/g at temperatures of 323 K, 313 K, and 300 K, respectively. The thermodynamic calculations indicated an endothermic effect (ΔHad = +11.81 kJ/mol) of the investigated adsorption process. The maximum removal efficiency of 99.14% was established by process optimization using the design of experiments strategy and data-driven modeling. Additionally, molecular docking simulations were performed to disclose the mechanism of interaction at the molecular level between the adsorbent (SPEEK) and pollutant.
Collapse
|
6
|
Das R, Zeng W, Asci C, Del-Rio-Ruiz R, Sonkusale S. Recent progress in electrospun nanomaterials for wearables. APL Bioeng 2022; 6:021505. [PMID: 35783456 PMCID: PMC9249212 DOI: 10.1063/5.0088136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Wearables have garnered significant attention in recent years not only as consumer electronics for entertainment, communications, and commerce but also for real-time continuous health monitoring. This has been spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices to replace the traditional, bulky, and rigid electronic devices. However, engineering smart wearables that can seamlessly integrate with the human body is a daunting task. Some of the key material attributes that are challenging to meet are skin conformability, breathability, and biocompatibility while providing tunability of its mechanical, electrical, and chemical properties. Electrospinning has emerged as a versatile platform that can potentially address these challenges by fabricating nanofibers with tunable properties from a polymer base. In this article, we review advances in wearable electronic devices and systems that are developed using electrospinning. We cover various applications in multiple fields including healthcare, biomedicine, and energy. We review the ability to tune the electrical, physiochemical, and mechanical properties of the nanofibers underlying these applications and illustrate strategies that enable integration of these nanofibers with human skin.
Collapse
Affiliation(s)
- Riddha Das
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
7
|
Rahman MA, Rabin NN, Islam MS, Fukuda M, Yagyu J, Feng Z, Sekine Y, Lindoy LF, Ohyama J, Hayami S. Synergistic Strengthening in a Graphene Oxide and Oxidized Single‐walled Carbon Nanotube Hybrid Material for use as Electrolyte in a Proton Exchange Membrane Fuel Cell. Chem Asian J 2022; 17:e202200376. [DOI: 10.1002/asia.202200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Md. Saidul Islam
- Kumamoto University: Kumamoto Daigaku Department of Chemistry JAPAN
| | - Mashahiro Fukuda
- Kumamoto University: Kumamoto Daigaku Department of Chemistry JAPAN
| | - Juny Yagyu
- Kumamoto University: Kumamoto Daigaku Department of Chemistry JAPAN
| | - Zhiqing Feng
- Kumamoto University: Kumamoto Daigaku Department of Chemistry JAPAN
| | - Yoshihiro Sekine
- Kumamoto University: Kumamoto Daigaku Department of Chemistry JAPAN
| | | | - Junya Ohyama
- Kumamoto University: Kumamoto Daigaku Department of Chemistry JAPAN
| | - Shinya Hayami
- Kumamoto University Department of Chemistry, Graduate School of Science and Technology 2-39-1 Kurokami, Chuo-ku 860-8555 Kumamoto JAPAN
| |
Collapse
|
8
|
Jin K, Yue B, Yan L, Qiao R, Zhao H, Zhang J. Synthesis and Characterization of Poly(5'-hexyloxy-1',4-biphenyl)-b-poly(2',4'-bispropoxysulfonate-1',4-biphenyl) with High Ion Exchange Capacity for Proton Exchange Membrane Fuel Cell Applications. Chem Asian J 2022; 17:e202200109. [PMID: 35313090 DOI: 10.1002/asia.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Indexed: 11/12/2022]
Abstract
Proton exchange membrane (PEM) is pivotal for proton exchange membrane fuel cells (PEMFCs). In the present work, a block copolymer with hydrophilic alkyl sulfonated side groups and hydrophobic flexible alkyl ether side groups, poly(5'-hexyloxy-1',4-biphenyl)-b-poly(2',4'-bispropoxysulfonate-1',4-biphenyl) (HBP-b-xBPSBP), is designed and synthesized by copolymerization of the hydrophilic and hydrophobic oligomers. The oligomers are synthesized via a Pd-catalyzed Suzuki cross-coupling of 1,3-dibromo-5-hexyloxybenzene, and 3,3'-[(4,6-dibromo-1,3-phenylene)bis(oxy)]bis(propane-1-sulfonate) or 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene. The good solubility and film-forming characteristics are achieved via the introduction of flexible hexyloxy side groups, and high ion exchange capacity (IEC) is achieved via the introduction of high density of alkyl sulfonated side groups. The HBP-b-0.5BPSBP has the highest IEC of 3.17 mmol/g, the highest proton conductivity of 43.5 mS/cm at 95 °C and 90% relative humidity (RH) and low methanol permeability of 6.45×10-7 cm2 /s. Meanwhile, crosslinked HBP-b-xBPSBP exhibits promising water uptake, swelling ratio and low methanol permeability. These characteristics are attributed to the crosslinked structure and the hydrophilic/hydrophobic nanophase separation morphology promoted by the poly(m-phenylene) main chains, flexible alkyl ether groups, and alkyl sulfonated side groups.
Collapse
Affiliation(s)
- Kunyu Jin
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Baohua Yue
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China.,Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, P. R. China
| | - Liuming Yan
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Risa Qiao
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Hongbin Zhao
- Department of Chemistry, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China.,Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Jiujun Zhang
- Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| |
Collapse
|
9
|
MXene-copper oxide/sulfonated polyether ether ketone as a hybrid composite proton exchange membrane in electrochemical water electrolysis. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Eswaraswamy B, Goel P, Mandal P, Chandra A, Chattopadhyay S. Nanocomposite interface coupled with thickness optimization promoting water dissociation in heterogeneous bipolar membrane. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bhuvanesh Eswaraswamy
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur Campus Saharanpur India
| | - Priya Goel
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur Campus Saharanpur India
| | - Priyabrata Mandal
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur Campus Saharanpur India
| | - Anusha Chandra
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur Campus Saharanpur India
- Department of Chemical Engineering Vignan's Foundation for Science, Technology and Research (Deemed to be University) Guntur India
| | - Sujay Chattopadhyay
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur Campus Saharanpur India
| |
Collapse
|
11
|
Hu F, Lu H, Ye Z, Zhang S, Wang W, Gao L. Slow-release lubrication of artificial joints using self-healing polyvinyl alcohol/polyethylene glycol/ graphene oxide hydrogel. J Mech Behav Biomed Mater 2021; 124:104807. [PMID: 34492404 DOI: 10.1016/j.jmbbm.2021.104807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
New fabrication methods and lubrication materials must be developed to improve the lubrication performance of artificial joints and increase the lubrication duration. Herein, a novel polyvinyl alcohol/polyethylene glycol/graphene oxide (PVA/PEG/GO) hydrogel was prepared by a physical cross-linking method, and then the hydrogel and its sustained-release solution were used as lubricant for friction evaluation. The results demonstrated that the slow-release gel solution has good lubrication performance, and coefficient of friction (COF) is only 0.04, which is much lower than the COF of distilled water (about 0.08) under the same conditions. The structure characterization results revealed that no new materials are formed in the gel. The results of thermogravimetric analyses and differential scanning calorimetry demonstrated that the addition of GO may improve the network crosslinking structure of the PVA/PEG hydrogel and improve its mechanical strength. In addition, PVA/PEG/GO hydrogel has superior self-healing function. The self-healing hydrogel did not break again after being pulled under 200 G of weights. The PVA/PEG/GO hydrogel with excellent slow-release lubricating performance and self-healing properties provides a novel candidate for design of long-term lubricating artificial joints, and is expected to promote the progress of artificial joint lubrication applications.
Collapse
Affiliation(s)
- Feng Hu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China.
| | - Zishuo Ye
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Shoujing Zhang
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical and Electronic Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, PR China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Li Gao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
12
|
Ryu SK, Kim AR, Vinothkannan M, Lee KH, Chu JY, Yoo DJ. Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells. Polymers (Basel) 2021; 13:polym13142364. [PMID: 34301122 PMCID: PMC8309513 DOI: 10.3390/polym13142364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA. By using a scanning electron microscope (SEM) and atomic force microscope (AFM), we observed that GO and PWA were evenly distributed throughout the SPAE matrix. The SPAE/GO/PWA composite membrane comprising 0.7 wt% GO and 36 wt% PWA exhibited a maximum proton conductivity of 186.3 mS cm-1 at 90 °C under 100% relative humidity (RH). As a result, SPAE/GO/PWA composite membrane exhibited 193.3 mW cm-2 of the maximum power density at 70 °C under 100% RH in PEMFCs.
Collapse
Affiliation(s)
- Sung Kwan Ryu
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
| | - Ae Rhan Kim
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
- Correspondence: (A.R.K.); (D.J.Y.)
| | - Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
| | - Kyu Ha Lee
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
| | - Ji Young Chu
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
- Correspondence: (A.R.K.); (D.J.Y.)
| |
Collapse
|
13
|
Zhang C, Xu S, Zhang L. Mechanical property characterization of partially crystalline Poly-Ether-Ether-Ketone. J Mech Behav Biomed Mater 2021; 121:104600. [PMID: 34116434 DOI: 10.1016/j.jmbbm.2021.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
The present study investigates the mechanical properties of partially crystalline Poly-Ether-Ether-Ketone between the glass transition and the cold crystallization. Biaxial tension, uniaxial tension, and DMA experiments were conducted to investigate the influence of temperature-induced crystallization on mechanical properties, and three stiffening behaviors are observed. Firstly, a 'U' type mechanical property is observed for all three experiments with first softening and then significant stiffening behavior with increasing temperature. Secondly, stiffening also occurs during low strain rate tests but not in higher strain rate tests. Thirdly, the stiffening behavior of the anisotropic film shows orientation dependence. Crystallinity evolution is predicted by the Nakaruma non-isothermal crystallization kinetics with optimized parameters, with which we demonstrate and explain that the stiffening behaviors are connected to the onset of crystallization. Therefore, the conclusion provides a new tool to approach and distinguish extrinsic and intrinsic properties during characterization, promoting future implementation for constitutive modeling and corresponding simulation that could replicate the influence of temperature-induced crystallization.
Collapse
Affiliation(s)
- Chao Zhang
- CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Modern Mechanics. University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Songlin Xu
- CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Modern Mechanics. University of Science and Technology of China, Hefei, Anhui, 230027, China; The United Laboratory of High-Pressure Physics and Earthquake Science, CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science), China Earthquake Administration, Beijing, 100036, China.
| | - Lei Zhang
- CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Modern Mechanics. University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
14
|
Vinothkannan M, Kim AR, Yoo DJ. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 2021; 11:18351-18370. [PMID: 35480954 PMCID: PMC9033471 DOI: 10.1039/d1ra00685a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
15
|
Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Waribam P, Jaiyen K, Samart C, Ogawa M, Guan G, Kongparakul S. MXene potassium titanate nanowire/sulfonated polyether ether ketone (SPEEK) hybrid composite proton exchange membrane for photocatalytic water splitting. RSC Adv 2021; 11:9327-9335. [PMID: 35423448 PMCID: PMC8695234 DOI: 10.1039/d0ra09935j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/20/2021] [Indexed: 11/21/2022] Open
Abstract
A cross-linked sulfonated polyether ether ketone (C-SPEEK) was incorporated with MXene/potassium titanate nanowire (MKT-NW) as a filler and applied as a proton exchange membrane for photocatalytic water splitting. The prepared hybrid composite PEM had proton conductivity of 0.0097 S cm−1 at room temperature with an ion exchange capacity of 1.88 meq g−1. The hybrid composite proton exchange membrane is a reactive membrane which was able to generate hydrogen gas under UV light irradiation. The efficiency of hydrogen gas production was 0.185066 μmol within 5 h for 12% wt of MKT-NW loading. The results indicated that the MKT-NW/C-SPEEK membrane is a promising candidate for ion exchange with hydrogen gas evolution in photocatalytic water splitting and could be applied as a renewable source of energy to use in various fields of applications. A cross-linked sulfonated polyether ether ketone (C-SPEEK) was incorporated with MXene/potassium titanate nanowire (MKT-NW) as a filler and applied as a proton exchange membrane for photocatalytic water splitting.![]()
Collapse
Affiliation(s)
- Preeti Waribam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University Pathumthani 12120 Thailand
| | - Kanticha Jaiyen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University Pathumthani 12120 Thailand
| | - Chanatip Samart
- Department of Chemistry, Faculty of Science and Technology, Thammasat University Pathumthani 12120 Thailand .,Bioenergy and Biochemical Refinery Technology Program, Faculty of Science and Technology, Thammasat University 12120 Thailand
| | - Makoto Ogawa
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Guoqing Guan
- Institute of Regional Innovation, Hirosaki University Aomori 030-0813 Japan
| | - Suwadee Kongparakul
- Department of Chemistry, Faculty of Science and Technology, Thammasat University Pathumthani 12120 Thailand .,Bioenergy and Biochemical Refinery Technology Program, Faculty of Science and Technology, Thammasat University 12120 Thailand
| |
Collapse
|
17
|
Dielectric properties of sulfonated poly(ether ether ketone) (SPEEK) electrolytes with 1-ethyl-3-methylimidazolium tetrafluoroborate salt: Ionic liquid-based conduction pathways. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Saminathan A, Krishnasamy S, Venkatachalam G. Enhanced Electrochemical Performance of a Silica Bead-Embedded Porous Fluoropolymer Composite Matrix for Li-Ion Batteries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamilnadu, India
| |
Collapse
|
19
|
Effect of sulfated metal oxides on the performance and stability of sulfonated poly (ether ether ketone) nanocomposite proton exchange membrane for fuel cell applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: A comparative study. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118232] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Liu J, Zhou Y, Yi K, Zhang S, Shao T, Zhang C, Chu B. Effect of Dielectric Barrier Discharge (DBD) Treatment on the Dielectric Properties of Poly(vinylidene fluoride)(PVDF)-Based Copolymer. Polymers (Basel) 2020; 12:polym12061370. [PMID: 32570697 PMCID: PMC7362176 DOI: 10.3390/polym12061370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding the mechanism of dielectric breakdown is important for improving the breakdown field of a polymer. In this work, dielectric barrier discharge (DBD) treatment was applied to one surface of P(VDF-CTFE) (vinylidene fluoride-chlorotrifluoroethylene) film, and the dielectric properties of the film were studied. When the treated surface was connected to the high potential side of the power source for the breakdown test, the breakdown field of the treated film was significantly reduced compared to that of the pristine film. Based on the characterization results for the surface chemistry and morphology, it was proposed that the phenomenon was caused by the combined effects of hole injection from the metal electrode and the damage of polymer chains near the surface of the polymer film after the DBD treatment process.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China; (J.L.); (Y.Z.); (K.Y.)
| | - Yang Zhou
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China; (J.L.); (Y.Z.); (K.Y.)
| | - Kewang Yi
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China; (J.L.); (Y.Z.); (K.Y.)
| | - Shihai Zhang
- Strategic Polymer Sciences, Inc., 200 Innovation Boulevard, State College, PA 16803, USA;
| | - Tao Shao
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (T.S.); (C.Z.)
| | - Cheng Zhang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (T.S.); (C.Z.)
| | - Baojin Chu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China; (J.L.); (Y.Z.); (K.Y.)
- Correspondence: ; Tel.: +86-0551-6360-7397
| |
Collapse
|
22
|
Qian W, Li W, Nguyen C, Johnson TJ, Turner JA. Quantitative nanoscale measurements of the thermomechanical properties of poly‐ether‐ether‐ketone (
PEEK
). JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wen Qian
- Department of Mechanical & Materials Engineering University of Nebraska‐Lincoln Lincoln Nebraska United States
| | - Wenlong Li
- Department of Mechanical & Materials Engineering University of Nebraska‐Lincoln Lincoln Nebraska United States
| | - Charles Nguyen
- Department of Mechanical & Materials Engineering University of Nebraska‐Lincoln Lincoln Nebraska United States
| | - Tyler J. Johnson
- Department of Chemical & Biomolecular Engineering University of Nebraska‐Lincoln Lincoln Nebraska United States
| | - Joseph A. Turner
- Department of Mechanical & Materials Engineering University of Nebraska‐Lincoln Lincoln Nebraska United States
| |
Collapse
|
23
|
Jin J, Zhao J, Shen S, Yu J, Cheng S, Pan B, Che Q. Constructing anhydrous proton exchange membranes based on cadmium telluride nanocrystal-doped sulfonated poly(ether ether ketone)/polyurethane composites. NANOTECHNOLOGY 2020; 31:205707. [PMID: 32000158 DOI: 10.1088/1361-6528/ab71b5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cadmium telluride (CdTe) nanocrystals with thiol stabilizers have been applied widely in the fields of energy storage and transformation. The aim of this work is to develop anhydrous proton exchange membranes (PEMs) by introducing CdTe nanocrystals bearing thioglycolic acid (tga) or mercaptopropionic acid (mpa) stabilizers into sulfonated poly(ether ether ketone) (SPEEK) and polyurethane (PU) systems. In the prepared SPEEK/PU/CdTe membranes, CdTe nanocrystals could provide desirable properties such as improving mechanical strength and enhancing proton conductivity by combining with phosphoric acid (PA) molecules. Successful preparation of SPEEK/PU/CdTe/PA membranes was demonstrated by the identification of high and stable proton conductivity and satisfactory thermal/chemical stability and mechanical properties. The fine appearance of membranes revealed uniform dispersion of components. Measurements of properties showed that the SPEEK(74%)/PU/CdTe-mpa(20/60/20)/100%PA membrane as a candidate anhydrous PEM is promising for use in high-temperature proton exchange membrane fuel cells. Specifically, the recommended membrane showed a proton conductivity of 1.18 × 10-1 S cm-1 at 160 °C and 3.96 × 10-2 S cm-1 at 100 °C, lasting for 600 h, and a tensile stress of 14.6 MPa at room temperature. Mixing inorganic CdTe nanocrystals with polymers to form inorganic/organic composite membranes is effective for producing anhydrous PEMs with cheaper polymers without functional groups to conduct protons.
Collapse
Affiliation(s)
- Jin Jin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Yan Z, Zhang M, Shi F, Zhu B, Liu M, Wang S, Li Y, Nunes SP. Enhanced CO2 separation in membranes with anion-cation dual pathways. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Photoactive CeO2/SBA-15 functionalized materials as efficient systems for mono-dehydration of sugar alcohols. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Vinothkannan M, Ramakrishnan S, Kim AR, Lee HK, Yoo DJ. Ceria Stabilized by Titanium Carbide as a Sustainable Filler in the Nafion Matrix Improves the Mechanical Integrity, Electrochemical Durability, and Hydrogen Impermeability of Proton-Exchange Membrane Fuel Cells: Effects of the Filler Content. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5704-5716. [PMID: 31917548 DOI: 10.1021/acsami.9b18059] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cerium oxide-anchored titanium carbide (CeO2-TiC) is realized as a potential inorganic filler when modifying the Nafion matrix of a proton-exchange membrane fuel cell (PEMFC). A hydrothermal strategy was employed to synthesize CeO2-TiC of high crystallinity as a filler to mitigate the problematic properties of a proton-exchange membrane (PEM). CeO2-TiC with a weight ratio of 0.5, 1, 1.5, or 2% was incorporated into a Nafion matrix to form a hybrid by adopting a solution-casting procedure. Reinforcement owing to the presence of TiC provides increased tensile strength to PEM, and the addition of CeO2 improves the durability of PEM by scavenging free radicals. The microstructural, thermomechanical, physiochemical, and electrochemical properties of PEM, including contact angle, water sorption, water uptake, and proton conductivity, were extensively studied. Random dispersion of CeO2-TiC in the Nafion matrix improves the thermal stability, tensile strength, and water uptake while retaining proton conductivity, as compared with those of pristine Nafion. As a result, optimized Nafion/CeO2-TiC (1 wt %) achieved undiminished PEMFC performance compared to that of pristine Nafion while operating the device at 60 °C and 100% relative humidity. In addition, Nafion/CeO2-TiC (1 wt %) experienced the degradation of merely 0.6 mV h-1 during 200 h operation under identical conditions. Compared to that of Nafion/CeO2-TiC (1 wt %), pristine Nafion and Nafion-212 displayed accelerated and comparable degradation (for pristine Nafion, 1.3 mV h-1; for Nafion-212, 0.4 mV h-1). PEMFC power output, hydrogen permeability, and morphology of samples were examined after the durability test; the results indicate that Nafion/CeO2-TiC (1 wt %) is extremely stable. Since various Nafion hybrids have been reported as highly durable PEMs, this study is expected to open up new perspectives to expanding their applications, especially in sustainable PEMFC technology.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Jeonbuk National University , Jeonju , Jeollabuk-do 54896 , Republic of Korea
| | - S Ramakrishnan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Jeonbuk National University , Jeonju , Jeollabuk-do 54896 , Republic of Korea
| | - Ae Rhan Kim
- Department of Bioenvironmental Chemistry and R&D Center for CANUTECH, Business Incubation Center , Jeonbuk National University , Jeonju , Jeollabuk-do 54896 , Republic of Korea
| | - Hong-Ki Lee
- Hydrogen Fuel Cell Center , Woosuk University , 151 Dusan-ri, Bongdong-eup , Wanju-gun , Jeollabuk-do 55315 , Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Jeonbuk National University , Jeonju , Jeollabuk-do 54896 , Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center , Jeonbuk National University , Jeonju , Jeollabuk-do 54896 , Republic of Korea
| |
Collapse
|
27
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
28
|
Jia T, Shen S, Xiao L, Jin J, Zhao J, Che Q. Constructing multilayered membranes with layer-by-layer self-assembly technique based on graphene oxide for anhydrous proton exchange membranes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109362] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Hariprasad R, Vinothkannan M, Kim AR, Yoo DJ. SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of direct methanol fuel cells. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1660672] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ranganathan Hariprasad
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| | - Mohanraj Vinothkannan
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
- Department of Life Science, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| | - Ae Rhan Kim
- Department of Bioenvironmental Chemistry and R&D Center for CANUTECH, Business Incubation Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
- Department of Life Science, Chonbuk National University , Jeonju , Jeollabuk-do , Republic of Korea
| |
Collapse
|
30
|
Inamuddin, Abbas Kashmery H. Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Sci Rep 2019; 9:9877. [PMID: 31285466 PMCID: PMC6614476 DOI: 10.1038/s41598-019-46305-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022] Open
Abstract
A polyvinylidene fluoride, sulfonated graphene oxide composite membrane coated with polypyrrole (Ppy) and platinum metal (Pt) was fabricated. The Fourier-transform infrared (FTIR) spectroscopic analysis was done to analyze the functional groups present in the composite material. Deposition of PPy/Pt electrode and surface morphology of PVDF/SGO/Pt/PPy was confirmed by scanning electron microscopic (SEM) images. The capacity of ion exchange and proton conductivity (PC) of PVDF/SGO/Pt/PPy were 1.4 meq g-1 of dry ion exchanger and 4.251 × 10-2 S cm-1, respectively. A two-link flexible manipulator based on the fabricated ionic polymer metal composite (IPMC) membranes was also developed where the electromechanical behaviour of a polymer-based actuator provides an important step in robotics applications.
Collapse
Affiliation(s)
- Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Heba Abbas Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
31
|
Gabunada JC, Vinothkannan M, Kim DH, Kim AR, Yoo DJ. Magnetite Nanorods Stabilized by Polyaniline/Reduced Graphene Oxide as a Sensing Platform for Selective and Sensitive Non‐enzymatic Hydrogen Peroxide Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201900134] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jane Cathleen Gabunada
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research CenterChonbuk National University Jeollabuk-do 54896 Republic of Korea
| | - Mohanraj Vinothkannan
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research CenterChonbuk National University Jeollabuk-do 54896 Republic of Korea
- Department of Life ScienceChonbuk National University Jeollabuk-do 54896 Republic of Korea
| | - Dong Hee Kim
- Department of ChemistryKunsan National University Kunsan 573-701 Republic of Korea
| | - Ae Rhan Kim
- Department of Bioenvironmental Chemistry and R & D Center for CANUTECH, Business Incubation CenterChonbuk National University Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research CenterChonbuk National University Jeollabuk-do 54896 Republic of Korea
- Department of Life ScienceChonbuk National University Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
32
|
Ren S, Lv L, Ma J, Lu H, Guo J, Li X, Dong G, Li J, Dang X. Slow-release lubrication effect of graphene oxide/poly(ethylene glycol) wrapped in chitosan/sodium glycerophosphate hydrogel applied on artificial joints. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:452-460. [DOI: 10.1016/j.msec.2018.12.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/01/2018] [Accepted: 12/27/2018] [Indexed: 11/27/2022]
|
33
|
Dhanapal D, Xiao M, Wang S, Meng Y. A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells. NANOMATERIALS 2019; 9:nano9050668. [PMID: 31035423 PMCID: PMC6566683 DOI: 10.3390/nano9050668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
This paper focuses on a literature analysis and review of sulfonated polymer (s-Poly) composites, sulfonated organic, inorganic, and organic-inorganic hybrid membranes for polymer electrolyte membrane fuel cell (PEM) systems, particularly for methanol fuel cell applications. In this review, we focused mainly on the detailed analysis of the distinct segment of s-Poly composites/organic-inorganic hybrid membranes, the relationship between composite/organic- inorganic materials, structure, and performance. The ion exchange membrane, their size distribution and interfacial adhesion between the s-Poly composites, nanofillers, and functionalized nanofillers are also discussed. The paper emphasizes the enhancement of the s-Poly composites/organic-inorganic hybrid membrane properties such as low electronic conductivity, high proton conductivity, high mechanical properties, thermal stability, and water uptake are evaluated and compared with commercially available Nafion® membrane.
Collapse
Affiliation(s)
- Duraibabu Dhanapal
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
34
|
Kim AR, Yoo DJ. A Comparative Study on Physiochemical, Thermomechanical, and Electrochemical Properties of Sulfonated Poly(Ether Ether Ketone) Block Copolymer Membranes with and without Fe₃O₄ Nanoparticles. Polymers (Basel) 2019; 11:E536. [PMID: 30960520 PMCID: PMC6473931 DOI: 10.3390/polym11030536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The composite structure, good porosity, and electrochemical behavior of proton exchange membranes (PEMs) are important characteristics, which can improve the performance of polymer electrolyte fuel cells (PEFCs). In this study, we designed and synthesized an XY block copolymer via a polycondensation reaction that contains sulfonated poly(ether ether ketone) (SPEEK) (X) as a hydrophilic unit and a fluorinated oligomer (Y) as a hydrophobic unit. The prepared XY block copolymer is composed of Fe₃O₄ nanoparticles to create composite architecture, which was subsequently treated with a 1 M H₂SO₄ solution at 70 °C for 1 h to eliminate Fe₃O₄ and generate a pores structure in the membrane. The morphological, physiochemical, thermomechanical, and electrochemical properties of bare XY, XY/Fe₃O₄-9 and XY(porous)-9 membranes were measured and compared in detail. Compared with XY/Fe₃O₄-9 composite, the proton conductivity of XY(porous)-9 membrane was remarkably enhanced as a result of the existence of pores as nano-conducting channels. Similarly, the XY(porous)-9 membrane exhibited enhanced water retention and ion exchange capacity among the prepared membranes. However, the PEFC power density of XY(porous)-9 membrane was still lower than that of XY/Fe₃O₄-9 membrane at 60 °C and 60% relative humidity. Also, the durability of XY(porous)-9 membrane is found to be lower compared with pristine XY and XY/Fe₃O₄-9 membranes as a result of the hydrogen crossover through the pores of the membrane.
Collapse
Affiliation(s)
- Ae Rhan Kim
- Department of Bioenvironmental Chemistry and R&D Center for CANUTECH, Business Incubation Center, Chonbuk National University, Jeollabuk⁻do 54896, Korea.
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering and Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeollabuk-do 54896, Korea.
- Department of Life Science, Chonbuk National University, Jeollabuk⁻do 54896, Korea.
| |
Collapse
|
35
|
Chu JY, Lee KH, Kim AR, Yoo DJ. Improved Physicochemical Stability and High Ion Transportation of Poly(Arylene Ether Sulfone) Blocks Containing a Fluorinated Hydrophobic Part for Anion Exchange Membrane Applications. Polymers (Basel) 2018; 10:E1400. [PMID: 30961325 PMCID: PMC6401760 DOI: 10.3390/polym10121400] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/01/2022] Open
Abstract
A series of anion exchange membranes composed of partially fluorinated poly(arylene ether sulfone)s (PAESs) multiblock copolymers bearing quaternary ammonium groups were synthesized with controlled lengths of the hydrophilic precursor and hydrophobic oligomer via direct polycondensation. The chloromethylation and quaternization proceeded well by optimizing the reaction conditions to improve hydroxide conductivity and physical stability, and the fabricated membranes were very flexible and transparent. Atomic force microscope images of quaternized PAES (QN-PAES) membranes showed excellent hydrophilic/hydrophobic phase separation and distinct ion transition channels. An extended architecture of phase separation was observed by increasing the hydrophilic oligomer length, which resulted in significant improvements in the water uptake, ion exchange capacity, and hydroxide conductivity. Furthermore, the open circuit voltage (OCV) of QN-PAES X10Y23 and X10Y13 was found to be above 0.9 V, and the maximum power density of QN-PAES X10Y13 was 131.7 mW cm-2 at 60 °C under 100% RH.
Collapse
Affiliation(s)
- Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center and Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
- Department of Life Science, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
36
|
Lee KH, Chu JY, Kim AR, Yoo DJ. Facile Fabrication and Characterization of Improved Proton Conducting Sulfonated Poly(Arylene Biphenylether Sulfone) Blocks Containing Fluorinated Hydrophobic Units for Proton Exchange Membrane Fuel Cell Applications. Polymers (Basel) 2018; 10:E1367. [PMID: 30961293 PMCID: PMC6401750 DOI: 10.3390/polym10121367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 11/16/2022] Open
Abstract
Sulfonated poly(arylene biphenylether sulfone)-poly(arylene ether) (SPABES-PAE) block copolymers by controlling the molar ratio of SPABES and PAE oligomers were successfully synthesized, and the performances of SPABES-PAE (1:2, 1:1, and 2:1) membranes were compared with Nafion 212. The prepared membranes including fluorinated hydrophobic units were stable against heat, nucleophile attack, and physio-chemical durability during the tests. Moreover, the polymers exhibited better solubility in a variety of solvents. The chemical structure of SPABES-PAEs was investigated by ¹H nuclear magnetic resonance (¹H NMR), Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC). The membrane of SPABES-PAEs was fabricated by the solution casting method, and the membranes were very flexible and transparent with a thickness of 70⁻90 μm. The morphology of the membranes was observed using atomic force microscope and the ionic domain size was proved by small angle X-ray scattering (SAXS) measurement. The incorporation of polymers including fluorinated units allowed the membranes to provide unprecedented oxidative and dimensional stabilities, as verified from the results of ex situ durability tests and water uptake capacity, respectively. By the collective efforts, we observed an enhanced water retention capacity, reasonable dimensional stability and high proton conductivity, and the peak power density of the SPABES-PAE (2:1) was 333.29 mW·cm-2 at 60 °C under 100% relative humidity (RH).
Collapse
Affiliation(s)
- Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center and Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
- Department of Life Science, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
37
|
Kim AR, Vinothkannan M, Park CJ, Yoo DJ. Alleviating the Mechanical and Thermal Degradations of Highly Sulfonated Poly(Ether Ether Ketone) Blocks via Copolymerization with Hydrophobic Unit for Intermediate Humidity Fuel Cells. Polymers (Basel) 2018; 10:E1346. [PMID: 30961271 PMCID: PMC6401815 DOI: 10.3390/polym10121346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022] Open
Abstract
In this contribution, sulfonated poly(ether ether ketone) (SPEEK) is inter-connected using a hydrophobic oligomer via poly-condensation reaction to produce SPEEK analogues as PEMs. Prior sulfonation is performed for SPEEK to avoid random sulfonation of multi-block copolymers that may destroy the mechanical toughness of polymer backbone. A greater local density of ionic moieties exist in SPEEK and good thermomechanical properties of hydrophobic unit offer an unique approach to promote the proton conductivity as well as thermomechanical stability of membrane, as verify from AC impedance and TGA. The morphological behavior and phase variation of membranes are explored using FE-SEM and AFM; the triblock (XYX) membranes exhibits a nano-phase separated morphology. Performance of PEFC integrated with blend and block copolymer membranes is determined at 60 °C under 60% RH. As a result, the triblock (XYX) membrane has a high power density than blend (2X1Y) membrane.
Collapse
Affiliation(s)
- Ae Rhan Kim
- Department of Bioenvironmental Chemistry and R&D Center for CANUTECH, Business Incubation Center, Chonbuk National University, Jeollabuk-do 54896, Republic of Korea.
| | - Mohanraj Vinothkannan
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeollabuk-do 54896, Republic of Korea.
| | - Chul Jin Park
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeollabuk-do 54896, Republic of Korea.
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeollabuk-do 54896, Republic of Korea.
- Department of Life Science, Chonbuk National University, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
38
|
Chua S, Fang R, Sun Z, Wu M, Gu Z, Wang Y, Hart JN, Sharma N, Li F, Wang DW. Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers. Chemistry 2018; 24:18180-18203. [PMID: 30328219 DOI: 10.1002/chem.201804781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 01/05/2023]
Abstract
Solid polymer electrolytes are of rapidly increasing importance for the research and development of future safe batteries with high energy density. The diversified chemistry and structures of polymers allow the utilization of a wide range of soft structures for all-polymer solid-state electrolytes. With equal importance is the hybrid solid-state electrolytes consisting of both "soft" polymeric structure and "hard" inorganic nanofillers. The recent emergence of the re-discovery of many two-dimensional layered materials has stimulated the booming of advanced research in energy storage fields, such as batteries, supercapacitors, and fuel cells. Of special interest is the mass transport properties of these 2D nanostructures for water, gas, or ions. This review aims at the current progress and prospective development of hybrid polymer-inorganic solid electrolytes based on important 2D materials, including natural clay and synthetic lamellar structures. The ion conduction mechanism and the fabrication, property and device performance of these hybrid solid electrolytes will be discussed.
Collapse
Affiliation(s)
- Stephanie Chua
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Ruopian Fang
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhenhua Sun
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Minjie Wu
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Yuzuo Wang
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Judy N Hart
- School of Materials Science and Engineering, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | - Neeraj Sharma
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Feng Li
- Shenyang National Laboratory of Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Da-Wei Wang
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Han J, Wu Y, Pan J, Peng Y, Wang Y, Chen C, Pan Q, Xie B, Zhao N, Wang Y, Lu J, Xiao L, Zhuang L. Highly conductive and stable hybrid ionic cross-linked sulfonated PEEK for fuel cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Kim AR, Gabunada JC, Yoo DJ. Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Kim AR, Vinothkannan M, Yoo DJ. Fabrication of Binary Sulfonated Poly Ether Sulfone and Sulfonated Polyvinylidene Fluoride-Co-Hexafluoro Propylene Blend Membrane as Efficient Electrolyte for Proton Exchange Membrane Fuel Cells. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ae Rhan Kim
- Department of Bioenvironmental Chemistry and R&D Center for CANUTECH; Business Incubation Center, Chonbuk National University; Jeonju 54896 Republic of Korea
| | - Mohanraj Vinothkannan
- Graduate School, Department of Energy Storage/Conversion Engineering; Hydrogen and Fuel Cell Research Center, Chonbuk National University; Jeonju 54896 Republic of Korea
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering; Hydrogen and Fuel Cell Research Center, Chonbuk National University; Jeonju 54896 Republic of Korea
- Department of Life Science; Chonbuk National University; Jeonju 54896 Republic of Korea
| |
Collapse
|
42
|
Ahmadian-Alam L, Mahdavi H. Preparation and characterization of PVDF-based blend membranes as polymer electrolyte membranes in fuel cells: Study of factor affecting the proton conductivity behavior. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Leila Ahmadian-Alam
- School of Chemistry, College of Science; University of Tehran; PO Box 14155-6455 Tehran Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science; University of Tehran; PO Box 14155-6455 Tehran Iran
| |
Collapse
|
43
|
Devi AU, Divya K, Kaleekkal NJ, Rana D, Nagendran A. Tailored SPVdF-co-HFP/SGO nanocomposite proton exchange membranes for direct methanol fuel cells. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Vinothkannan M, Kim AR, Gnana kumar G, Yoo DJ. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells. RSC Adv 2018; 8:7494-7508. [PMID: 35539095 PMCID: PMC9078422 DOI: 10.1039/c7ra12768e] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022] Open
Abstract
Preparation process of Nafion/Fe3O4–SGO composite membranes.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- Graduate School
- Department of Energy Storage/Conversion Engineering
- Hydrogen and Fuel Cell Research Center
- Chonbuk National University
- Jeollabuk-do 54896
| | - Ae Rhan Kim
- Department of Bioenvironmental Chemistry
- R&D Center for CANUTECH
- Business Incubation Center
- Chonbuk National University
- Jeollabuk-do 54896
| | - G. Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Dong Jin Yoo
- Graduate School
- Department of Energy Storage/Conversion Engineering
- Hydrogen and Fuel Cell Research Center
- Chonbuk National University
- Jeollabuk-do 54896
| |
Collapse
|
45
|
Synthesis and characterization of sulfonated poly ether ether ketone (SPEEK)/ CNTs composite proton exchange membrane for application in fuel cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.06.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2180-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Vinothkannan M, Kim AR, Gnana kumar G, Yoon JM, Yoo DJ. Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv 2017. [DOI: 10.1039/c7ra07063b] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fe3O4 anchored functionalized GO is applied as a magnetically active filler as well as a solid proton conductor to realize an aligned hybrid membrane electrolyte architecture with blended polymer matrix consisting of FPAPB and SPEEK.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- Graduate School
- Department of Energy Storage/Conversion Engineering
- Hydrogen and Fuel Cell Research Center
- Chonbuk National University
- Republic of Korea
| | - Ae Rhan Kim
- R&D Center for CANUTECH
- Business Incubation Center of Chonbuk National University
- Republic of Korea
| | - G. Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Jeong-Mo Yoon
- Division of New Materials Engineering
- Chonbuk National University
- Republic of Korea
| | - Dong Jin Yoo
- Graduate School
- Department of Energy Storage/Conversion Engineering
- Hydrogen and Fuel Cell Research Center
- Chonbuk National University
- Republic of Korea
| |
Collapse
|