1
|
Yogesh Kumar K, Prashanth MK, Shanavaz H, Parashuram L, Alharethy F, Jeon BH, Raghu MS. Novel pyrochlore type europium stannate - tungsten disulfide heterostructure for light driven carbon dioxide reduction and nitrogen fixation. ENVIRONMENTAL RESEARCH 2024; 257:119372. [PMID: 38852832 DOI: 10.1016/j.envres.2024.119372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The reduction of carbon dioxide (CO2) and nitrogen (N2) to value-added products is a substantial area of research in the fields of sustainable chemistry and renewable energy that aims at reducing greenhouse gas emissions and the production of alternative fuels and chemicals. The current work deals with the synthesis of pyrochlore-type europium stannate (Eu2Sn2O7: EuSnO), tungsten disulfide (WS2:WS), and novel EuSnO/WS heterostructure by a simple and facile co-precipitation-aided hydrothermal method. Using different methods, the morphological and structural analyses of the prepared samples were characterized. It was confirmed that a heterostructure was formed between the cubic EuSnO and the layered WS. Synthesized materials were used for photocatalytic CO2 and N2 reduction under UV and visible light. The amount of CO and CH4 evolved due to CO2 reduction is high in EuSnO/WS (CO = 104, CH4 = 64 μmol h-1 g-1) compared to pure EuSnO (CO = 36, CH4 = 70 μmol h-1 g-1) and WS (CO = 22, CH4 = 1.8 μmol h-1 g-1) under visible light. The same trend was observed even in the N2 fixation reaction under visible light, and the amount of NH4+ produced was found to be 13, 26, and 41 μmol h-1 g-1 in the presence of WS, EuSnO and EuSnO/WS, respectively. Enhanced light-driven activity towards CO2 and N2 reduction reactions in EuSnO/WS is due to the efficient charge separation through the formation of type-II heterostructure, which is in part associated with photocurrent response, photoluminescence, and electrochemical impedence spectroscopic (EIS) results. The EuSnO/WS heterostructure's exceptional stability and reusability may pique the attention of pyrochlore-based composite materials in photocatalytic energy and environmental applications.
Collapse
Affiliation(s)
- K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - M K Prashanth
- Department of Chemistry, BNM Institute of Technology, Banashankari, Bangalore, 560070, India
| | - H Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - L Parashuram
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, 560064, India
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India.
| |
Collapse
|
2
|
Zoubir J, Bakas I, Qourzal S, Tamimi M, Assabbane A. Electrochemical sensor based on a ZnO-doped graphitized carbon for the electrocatalytic detection of the antibiotic hydroxychloroquine. Application: tap water and human urine. J APPL ELECTROCHEM 2023; 53:1279-1294. [PMID: 36644408 PMCID: PMC9825087 DOI: 10.1007/s10800-022-01835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023]
Abstract
Abstract In December 2019, the world experienced a new coronavirus, SARS-CoV-2, causing coronavirus disease 2019 originating from Wuhan.The virus has crossed national borders and now affects more than 200 countries and territories. Hydroxychloroquine has been considered as a drug capable of treating COVID-19. The objective of this work is to establish a simple platform for electrocatalytic detection of hydroxychloroquine in human urine samples and pharmaceutical samples (tablets) using a ZnO@CPE sensor constructed by simple and inexpensive hydrothermal methods using a square wave voltammetry method. The best results are obtained in a PBS electrolyte with irreversible behavior of the hydroxychloroquine complement and controlled by diffusion coupled with absorption phenomena. The ZnO@CPE shifts the oxidation potential of hydroxychloroquine with the formation of a single very intense peak at the position of Epa = 0.5 V/(vs Ag/AgCl) with a shift is ΔEp = 0.1 V(vs Ag/AgCl) compared to the unmodified electrode. The obtained ZnO@CPE hybrid nanocomposite was characterized by different techniques and showed excellent electrocatalytic activity and higher active surface area compared to the bare carbon paste electrode. Under the optimized experimental conditions, the ZnO@CPE sensor showed good analytical performance for the determination of trace amounts of hydroxychloroquine, a wide linearity range from 10-3 M to 0.8 × 10-6 M with a very low detection limit in the range of 1.33 × 10-7 M, satisfactory selectivity, acceptable repeatability and reproducibility. The calculated recovery and coefficient of variation for the two samples analyzed are very satisfactory, ranging from 97.6 to 102% and 1.2 to 2.3% respectively. The proposed applied method and the fabricated sensor offer the possibility to analyze traces of hydroxychloroquine in real human urine and water samples. Graphical abstract Strategy for the electro-oxidation reaction of hydroxychloroquine on the electro-catalytic surface of the ZnO@Carbon graphite electrode and real-time detection of hydroxychloroquine.
Collapse
Affiliation(s)
- Jallal Zoubir
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Idriss Bakas
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Samir Qourzal
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Malika Tamimi
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Ali Assabbane
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| |
Collapse
|
3
|
Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J Colloid Interface Sci 2022; 613:1-14. [PMID: 35030412 DOI: 10.1016/j.jcis.2022.01.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
In this study, we firstly introduce an ultra-high sensitive V3.6Mo2.4O16-chitosan (MV-CHT) nanocomposite for electrochemical hydroxychloroquine sulfate (HCQ) monitoring toward paracetamol (PCM) and pantoprazole (PPZ) in environmental and clinical diagnostics. The single-phase MV nanostructures are prepared via the sol-gel pechini route, followed by engineering maleic acid as a structure-directing agent. The stabilization of the MV electro-catalysts is adopted by varying critical factors such as calcination temperature, different chelating ligands, chelating molality and cross-linker concentration. The structural and morphological characterizations, namely, ordered active sites, structural integrity, porous network and dispersibility on the cationic polymer are confirmed by physicochemical analyses. Also, analytical nature of the MV-CHT modified carbon paste electrode (MV-CHT/CPE) is constructed via electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. As a result, the nano-MV-CHT/CPE platforms with 10% of polymeric matrixes delivered the boosted analytical performance in terms of linear ranges (0.0019-194.0 µM), lower detection limit (LOD = 0.224 nM), together with excellent sensitivity and selectivity. The novel combination of MV nanoparticles and CHT provide the fluent channels for rapid charge transport and effective surface area. Such results illustrate the synergistic and interaction capability of MV-CHT-based sensing catalysts with bioactive molecules, which make them as superior drug monitoring devices.
Collapse
|
4
|
Dhanasekaran T, Manigandan R, Padmanaban A, Suresh R, Giribabu K, Narayanan V. Fabrication of Ag@Co-Al Layered Double Hydroxides Reinforced poly(o-phenylenediamine) Nanohybrid for Efficient Electrochemical Detection of 4-Nitrophenol, 2,4-Dinitrophenol and Uric acid at Nano Molar Level. Sci Rep 2019; 9:13250. [PMID: 31519946 PMCID: PMC6744444 DOI: 10.1038/s41598-019-49595-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
In this paper, Co-Al layered double hydroxides (LDHs), Co-Al LDHs/poly(o-phenylenediamine) (PoPD) and Ag nanoparticles decorated Co-Al LDHs/PoPD (Ag@Co-Al LDH/PoPD) samples were prepared. The as-prepared samples were characterized by XRD, Raman, XPS, FT-IR, DRS-UV-Vis, PL and TGA techniques. The salient features of morphology and size of the samples were determined using FESEM, and HR-TEM. Then, the samples were coated on glassy carbon electrode (GCE) and employed for sensing of 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP)) and uric acid (UA). It was found that Ag@Co-Al LDH/PoPD/GCE showed superior electrochemical sensing behaviour than other modified electrodes. It exhibits the detection limit (DL) of 63 nM, 50 nM and 0.28 µM for 4-NP, 2,4-DNP and UA respectively.
Collapse
Affiliation(s)
- T Dhanasekaran
- Department of Inorganic Chemistry, University of Madras, Chennai, India
- National Centre for Sustainable Coastal Management, Anna University Campus, Chennai, India
| | - R Manigandan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - A Padmanaban
- Department of Inorganic Chemistry, University of Madras, Chennai, India
| | - R Suresh
- Department of Analytical and Inorganic Chemistry, University of Concepcion, Concepcion, Chile
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi, India
| | - V Narayanan
- Department of Inorganic Chemistry, University of Madras, Chennai, India.
| |
Collapse
|
5
|
Shin SH, Choi SY, Lee MH, Nah J. High-Performance Piezoelectric Nanogenerators via Imprinted Sol-Gel BaTiO 3 Nanopillar Array. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41099-41103. [PMID: 29130682 DOI: 10.1021/acsami.7b11773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report high-performance piezoelectric nanogenerators (PENGs) with nanoimprinted sol-gel BaTiO3 (BTO) nanopillar array polarized under high electric field and ultraviolet. The PENGs fabricated using this method demonstrate greatly enhanced output voltage of ∼10 V and current density of ∼1.2 μA cm-2, respectively, in comparison to that of flat PENG. Further, the PENG demonstrates uniform output characteristics over the entire device area thanks to uniform nanoimprint pillar array. The approach introduced here is simple, effective, reliable, and reproducible way to fabricate high-performance sol-gel-based PENGs and electronic devices.
Collapse
Affiliation(s)
- Sung-Ho Shin
- Department of Electrical Engineering, Chungnam National University , Daejeon 34134, Korea
| | - Seong-Young Choi
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi 17104, Korea
| | - Min Hyung Lee
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi 17104, Korea
| | - Junghyo Nah
- Department of Electrical Engineering, Chungnam National University , Daejeon 34134, Korea
| |
Collapse
|
6
|
Raymundo-Pereira PA, Campos AM, Vicentini FC, Janegitz BC, Mendonça CD, Furini LN, Boas NV, Calegaro ML, Constantino CJ, Machado SA, Oliveira ON. Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 2017; 174:652-659. [DOI: 10.1016/j.talanta.2017.06.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
|
7
|
Bispo AG, Ceccato DA, Lima SAM, Pires AM. Red phosphor based on Eu3+-isoelectronically doped Ba2SiO4 obtained via sol–gel route for solid state lightning. RSC Adv 2017. [DOI: 10.1039/c7ra10494d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ba2SiO4:Eu3+ red phosphor with high quantum efficiency synthesized via sol–gel route as a candidate to white LEDs component is introduced. An approach for the 0–0 Eu3+ transition anomalous emission due to Eu3+–O2− associates is also provided.
Collapse
Affiliation(s)
- Airton G. Bispo
- São Paulo State University (Unesp)
- School of Technology and Sciences
- Presidente Prudente
- Brazil
- São Paulo State University (Unesp)
| | - Diego A. Ceccato
- São Paulo State University (Unesp)
- School of Technology and Sciences
- Presidente Prudente
- Brazil
- São Paulo State University (Unesp)
| | - Sergio A. M. Lima
- São Paulo State University (Unesp)
- School of Technology and Sciences
- Presidente Prudente
- Brazil
- São Paulo State University (Unesp)
| | - Ana. M. Pires
- São Paulo State University (Unesp)
- School of Technology and Sciences
- Presidente Prudente
- Brazil
- São Paulo State University (Unesp)
| |
Collapse
|