1
|
Sultanov F, Tatykayev B, Bakenov Z, Mentbayeva A. The role of graphene aerogels in rechargeable batteries. Adv Colloid Interface Sci 2024; 331:103249. [PMID: 39032342 DOI: 10.1016/j.cis.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.
Collapse
Affiliation(s)
- Fail Sultanov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Batukhan Tatykayev
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Almagul Mentbayeva
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan.
| |
Collapse
|
2
|
Islam S, Nayem SMA, Anjum A, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries. CHEM REC 2024; 24:e202300017. [PMID: 37010435 DOI: 10.1002/tcr.202300017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Ahtisham Anjum
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Wang T, Chen S, Chen KJ. Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. CHEM REC 2023:e202300006. [PMID: 36942948 DOI: 10.1002/tcr.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Metal-organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self-aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high-performance MOF composites and derivatives in the field of EES.
Collapse
Affiliation(s)
- Teng Wang
- Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Ningbo, 315103, PR China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Shaoqian Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| |
Collapse
|
4
|
Zhu Z, Jiang T, Ali M, Meng Y, Jin Y, Cui Y, Chen W. Rechargeable Batteries for Grid Scale Energy Storage. Chem Rev 2022; 122:16610-16751. [PMID: 36150378 DOI: 10.1021/acs.chemrev.2c00289] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ever-increasing global energy consumption has driven the development of renewable energy technologies to reduce greenhouse gas emissions and air pollution. Battery energy storage systems (BESS) with high electrochemical performance are critical for enabling renewable yet intermittent sources of energy such as solar and wind. In recent years, numerous new battery technologies have been achieved and showed great potential for grid scale energy storage (GSES) applications. However, their practical applications have been greatly impeded due to the gap between the breakthroughs achieved in research laboratories and the industrial applications. In addition, various complex applications call for different battery performances. Matching of diverse batteries to various applications is required to promote practical energy storage research achievement. This review provides in-depth discussion and comprehensive consideration in the battery research field for GSES. The overall requirements of battery technologies for practical applications with key parameters are systematically analyzed by generating standards and measures for GSES. We also discuss recent progress and existing challenges for some representative battery technologies with great promise for GSES, including metal-ion batteries, lead-acid batteries, molten-salt batteries, alkaline batteries, redox-flow batteries, metal-air batteries, and hydrogen-gas batteries. Moreover, we emphasize the importance of bringing emerging battery technologies from academia to industry. Our perspectives on the future development of batteries for GSES applications are provided.
Collapse
Affiliation(s)
- Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mohsin Ali
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Jin
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Xiang M, Zhu S, Qin S, Yang J, Fan W, Lin W, Yang Z, Dong S. Flexible composites by ionic liquid/silver/graphene in towel‐gourd sponge fibers: Synergistic effect and dual‐band electromagnetic interference shielding in X‐band and terahertz‐band. J Appl Polym Sci 2022. [DOI: 10.1002/app.52511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Xiang
- Department for Material Engineering Jiangsu University of Technology Changzhou China
| | - Sheng‐Qing Zhu
- Department for Material Engineering Jiangsu University of Technology Changzhou China
| | - Sai Qin
- Department for Chemical Engineering and Material Changzhou Institute of Technology Changzhou China
| | - Jingjing Yang
- Department for Material Engineering Jiangsu University of Technology Changzhou China
| | - Wangxi Fan
- Department for Material Engineering Jiangsu University of Technology Changzhou China
| | - Wei Lin
- Department for Material Engineering Jiangsu University of Technology Changzhou China
| | - Zhou Yang
- Department for Material Engineering Jiangsu University of Technology Changzhou China
| | - Shuang Dong
- Department for Chemical Engineering and Material Changzhou Institute of Technology Changzhou China
| |
Collapse
|
6
|
Chang YS, Chen FK, Tsai DC, Kuo BH, Shieu FS. N-doped reduced graphene oxide for room-temperature NO gas sensors. Sci Rep 2021; 11:20719. [PMID: 34671084 PMCID: PMC8528858 DOI: 10.1038/s41598-021-99883-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, we use nitrogen-doped to improving the gas-sensing properties of reduced graphene oxide. Graphene oxide was prepared according to a modified Hummers' method and then nitrogen-doped reduced graphene oxide (N-rGO) was synthesized by a hydrothermal method using graphene oxide and NH4OH as precursors. The rGO is flat and smooth with a sheet-like morphology while the N-rGO exhibits folded morphology. This type of folding of the surface morphology can increase the gas sensitivity. The N-rGO and the rGO sensors showed n-type and p-type semiconducting behaviors in ambient conditions, respectively, and were responsive to low concentrations of NO gases (< 1000 ppb) at room temperature. The gas-sensing results showed that the N-rGO sensors could detect NO gas at concentrations as low as 400 ppb. The sensitivity of the N-rGO sensor to 1000 ppb NO (1.7) is much better than that of the rGO sensor (0.012). Compared with pure rGO, N-rGO exhibited a higher sensitivity and excellent reproducibility.
Collapse
Affiliation(s)
- Yu-Sung Chang
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Feng-Kuan Chen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Du-Cheng Tsai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Bing-Hau Kuo
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | - Fuh-Sheng Shieu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China.
| |
Collapse
|
7
|
N-doped three-dimensional graphene aerogel with a high loading of Ag particles as an efficient catalyst and antibacterial agent. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Zhang Y, Yang JCE, Fu ML, Yuan B, Gupta K. One-step fabrication of recycled Ag nanoparticles/graphene aerogel with high mechanical property for disinfection and catalytic reduction of 4-nitrophonel. ENVIRONMENTAL TECHNOLOGY 2019; 40:3381-3391. [PMID: 29726750 DOI: 10.1080/09593330.2018.1473503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Fabrication of smart composites with expected removal property and excellent recycle performance for micro-pollutants including microbes and organic contaminants without formation of second-pollutants is highly desired. In this work, Ag nanoparticles (Ag NPs) homogenously loaded on graphene aerogel (GA) as Ag NPs/GA was facilely fabricated by a one-step process and the composite was characterized in detail. The bactericidal performance of the composite towards escherichia coli (E. coli) was evaluated and the catalytic activity was probed for the reduction of 4-nitrophenol (4-NP). Results showed that the composite contains about 44.4 wt% of well-dispersed Ag NPs with diameters ranging from 10 to 100 nm. Compared with the bare Ag particles or GA, Ag NPs/GA exhibited an enhanced bactericidal performance for 8-lg of E. coli cells with 100% inactivation rate and catalytic activity for 4-NP with 96.6% degradation rate, respectively. Impressively, the 100% inactivation rates for 8-lg of E. coli remained after 7 recycles and the releasing silver was negligible compared with the loaded Ag NPs. Moreover, the used Ag NPs/GA for the catalytic reduction of 4-NP can be regenerated easily by calcination in inert atmosphere. Hence, Ag NPs/GA can be regarded as a promising and cost-efficient composite for environmental remediation.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
- University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Jia-Cheng E Yang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
- University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ming-Lai Fu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
| | - Baoling Yuan
- College of Civil Engineering, Huaqiao University , Xiamen , People's Republic of China
| | - Kiran Gupta
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
- Xiamen Urban Water Environmental Eco-Planning and Remediation Engineering Research Center (XMERC) , Xiamen, People's Republic of China
| |
Collapse
|
9
|
Dong J, Sun T, Li S, Shan N, Chen J, Yan Y, Xu L. 3D ordered macro-/mesoporous carbon supported Ag nanoparticles for efficient electrocatalytic oxygen reduction reaction. J Colloid Interface Sci 2019; 554:177-182. [PMID: 31299545 DOI: 10.1016/j.jcis.2019.06.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Abstract
Three-dimensionally ordered macro-/mesoporous carbon (OMMC)-supported Ag nanoparticles (Ag/OMMC) with homogeneously dispersed Ag particles are prepared and investigated as effective electrocatalysts for oxygen reduction reaction (ORR) in alkaline aqueous system. The obtained Ag/OMMC catalyst displays smaller Ag particle size, higher Ag dispersion, and enhanced catalytic activity and durability compared with the carbon black Vulcan XC-72R supported Ag (Ag/XC-72R). The sizes of Ag particles supported on the OMMC and XC-72R are 4.3 and 6.5 nm, respectively. The prepared Ag/OMMC catalyst shows a positive half-wave potential of 0.79 V vs. RHE and a large diffusion-limited current of 5.6 mA cm-2 at 0.4 V, superior to Ag/XC-72R catalyst. The better ORR performance of the Ag/OMMC is probably ascribed to the unique 3D ordered interconnected macro-/mesoporous structure, which contributes to facilitating the mass/charge transport, improving the Ag particle dispersion, and preventing the Ag particle growth and aggregation.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nannan Shan
- Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Jianfeng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lianbin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Ryu J, Park M, Cho J. Advanced Technologies for High-Energy Aluminum-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804784. [PMID: 30393999 DOI: 10.1002/adma.201804784] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Aluminum-air batteries are considered as next-generation batteries owing to their high energy density with the abundant reserves, low cost, and lightweight of aluminum. However, there are several hurdles to be overcome, such as the sluggish rate of the oxygen reduction reaction (ORR) at the air electrode, precipitation of aluminum hydroxides and oxides at the anode, and severe hydrogen evolution problems at the interface of the anode and the electrolyte. Here, recent advances in silver metal and metal-nitrogen-carbon-based ORR electrocatalysts, aluminum anodes, electrolytes, and the requirements of future research directions are mainly summarized.
Collapse
Affiliation(s)
- Jaechan Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Minjoon Park
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
11
|
Li P, Li Z, Cui J, Geng C, Kang Y, Zhang C, Yang C. N-doped graphene/CoFe2O4 catalysts for the selective catalytic reduction of NOx by NH3. RSC Adv 2019; 9:15791-15797. [PMID: 35521390 PMCID: PMC9064319 DOI: 10.1039/c9ra02456e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, CoFe2O4/graphene catalysts and N-doped graphene/CoFe2O4 (CoFe2O4/graphene-N) catalysts were prepared using the hydrothermal crystallization method for the selective catalytic reduction of NOx by NH3. The results of the test showed that CoFe2O4/graphene catalysts exhibited the best denitrification activity when the loading was at 4% and the conversion rate of NOx reached 99% at 250–300 °C. CoFe2O4/graphene-N catalysts presented a better denitrification activity at low temperature than CoFe2O4/graphene catalysts, and the conversion rate of NOx reached more than 95% at 200–300 °C. The intrinsic mechanism of CoFe2O4/graphene-N catalysts in promoting SCR activity was preliminarily explored. The physicochemical properties of the samples were characterized using XRD, TEM, N2 adsorption, XPS, NH3-TPD, and H2-TPR. The results indicated that nitrogen doping can improve the dispersion of CoFe2O4, and it also increased the acidic sites and the redox performance conducive to improving the denitrification activity of the catalysts. In addition, CoFe2O4/graphene-N catalysts demonstrated a better resistance to water and sulfur than CoFe2O4/graphene catalysts. N-doped graphene/CoFe2O4 presented better denitrification activity than CoFe2O4/graphene due to the more uniform distribution of CoFe2O4 and acidic sites etc.![]()
Collapse
Affiliation(s)
- Peng Li
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Zhifang Li
- College of Materials Science and Engineering
- Qiqihar University
- Qiqihar 161006
- China
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Material
| | - Jinxing Cui
- College of Materials Science and Engineering
- Qiqihar University
- Qiqihar 161006
- China
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Material
| | - Cui Geng
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Yan Kang
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Chao Zhang
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Changlong Yang
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
- College of Materials Science and Engineering
| |
Collapse
|
12
|
Erikson H, Sarapuu A, Tammeveski K. Oxygen Reduction Reaction on Silver Catalysts in Alkaline Media: a Minireview. ChemElectroChem 2018. [DOI: 10.1002/celc.201800913] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Heiki Erikson
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Ave Sarapuu
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Kaido Tammeveski
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
13
|
Wang Q, Miao H, Sun S, Xue Y, Liu Z. One-Pot Synthesis of Co3
O4
/Ag Nanoparticles Supported on N-Doped Graphene as Efficient Bifunctional Oxygen Catalysts for Flexible Rechargeable Zinc-Air Batteries. Chemistry 2018; 24:14816-14823. [DOI: 10.1002/chem.201803236] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Qin Wang
- Key Laboratory of Graphene Technologies, and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE); Chinese Academy of Sciences; Zhejiang 315201 P.R. China
- University of Chinese Academy of Science; 19 A Yuquan Rd., Shijingshan District Beijing 100049 P.R. China
| | - He Miao
- Faculty of Maritime and Transportation; Ningbo University; Ningbo 315211 P.R. China
| | - Shanshan Sun
- Key Laboratory of Graphene Technologies, and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE); Chinese Academy of Sciences; Zhejiang 315201 P.R. China
| | - Yejian Xue
- Key Laboratory of Graphene Technologies, and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE); Chinese Academy of Sciences; Zhejiang 315201 P.R. China
| | - Zhaoping Liu
- Key Laboratory of Graphene Technologies, and Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering (NIMTE); Chinese Academy of Sciences; Zhejiang 315201 P.R. China
| |
Collapse
|
14
|
El-Nagar GA, Lauermann I, Sarhan RM, Roth C. Hierarchically structured iron-doped silver (Ag-Fe) lotus flowers for an efficient oxygen reduction reaction. NANOSCALE 2018; 10:7304-7310. [PMID: 29634067 DOI: 10.1039/c8nr00020d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of cheap and efficient electrocatalysts for the oxygen reduction reaction (ORR) is vital for the immediate commercialization of fuel cells which are still limited by the high cost and low performance of the utilized commercial Pt-based electrodes. As a promising alternative, this study reports on the synthesis of hierarchical iron-doped silver lotus flowers (AgFelotus) by a facile chemical procedure as robust and efficient ORR electrocatalysts. Succinic acid was used as a structure directing agent to tune the morphology of undoped and iron-doped silver particles. In the absence of succinic acid, ball-like silver particles were obtained, while using 2 mM succinic acid led to peony-like flower structures. The doping of silver peony-flowers with iron resulted in lotus-like flower structures with high electrocatalytic activity for ORR together with outstanding tolerance against poisoning with various hydrocarbon (HC) impurities, in situ generated during fuel cell operation, as well as different fuels from anodic crossover. AgFelotus exhibited a superior ORR activity with more than 40 times higher stability than the commercial Pt/C catalyst in alkaline media. This substantial performance enhancement is attributed to the unique lotus-like flower structures providing more electroactive surface sites, in addition to the iron dopants which facilitate ORR charge transfer.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | | | | |
Collapse
|
15
|
Wang C, Fu Q, Wen D. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2018-1170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Functionalized graphene aerogels (GAs) not only own the advantages of the original ones like large specific surface area, three-dimensional porous structures, high specific capacitance and excellent cyclic stability, but also realize the function expansion due to the collective properties endowed via different methods. These characteristics make them advantageous in some promising applications. In this minireview, we focus on the various functionalization methods of GAs and especially their use in the applications of energy storage and conversion like batteries, supercapacitors and fuel cells, etc.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Solidification Processing , Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) , Xi’an 710072 , China
| | - Qiangang Fu
- State Key Laboratory of Solidification Processing , Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) , Xi’an 710072 , China
| | - Dan Wen
- State Key Laboratory of Solidification Processing , Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) , Xi’an 710072 , China
| |
Collapse
|
16
|
Sun S, Xue Y, Wang Q, Huang H, Miao H, Liu Z. Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen reduction reaction for aluminum-air batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Wang Y, Kong Q, Ding B, Chen Y, Yan X, Wang S, Chen F, You J, Li C. Bioinspired catecholic activation of marine chitin for immobilization of Ag nanoparticles as recyclable pollutant nanocatalysts. J Colloid Interface Sci 2017; 505:220-229. [DOI: 10.1016/j.jcis.2017.05.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 11/26/2022]
|
18
|
Xue Y, Miao H, Sun S, Wang Q, Li S, Liu Z. La1−xAgxMnO3 electrocatalyst with high catalytic activity for oxygen reduction reaction in aluminium air batteries. RSC Adv 2017. [DOI: 10.1039/c6ra25242g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ag doping is one of the best methods for improving the catalytic activity of LaMnO3 perovskites, and the mass specific activity of LAM-30 (La0.7Ag0.3MnO3) can reach 48.0 mA mg−1 which is about 32 times that of LAM-0 (LaMnO3).
Collapse
Affiliation(s)
- Yejian Xue
- Advanced Li-ion Battery Engineering Laboratory
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- P. R. China
| | - He Miao
- Advanced Li-ion Battery Engineering Laboratory
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- P. R. China
| | - Shanshan Sun
- Advanced Li-ion Battery Engineering Laboratory
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- P. R. China
| | - Qin Wang
- Advanced Li-ion Battery Engineering Laboratory
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- P. R. China
| | - Shihua Li
- Advanced Li-ion Battery Engineering Laboratory
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- P. R. China
| | - Zhaoping Liu
- Advanced Li-ion Battery Engineering Laboratory
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- P. R. China
| |
Collapse
|