1
|
Johari N, Rahimi F, Azami H, Rafati F, Nokhbedehghan Z, Samadikuchaksaraei A, Moroni L. The impact of copper nanoparticles surfactant on the structural and biological properties of chitosan/sodium alginate wound dressings. BIOMATERIALS ADVANCES 2024; 162:213918. [PMID: 38880016 DOI: 10.1016/j.bioadv.2024.213918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Multifunctional wound dressings based on hydrogels are an efficacious and practicable strategy in therapeutic processes and accelerated chronic wound healing. Here, copper (Cu) nanoparticles were added to chitosan/sodium alginate (CS/SA) hydrogels to improve the antibacterial properties of the prepared wound dressings. Due to the super-hydrophobicity of Cu nanoparticles, polyethylene glycol (PEG) was used as a surfactant, and then added to the CS/SA-based hydrogels. The CS/SA/Cu hydrogels were synthesized with 0, 2, 3.5, and 5 wt% Cu nanoparticles. The structural and morphological properties in presence of PEG were evaluated using Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). The biodegradation and swelling properties of the hydrogels were investigated in phosphate buffer saline (PBS) at 37 °C for up to 30 days. Cell viability and adhesion, as well as antibacterial behavior, were investigated via MTT assay, FESEM, and disk diffusion method, respectively. The obtained results showed that PEG provided new intra- and intermolecular bonds that affected significantly the hydrogels' degradation and swelling ratio, which increased up to ~1200 %. Cell viability reached ~110 % and all samples showed remarkable antibacterial behavior when CS/SA/Cu containing 2 wt% was introduced. This study provided new insights regarding the use of PEG as a surfactant for Cu nanoparticles in CS/SA hydrogel wound dressing, ultimately affecting the chemical bonding and various properties of the prepared hydrogels.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Faezeh Rahimi
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Haniyeh Azami
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Fatemeh Rafati
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Das U, Paira P. Exploring the phototoxicity of GSH-resistant 2-(5,6-dichloro-1 H-benzo[ d]imidazol-2-yl)quinoline-based Ir(III)-PTA complexes in MDA-MB-231 cancer cells. Dalton Trans 2024; 53:6459-6471. [PMID: 38512047 DOI: 10.1039/d3dt04361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metal complexes play a crucial role in photo-activated chemotherapy (PACT), which has recently been used to treat specific disorders. Triple-negative breast cancer has an enormously high rate of relapse due to the existence and survival of cancer stem cells (CSCs) characterized by increased amounts of glutathione (GSH). Hence, designing a phototoxic molecule is an enticing area of research to combat triple-negative breast cancer (TNBC) via GSH depletion and DNA photocleavage. Herein, we focus on the application of PTA and non-PTA Ir(III) complexes for phototoxicity in the absence and presence of GSH against MDA-MB-231 TNBC cells. Between these two complexes, [Cp*IrIII(DD)PTA]·2Cl (DDIRP) exhibited better phototoxicity (IC50 ∼ 2.80 ± 0.52 μM) compared to the non-PTA complex [Cp*IrIII(DD)Cl]·Cl (DDIR) against TNBC cells because of the high GSH resistance power of the complex DDIRP. The significant potency of the complex DDIRP under photo irradiation in both normoxia and hypoxia conditions can be attributed to selective transportation, high cellular permeability and uptake towards the nucleus, GSH depletion by GSH-GSSG conversion, the ability of strong DNA binding including intercalation, and oxidative stress. The strong affinity to serum albumin, which serves as a carrier protein, aids in the transport of the complex to its target site while preventing glutathione (GSH) deactivation. Consequently, the complex DDIRP was developed as a suitable phototoxic complex in selective cancer therapy, ruling over the usual chemotherapeutic drug cisplatin and the PDT drug Photofrin. The ability of ROS generation under hypoxic conditions delivers this complex as a hypoxia-efficient selective metallodrug for the treatment of TNBC.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Das R, Paira P. GSH resistant, luminescent 2-(pyren-1-yl)-1 H-imidazo[4,5- f][1,10]phenanthroline-based Ru(II)/Ir(III)/Re(I) complexes for phototoxicity in triple-negative breast cancer cells. Dalton Trans 2023; 52:15365-15376. [PMID: 37493615 DOI: 10.1039/d3dt01667f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Selective chemotherapeutic strategies necessitate the emergence of a photosensitive scaffold to abate the nuisance of cancer. In the current context, photo-activated chemotherapy (PACT) has, therefore, appeared to be very effective to vanquish the vehemence of triple-negative breast cancer (TNBC). Metal complexes have been identified to act well against cancer cell microenvironment (high GSH content, low pH, and hypoxia), and thus they have been employed in the treatment of various types of cancer. As TNBC is very challenging to treat owing to its poor prognosis, lack of a specific target, high chance of relapse, and strong metastatic ability, herein we have aspired to design GSH-resistant phototoxic Ru(II)/Ir(III)/Re(I) based pyrene imidazophenathroline complexes to selectively avert the triple-negative breast cancer. The application of complexes, [RuL], [IrL], and [ReL] in the absence and in the presence of GSH against MDA-MB-231TNBC cells, has revealed that they are very active upon irradiation of visible light compared to dark due to the creation of copious singlet oxygen (1O2) as reactive oxygen species (ROS). Among three synthesized complexes, [IrL] has shown outstanding potency (IC50 = 3.70 in the absence of GSH and IC50 = 3.90 in the presence of GSH). Also, the complex, [IrL] is capable of interacting with DNA with the highest binding constant (Kb = 0.023 × 106 M-1) along with higher protein binding affinity (KBSA = 0.0321 × 106 M-1). Here, it has been unveiled that all the complexes have been entitled to involve DNA covalent interaction through the available sites of both adenine and guanine bases.
Collapse
Affiliation(s)
- Rishav Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
4
|
Mendieta A, Álvarez-Idaboy JR, Ugalde-Saldívar VM, Flores-Álamo M, Armenta A, Ferrer-Sueta G, Gasque L. Role of Imidazole and Chelate Ring Size in Copper Oxidation Catalysts: An Experimental and Theoretical Study. Inorg Chem 2023; 62:16677-16690. [PMID: 37792328 DOI: 10.1021/acs.inorgchem.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, the structural, solution, electrochemical, and catalytic properties of the complexes with ligands derived from imidazole and pyridines were studied. A comparative study of five bioinspired copper catalysts with or without coordinated imidazole and with different chelate ring sizes is presented. Catalytic efficiency on the oxidation of 3,5-di-tert-butylcatechol (DTBC) and ortho-aminophenol (OAP) in a MeOH/H2O medium was assessed by means of the Michaelis-Menten model. Catalysts comprising imidazole-containing ligands and/or a six-membered chelate ring proved to be more efficient in both oxidation reactions. Determination of stability constants and electrochemical parameters of the copper complexes supported the explanation of the catalytic behavior. A catalytic cycle similar for both reactions has been proposed. The results of density functional theory (DFT) free energy calculations for all five complexes and both catalytic reactions agree with the experimental results.
Collapse
Affiliation(s)
- Alan Mendieta
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Juan Raúl Álvarez-Idaboy
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Víctor M Ugalde-Saldívar
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Marcos Flores-Álamo
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Alfonso Armenta
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, UY 11400, Uruguay
| | - Laura Gasque
- Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, CDMX 04510, México
| |
Collapse
|
5
|
Das U, Paira P. Synthesis, characterization, photophysical and electrochemical properties, and biomolecular interaction of 2,2'-biquinoline based phototoxic Ru(II)/Ir(II) complexes. Dalton Trans 2023; 52:12608-12617. [PMID: 37314097 DOI: 10.1039/d3dt01348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phototoxic nature of drugs has been seen to convey immense importance in photo activated chemotherapy (PACT) for the selective treatment of disease. Rationally, in order to eradicate the vehemence of cancer in a living body, the design of phototoxic molecules has been of growing interest in research to establish a selective strategy for cancer therapy. Therefore, the present work portrays the synthesis of a phototoxic anticancer agent by incorporating ruthenium(II) and iridium(III) metals into a biologically active 2,2'-biquinoline moiety, BQ. The complexes, RuBQ and IrBQ, have been revealed as effective anticancer agents with remarkable toxicity in the presence of light compared to the dark towards HeLa and MCF-7 cancer cell lines due to the production of a profuse amount of singlet oxygen (1O2) upon irradiation by visible light (400-700 nm). Complex IrBQ exhibited the best toxicity (IC50 = 8.75 μM in MCF-7 and 7.23 μM in HeLa) in comparison to the RuBQ complex under visible light. RuBQ and IrBQ displayed considerable quantum yields (Φf) along with a good lipophilic property, indicating the cellular imaging capability of both complexes upon significant accumulation in cancer cells. Also, the complexes have shown significant binding propensity with biomolecules, viz. deoxyribonucleic acid (DNA) as well as serum albumin (BSA, HSA).
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014, Tamilnadu, India.
| |
Collapse
|
6
|
Shah S, Naithani N, Sahoo SC, Neelakandan PP, Tyagi N. Multifunctional BODIPY embedded non-woven fabric for CO release and singlet oxygen generation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112631. [PMID: 36630766 DOI: 10.1016/j.jphotobiol.2022.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Materials that can simultaneously release CO and generate singlet oxygen upon visible light irradiation under ambient conditions are highly desirable for therapeutic applications. Furthermore, materials that can sequester the undesirable side products into the matrix without affecting the release of CO and singlet oxygen generation would allow them to be used for practical applications. Focussing on these aspects, we prepared two dipicolylamine appended BODIPY‑manganese(I) tricarbonyl complexes wherein the metal core was systematically tethered at 5- and 8- positions of the BODIPY core. The complexes were embedded into a polymer matrix via electrospinning and the resulting non-woven fabrics showed CO release as well as singlet oxygen generation upon irradiation. While the hybrid materials were non-toxic in dark, they were strongly photocytotoxic to c6 cancer cells when exposed to light. Rapid CO release alongside significant singlet oxygen generation, indefinite dark stability, good biocompatibility and negligible dark toxicity makes these fabrics a potent candidate for phototherapeutic applications.
Collapse
Affiliation(s)
- Sanchita Shah
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Neeraj Naithani
- Semi-Conductor Laboratory, Department of Space, Sector 72, Mohali 160071, Punjab, India
| | - Subash Chandra Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh 160014, Punjab, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Nidhi Tyagi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| |
Collapse
|
7
|
Desiatkina O, Boubaker G, Anghel N, Amdouni Y, Hemphill A, Furrer J, Păunescu E. Synthesis, Photophysical Properties and Biological Evaluation of New Conjugates BODIPY: Dinuclear Trithiolato-Bridged Ruthenium(II)-Arene Complexes. Chembiochem 2022; 23:e202200536. [PMID: 36219484 DOI: 10.1002/cbic.202200536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Indexed: 01/25/2023]
Abstract
The synthesis, photophysical properties and antiparasitic efficacy against Toxoplasma gondii β-gal (RH strain tachyzoites expressing β-galactosidase) grown in human foreskin fibroblast monolayers (HFF) of a series of 15 new conjugates BODIPY-trithiolato-bridged dinuclear ruthenium(II)-arene complexes are reported (BODIPY=4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, derivatives used as fluorescent markers). The influence of the bond type (amide vs. ester), as well as that of the length and nature (alkyl vs. aryl) of the spacer between the dye and the diruthenium(II) complex moiety, on fluorescence and biological activity were evaluated. The assessed photophysical properties revealed that despite an important fluorescence quenching effect observed after conjugating the BODIPY to the diruthenium unit, the hybrids could nevertheless be used as fluorescent tracers. Although the antiparasitic activity of this series of conjugates appears limited, the compounds demonstrate potential as fluorescent probes for investigating the intracellular trafficking of trithiolato-bridged dinuclear Ru(II)-arene complexes in vitro.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Laboratoire de Parasitologie, Université de la Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
8
|
Kar B, Paira P. One pot three component synthesis of DNA targeting phototoxic Ru(II)- p-cymene dipyrido[3,2- a:2',3'- c]phenazine analogues. Dalton Trans 2022; 51:15686-15695. [PMID: 36173180 DOI: 10.1039/d2dt01659a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a one pot three component synthetic protocol for half-sandwich Ru(II)-p-cymene dipyrido[3,2-a:2',3'-c]phenazine analogues for selective cancer therapy under light irradiation. On average, the cytotoxicity of all the complexes is indeed doubled upon light irradiation and also exhibited significant photo and dark selectivity against cancer cells with respect to normal cells. Out of five Ru(II) complexes (RuL1-RuL5), [(η6-p-cymene)RuIICl(K2-N,N-11-nitrodipyrido[3,2-a:2',3'-c]phenazine]PF6 (RuL4) exhibited the best phototoxicity (lowest IC50 under light irradiation). Intracellular ROS generation was studied by the 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. Moreover, these complexes exhibited a strong serum albumin and DNA binding capacity. These complexes also exhibited good stability in 10% DMSO-buffer and under 1 mM GSH conditions. Overall, the remarkable photocytotoxic efficacy of new Ru(II)-p-cymene dipyrido[3,2-a:2',3'-c]phenazine analogues (RuL1-RuL5) makes them potential photochemotherapeutics as an alternative of current PDT agents.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
9
|
Tzani MA, Gioftsidou DK, Kallitsakis MG, Pliatsios NV, Kalogiouri NP, Angaridis PA, Lykakis IN, Terzidis MA. Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules 2021; 26:7664. [PMID: 34946744 PMCID: PMC8705051 DOI: 10.3390/molecules26247664] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Emission of light by matter can occur through a variety of mechanisms. When it results from an electronically excited state of a species produced by a chemical reaction, it is called chemiluminescence (CL). The phenomenon can take place both in natural and artificial chemical systems and it has been utilized in a variety of applications. In this review, we aim to revisit some of the latest CL applications based on direct and indirect production modes. The characteristics of the chemical reactions and the underpinning CL mechanisms are thoroughly discussed in view of studies from the very recent bibliography. Different methodologies aiming at higher CL efficiencies are summarized and presented in detail, including CL type and scaffolds used in each study. The CL role in the development of efficient therapeutic platforms is also discussed in relation to the Reactive Oxygen Species (ROS) and singlet oxygen (1O2) produced, as final products. Moreover, recent research results from our team are included regarding the behavior of commonly used photosensitizers upon chemical activation under CL conditions. The CL prospects in imaging, biomimetic organic and radical chemistry, and therapeutics are critically presented in respect to the persisting challenges and limitations of the existing strategies to date.
Collapse
Affiliation(s)
- Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Dimitra K. Gioftsidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael G. Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Nikolaos V. Pliatsios
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Natasa P. Kalogiouri
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Panagiotis A. Angaridis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| |
Collapse
|
10
|
Novel luminescent benzopyranothiophene- and BODIPY-derived aroylhydrazonic ligands and their dicopper(II) complexes: syntheses, antiproliferative activity and cellular uptake studies. J Biol Inorg Chem 2021; 26:675-688. [PMID: 34417682 DOI: 10.1007/s00775-021-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Two novel unsymmetrical binucleating aroylhydrazonic ligands and four dicopper(II) complexes carrying fluorescent benzopyranothiophene (BPT) or boron dipyrromethene (BODIPY) entities were synthesized and fully characterized. Complex 1, derived from the BPT-containing ligand H3L1, had its crystal structure elucidated through X-ray diffraction measurements. The absorption and fluorescence profiles of all the compounds obtained were discussed. Additionally, the stability of the ligands and complexes was monitored by UV-vis spectroscopy in DMSO and biologically relevant media. All the compounds showed moderate to high cytotoxicity towards the triple negative human breast cancer cell line MDA-MB-231. BPT derivatives were the most cytotoxic, specially H3L1, reaching an IC50 value up to the nanomolar range. Finally, fluorescence microscopy imaging studies employing mitochondria- and nucleus-staining dyes showed that the BODIPY-carrying ligand H3L2 was highly cell permeant and suggested that the compound preferentially accumulates in the mitochondria.
Collapse
|
11
|
Photochemical and photocytotoxic evaluation of new Oxovanadium (IV) complexes in photodynamic application. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01896-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Marquardt M, Cula B, Budhija V, Dallmann A, Schwalbe M. Structural Determination of an Unusual Cu I -Porphyrin-π-Bond in a Hetero-Pacman Cu-Zn-Complex. Chemistry 2021; 27:3991-3996. [PMID: 33405305 PMCID: PMC7986761 DOI: 10.1002/chem.202004945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Indexed: 12/02/2022]
Abstract
The synthesis and characterization of a hetero‐dinuclear compound is presented, in which a copper(I) trishistidine type coordination unit is positioned directly above a zinc porphyrin unit. The close distance between the two coordination fragments is secured by a rigid xanthene backbone, and a unique (intramolecular) copper porphyrin‐π‐bond was determined for the first time in the molecular structure. This structural motif was further analyzed by temperature‐dependent NMR studies: In solution at room temperature the coordinative bond fluctuates, while it can be frozen at low temperatures. Preliminary reactivity studies revealed a reduced reactivity of the copper(I) moiety towards dioxygen. The results adumbrate why nature is avoiding metal porphyrin‐π‐bonds by fixing reactive metal centers in a predetermined distance to each other within multimetallic enzymatic reaction centers.
Collapse
Affiliation(s)
- Michael Marquardt
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Vishal Budhija
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - André Dallmann
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Matthias Schwalbe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
13
|
Peña Q, Sciortino G, Maréchal JD, Bertaina S, Simaan AJ, Lorenzo J, Capdevila M, Bayón P, Iranzo O, Palacios Ò. Copper(II) N, N, O-Chelating Complexes as Potential Anticancer Agents. Inorg Chem 2021; 60:2939-2952. [PMID: 33596377 PMCID: PMC8483446 DOI: 10.1021/acs.inorgchem.0c02932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Three
novel dinuclear Cu(II) complexes based on a N,N,O-chelating salphen-like ligand
scaffold and bearing varying aromatic substituents (−H, −Cl,
and −Br) have been synthesized and characterized. The experimental
and computational data obtained suggest that all three complexes exist
in the dimeric form in the solid state and adopt the same conformation.
The mass spectrometry and electron paramagnetic resonance results
indicate that the dimeric structure coexists with the monomeric form
in solution upon solvent (dimethyl sulfoxide and water) coordination.
The three synthesized Cu(II) complexes exhibit high potentiality as
ROS generators, with the Cu(II)/Cu(I) redox potential inside the biological
redox window, and thus being able to biologically undergo Cu(II)/Cu(I)
redox cycling. The formation of ROS is one of the most promising reported
cell death mechanisms for metal complexes to offer an inherent selectivity
to cancer cells. In vitro cytotoxic studies in two different cancer
cell lines (HeLa and MCF7) and in a normal fibroblast cell line show
promising selective cytotoxicity for cancer cells (IC50 about 25 μM in HeLa cells, which is in the range of cisplatin
and improved with respect to carboplatin), hence placing this N,N,O-chelating salphen-like
metallic core as a promising scaffold to be explored in the design
of future tailor-made Cu(II) cytotoxic compounds. Three novel dinuclear Cu(II) complexes
based on a N,N,O-chelating salphen-like
ligand scaffold and bearing varying aromatic substituents (−H,
−Cl, and −Br) have been synthesized and characterized.
They three exhibit high potentiality as reactive oxygen species (ROS)
generators, with the Cu(II)/Cu(I) redox potential inside the biological
redox window. In vitro studies in two different cancer cell lines
(HeLa and MCF7) and in a normal fibroblast cell line show promising
selective cytotoxicity for cancer cells.
Collapse
Affiliation(s)
- Quim Peña
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Giuseppe Sciortino
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - A Jalila Simaan
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departamento de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Pau Bayón
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Olga Iranzo
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
14
|
Five-Coordinated Geometries from Molecular Structures to Solutions in Copper(II) Complexes Generated from Polydentate- N-Donor Ligands and Pseudohalides. Molecules 2020; 25:molecules25153376. [PMID: 32722383 PMCID: PMC7436159 DOI: 10.3390/molecules25153376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
A novel series of mononuclear five-coordinated pseudohalido-Cu(II) complexes displaying distorted square bipyramidal: [Cu(L1)(NCS)2] (1), [Cu(L2)(NCS)2] (2) and [Cu(L3)(NCS)]ClO4 (5) as well as distorted trigonal bipyramidal: [Cu(isp3tren)(N3)]ClO4 (3), [Cu(isp3tren)(dca)]ClO4 (4) and [Cu(tedmpza)(dca)]ClO4·0.67H2O (6) geometries had been synthesized and structurally characterized using X-ray single crystal crystallography, elemental microanalysis, IR and UV-vis spectroscopy, and molar conductivity measurements. Different N-donor amine skeletons including tridentate: L1 = [(2-pyridyl)-2-ethyl)-(3,4-dimethoxy)-2-methylpyridyl]methylamine and L2 = [(2-pyridyl)-2-ethyl)-(3,5-dimethyl-4-methoxy)-2-methyl-pyridyl]methylamine, and tetradentate: L3 = bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl)-[2-(3,4-dimethoxy-pyridylmethyl)]amine, tedmpza = tris[(2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl]amine and isp3tren = tris[(2-isopropylamino)ethyl)]amine ligands were employed. Molecular structural parameters such as nature of coligand, its chelate ring size and steric environment incorporated into its skeleton, which lead to adopting one of the two limiting geometries in these complexes and other reported compounds are analyzed and correlated to their assigned geometries in solutions. Similar analysis were extended to other five-coordinated halido-Cu(II) complexes.
Collapse
|
15
|
Bhattacharyya U, Verma BK, Saha R, Mukherjee N, Raza MK, Sahoo S, Kondaiah P, Chakravarty AR. Structurally Characterized BODIPY-Appended Oxidovanadium(IV) β-Diketonates for Mitochondria-Targeted Photocytotoxicity. ACS OMEGA 2020; 5:4282-4292. [PMID: 32149258 PMCID: PMC7057700 DOI: 10.1021/acsomega.9b04204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Mixed-ligand oxidovanadium(IV) β-diketonates having NNN-donor dipicolylamine-conjugated to boron-dipyrromethene (BODIPY in L1) and diiodo-BODIPY (in L2) moieties, namely, [VO(L1)(acac)]Cl (1), [VO(L2)(acac)]Cl (2), and [VO(L1)(dbm)]Cl (3), where acac and dbm are monoanionic O,O-donor acetylacetone and 1,3-diphenyl-1,3-propanedione, were prepared, characterized, and tested for their photoinduced anticancer activity in visible light. Complexes 1 and 2 were structurally characterized as their PF6 - salts (1a and 2a) by X-ray crystallography. They showed VIVN3O3 six-coordinate geometry with dipicolylamine base as the facial ligand. The non-iodinated BODIPY complexes displayed absorption maxima at ∼501 nm, while it is ∼535 nm for the di-iodinated 2 in 10% DMSO-PBS buffer medium (pH = 7.2). Complexes 1 and 3 being green emissive (λem, ∼512 nm; λex, 470 nm; ΦF, ∼0.10) in 10% aqueous DMSO were used for cellular imaging studies. Complex 3 localized primarily in the mitochondria of the cervical HeLa cells with a co-localization coefficient value of 0.7. The non-emissive diiodo-BODIPY complex 2 showed generation of singlet oxygen (ΦΔ ≈ 0.47) on light activation. Annexin-V assay showed singlet oxygen-mediated cellular apoptosis, making this complex a targeted PDT agent.
Collapse
Affiliation(s)
- Utso Bhattacharyya
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Brijesh K. Verma
- Department
of Molecular Reproduction, Development and
Genetics, Indian Institute of Science, Bangalore 560 012, India
| | - Rupak Saha
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Nandini Mukherjee
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Md Kausar Raza
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Somarupa Sahoo
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
| | - Paturu Kondaiah
- Department
of Molecular Reproduction, Development and
Genetics, Indian Institute of Science, Bangalore 560 012, India
- E-mail: . Tel.: +91-80-22932688. Fax: +91-80-23600999 (P.K.)
| | - Akhil R. Chakravarty
- Department of Inorganic
and Physical Chemistry, Indian Institute
of Science, Bangalore 560 012, India
- E-mail: . Tel.: +91-80-22932533. Fax: +91-80-23600683 (A.R.C.)
| |
Collapse
|
16
|
Musib D, Pal M, Raza MK, Roy M. Photo-physical, theoretical and photo-cytotoxic evaluation of a new class of lanthanide(iii)–curcumin/diketone complexes for PDT application. Dalton Trans 2020; 49:10786-10798. [DOI: 10.1039/d0dt02082f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Improved ISC in La(iii) complex of curcumin, on activation with visible light, has resulted in high yield of 1O2 in HeLa/MCF-7 cells, leading to the oxidative stress which was responsible for remarkable caspase 3/7-dependent apoptotic photocytotoxicity.
Collapse
Affiliation(s)
- Dulal Musib
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Mrityunjoy Pal
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Mithun Roy
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| |
Collapse
|
17
|
Nucleus targeting anthraquinone-based copper (II) complexes as the potent PDT agents: Synthesis, photo-physical and theoretical evaluation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Studying the reactivity of “old” Cu(II) complexes for “novel” anticancer purposes. J Inorg Biochem 2019; 195:51-60. [DOI: 10.1016/j.jinorgbio.2019.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
|
20
|
Abstract
Despite improvements in the 5-year survival rate to over 80% in cancers, such as Hodgkin lymphoma and testicular cancer, more aggressive tumors including pancreatic and brain cancer still have extremely low survival rates. The establishment of chemoresistance, responsible for the reduction in treatment efficiency and cancer relapse, is one possible explanation for this setback. Metal-based compounds, a class of anticancer drugs, are largely used in the treatment of cancer. Herein, we will review the use of metal-based small molecules in chemotherapy, focusing on recent studies, and we will discuss how new nonplatinum-based agents are prompting scientists to increase drug specificity to overcome chemoresistance in cancer cells.
Collapse
|
21
|
Binita Chanu S, Raza MDK, Banerjee S, Mina PR, Musib D, Roy M. ROS dependent antitumour activity of photo-activated iron(III) complexes of amino acids. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Banaspati A, Das D, Choudhury CJ, Bhattacharyya A, Goswami TK. Photocytotoxic copper(II) complexes of N-salicylyl-l-tryptophan and phenanthroline bases. J Inorg Biochem 2018; 191:60-68. [PMID: 30468943 DOI: 10.1016/j.jinorgbio.2018.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
Four ternary copper(II) complexes of N-salicylyl-l-Tryptophan (Sal-TrpH) and phenanthroline bases of general formula [Cu(Sal-Trp)(L)], where L is 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3) and 2-(anthracen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (aip, 4), were synthesized and fully characterized. The complexes were evaluated for their affinity for biomolecules and photocytotoxic activities. Single crystal X-ray diffraction studies of complex 1 revealed that it has a square pyramidal CuN3O2 core with the phenolate oxygen of salicylaldehyde occupying the axial coordination site in the solid state. Complexes 1-4 displayed the Cu(II)-Cu(I) redox couples at ~-0.3 V vs. Ag/AgCl reference electrode in DMF-0.1 M [Bun4N](ClO4). A Cu(II)-based weak d-d band ~650 nm and a moderately strong ligand to metal charge transfer band at ~430 nm were observed in DMF-Tris-HCl buffer (pH 7.2) (1:4 v/v). The complexes are efficient binders to calf thymus DNA and model proteins such as bovine serum albumin and lysozyme. They cleave supercoiled plasmid DNA efficiently when exposed to 446 and 660 nm laser radiation. They are cytotoxic to HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells showing significant enhancement of cytotoxicity upon photo-excitation with low energy visible light. The complexes are found to kill cancer cells through generation of reactive oxygen species (ROS) as confirmed by DCFDA (2',7'-dichlorofluorescin diacetate) assay. The apoptotic cell death induced by complex 4 was confirmed by Annexin V-Fluorescein isothiocyanate-Propidium iodide assay. Confocal microscopic images using 4 showed its primary cytosolic localization in the HeLa and MCF-7 cells.
Collapse
Affiliation(s)
- Atrayee Banaspati
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
| | - Dhananjay Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
| | | | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| |
Collapse
|
23
|
Molupe N, Babu B, Oluwole DO, Prinsloo E, Mack J, Nyokong T. The investigation of in vitro dark cytotoxicity and photodynamic therapy effect of a 2,6-dibromo-3,5-distyryl BODIPY dye encapsulated in Pluronic® F-127 micelles. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1522536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nthabeleng Molupe
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Balaji Babu
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - David O. Oluwole
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Earl Prinsloo
- bBiotechnology Innovation Centre, Rhodes University, Makhanda, South Africa
| | - John Mack
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- aCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| |
Collapse
|
24
|
Musib D, Raza MK, Kundu S, Roy M. Modulating In Vitro Photodynamic Activities of Copper(II) Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dulal Musib
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal West India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry; Indian Institute of Science, Bangalore; CV Raman Avenue 560012 Bangalore India
| | - Somashree Kundu
- UGC-DAE Consortium for Scientific Research; Kolkata Centre; III/LB-8 900098 Bidhan Nagar, Kolkata India
| | - Mithun Roy
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal West India
| |
Collapse
|
25
|
Sahoo S, Podder S, Garai A, Majumdar S, Mukherjee N, Basu U, Nandi D, Chakravarty AR. Iron(III) Complexes of Vitamin B6
Schiff Base with Boron-Dipyrromethene Pendants for Lysosome-Selective Photocytotoxicity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Somarupa Sahoo
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Santosh Podder
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Shamik Majumdar
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Nandini Mukherjee
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Uttara Basu
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Dipankar Nandi
- Department of Biochemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560012 Bangalore Karnataka India
| |
Collapse
|
26
|
Musib D, Banerjee S, Garai A, Soraisam U, Roy M. Synthesis, Theory and In Vitro Photodynamic Activities of New Copper(II)-Histidinito Complexes. ChemistrySelect 2018. [DOI: 10.1002/slct.201800015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dulal Musib
- Department of Chemistry; National Institute of Technology Manipur; Langol 795004 Imphal Manipur (INDIA
| | - Samya Banerjee
- Department of Chemistry; John Hopkins University; 23400 N. Charles Street Baltimore Maryland-21218 US
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Bangalore 560012 Karnataka (INDIA
| | - Uzeeta Soraisam
- Department of Chemistry; National Institute of Technology Manipur; Langol 795004 Imphal Manipur (INDIA
| | - Mithun Roy
- Department of Chemistry; National Institute of Technology Manipur; Langol 795004 Imphal Manipur (INDIA
| |
Collapse
|
27
|
|
28
|
Asahi M, Yamazaki SI, Morimoto Y, Itoh S, Ioroi T. Crystal structure and oxygen reduction reaction (ORR) activity of copper(II) complexes of pyridylmethylamine ligands containing a carboxy group. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Paitandi RP, Sharma V, Singh VD, Dwivedi BK, Mobin SM, Pandey DS. Pyrazole appended quinoline-BODIPY based arene ruthenium complexes: their anticancer activity and potential applications in cellular imaging. Dalton Trans 2018; 47:17500-17514. [DOI: 10.1039/c8dt02947d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthesis of four arene ruthenium complexes [Ru(η6-C6H6)(L1)Cl]PF6, (1), [Ru(η6-C10H14)(L1)Cl]PF6 (2), [Ru(η6-C6H6)(L2)Cl]PF6 (3) and [Ru(η6-C10H14)(L2)Cl]PF6 (4) based on quinoline-BODIPY were described and their photocytotoxicity was evaluated.
Collapse
Affiliation(s)
| | - Vinay Sharma
- Discipline of Biosciences and Bio-Medical Engineering
- Indian Institute of Technology Indore
- Indore-453552
- India
| | - Vishwa Deepak Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi – 221005
- India
| | | | - Shaikh M. Mobin
- Discipline of Biosciences and Bio-Medical Engineering
- Indian Institute of Technology Indore
- Indore-453552
- India
- Discipline of Chemistry
| | - Daya Shankar Pandey
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi – 221005
- India
| |
Collapse
|
30
|
Mukherjee N, Podder S, Mitra K, Majumdar S, Nandi D, Chakravarty AR. Targeted photodynamic therapy in visible light using BODIPY-appended copper(ii) complexes of a vitamin B6Schiff base. Dalton Trans 2018; 47:823-835. [DOI: 10.1039/c7dt03976j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BODIPY-appended copper(ii) complexes of vitamin B6derivatives localize in mitochondria and exhibit cancer cell selective photocytotoxicity by1O2mediated apoptosis.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Santosh Podder
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Shamik Majumdar
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Dipankar Nandi
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
31
|
Bhattacharyya A, Jameei A, Garai A, Saha R, Karande AA, Chakravarty AR. Mitochondria-localizing BODIPY–copper(ii) conjugates for cellular imaging and photo-activated cytotoxicity forming singlet oxygen. Dalton Trans 2018; 47:5019-5030. [DOI: 10.1039/c8dt00255j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BODIPY–copper(ii) conjugates are prepared and characterized and the complexes showed mitochondrial localization with singlet oxygen mediated visible light-induced apoptotic cell death.
Collapse
Affiliation(s)
- Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Aida Jameei
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Anjali A. Karande
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
32
|
Garai A, Pant I, Bhattacharyya A, Kondaiah P, Chakravarty AR. Mitochondria-Targeted Anticancer Activity of BODIPY-Appended Iron(III) Catecholates in Red Light. ChemistrySelect 2017. [DOI: 10.1002/slct.201702166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aditya Garai
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore 560012 Karnataka India
| | - Ila Pant
- Department of Molecular Reproduction; Development and Genetics; Indian Institute of Science; Bangalore 560012 Karnataka India
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore 560012 Karnataka India
| | - Paturu Kondaiah
- Department of Molecular Reproduction; Development and Genetics; Indian Institute of Science; Bangalore 560012 Karnataka India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore 560012 Karnataka India
| |
Collapse
|
33
|
Bhattacharyya U, Kumar B, Garai A, Bhattacharyya A, Kumar A, Banerjee S, Kondaiah P, Chakravarty AR. Curcumin "Drug" Stabilized in Oxidovanadium(IV)-BODIPY Conjugates for Mitochondria-Targeted Photocytotoxicity. Inorg Chem 2017; 56:12457-12468. [PMID: 28972748 DOI: 10.1021/acs.inorgchem.7b01924] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ternary oxidovanadium(IV) complexes of curcumin (Hcur), dipicolylamine (dpa) base, and its derivatives having pendant noniodinated and di-iodinated boron-dipyrromethene (BODIPY) moiety (L1 and L2, respectively), namely, [VO(dpa)(cur)]ClO4 (1), [VO(L1)(cur)]ClO4 (2), and [VO(L2)(cur)]ClO4 (3) and their chloride salts (1a-3a) were prepared, characterized, and studied for anticancer activity. The chloride salts were used for biological studies due to their aqueous solubility. Complex 1 was structurally characterized by single-crystal X-ray crystallography. The complex has a VO2+ moiety bound to dpa ligand showing N,N,N-coordination in a facial mode, and curcumin is bound in its mono-anionic enolic form. The V-O(cur) distances are 1.950(18) and 1.977(16) Å, while the V-N bond lengths are 2.090(2), 2.130(2), and 2.290(2) Å. The bond trans to V═O is long due to trans effect. The complexes are stable in a solution phase over a long period of time of 48 h without showing any apparent degradation of the curcumin ligand. The diiodo-BODIPY ligand (L2) or Hcur alone showed limited solution stability in dark. The emissive BODIPY (L1) containing complex 2a showed preferential mitochondrial localization in MCF-7 cells in cellular imaging experiments. The cytotoxicity of the complexes was studied by MTT assay. The BODIPY complex 3a showed excellent photodynamic therapy effect in visible light (400-700 nm) giving IC50 values of 2-6 μM in HeLa and MCF-7 cancer cells, while being less toxic in dark (∼100 μM). The cell death was apoptotic in nature involving reactive oxygen species (ROS). Mechanistic data from pUC19 DNA photocleavage studies revealed photogenerated ROS as primarily 1O2 from the BODIPY moiety and ·OH radicals from the curcumin ligand.
Collapse
Affiliation(s)
- Utso Bhattacharyya
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| | - Brijesh Kumar
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| | - Arun Kumar
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| | - Samya Banerjee
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560 012, India
| |
Collapse
|
34
|
Martins NMR, Anbu S, Mahmudov KT, Ravishankaran R, Guedes da Silva MFC, Martins LMDRS, Karande AA, Pombeiro AJL. DNA and BSA binding and cytotoxic properties of copper(ii) and iron(iii) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands. NEW J CHEM 2017. [DOI: 10.1039/c7nj00420f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) and iron(iii) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands show DNA and BSA binding and anticancer abilities.
Collapse
Affiliation(s)
- Nuno M. R. Martins
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Sellamuthu Anbu
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Kamran T. Mahmudov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | | | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| | - Anjali A. Karande
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560 012
- India
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa, Av. Rovisco Pais
- 1049-001 Lisbon
- Portugal
| |
Collapse
|