1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Maruf A, Milewska M, Varga M, Wandzik I. Trehalose-Bearing Carriers to Target Impaired Autophagy and Protein Aggregation Diseases. J Med Chem 2023; 66:15613-15628. [PMID: 38031413 PMCID: PMC10726369 DOI: 10.1021/acs.jmedchem.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
In recent years, trehalose, a natural disaccharide, has attracted growing attention because of the discovery of its potential to induce autophagy. Trehalose has also been demonstrated to preserve the protein's structural integrity and to limit the aggregation of pathologically misfolded proteins. Both of these properties have made trehalose a promising therapeutic candidate to target autophagy-related disorders and protein aggregation diseases. Unfortunately, trehalose has poor bioavailability due to its hydrophilic nature and susceptibility to enzymatic degradation. Recently, trehalose-bearing carriers, in which trehalose is incorporated either by chemical conjugation or physical entrapment, have emerged as an alternative option to free trehalose to improve its efficacy, particularly for the treatment of neurodegenerative diseases, atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and cancers. In the current Perspective, we discuss all existing literature in this emerging field and try to identify key challenges for researchers intending to develop trehalose-bearing carriers to stimulate autophagy or inhibit protein aggregation.
Collapse
Affiliation(s)
- Ali Maruf
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
- Drug
Research Progam, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5E, 00014 Helsinki, Finland
| | - Małgorzata Milewska
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Máté Varga
- Department
of Genetics, ELTE Eötvös Loránd
University, Pázmány
P. stny. 1/C, Budapest H-1117, Hungary
| | - Ilona Wandzik
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Pyne P, Pyne S, Mitra RK. Sugar Molecules Inhibit Insulin Aggregation: A Decisive Role Being Played by the Protein Solvation Energetics. J Phys Chem B 2023; 127:8825-8832. [PMID: 37816171 DOI: 10.1021/acs.jpcb.3c04765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Insulin plays vital roles in controlling blood sugar level in the human body. However, it sometimes aggregates during the storage, and its efficacy (on the treatment of diabetes II disease) reduces significantly. So, understanding the insulin aggregation could help in long-term storage. Here we investigate the amyloid growth of human insulin protein in the presence of sugar molecules and observe that glucose and sucrose delay the insulin aggregation, the effect being systematically sugar dependent. We then investigate protein hydration during the aggregation process using terahertz spectroscopy, as the hydration plays a pioneering role in maintaining biological systems. Our study infers that the water network changes systematically with protein conformations and solvation entropy-enthalpy balance plays a decisive role in the aggregation process.
Collapse
Affiliation(s)
- Partha Pyne
- Department of Chemical & Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Sumana Pyne
- Department of Chemical & Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Rajib Kumar Mitra
- Department of Chemical & Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
4
|
Qafary M, Rashno F, Khajeh K, Khaledi M, Moosavi-Movahedi AA. Insulin fibrillation: Strategies for inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:49-62. [DOI: 10.1016/j.pbiomolbio.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 04/07/2023]
|
5
|
Gorensek-Benitez AH, Kirk B, Myers JK. Protein Fibrillation under Crowded Conditions. Biomolecules 2022; 12:biom12070950. [PMID: 35883507 PMCID: PMC9312947 DOI: 10.3390/biom12070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022] Open
Abstract
Protein amyloid fibrils have widespread implications for human health. Over the last twenty years, fibrillation has been studied using a variety of crowding agents to mimic the packed interior of cells or to probe the mechanisms and pathways of the process. We tabulate and review these results by considering three classes of crowding agent: synthetic polymers, osmolytes and other small molecules, and globular proteins. While some patterns are observable for certain crowding agents, the results are highly variable and often depend on the specific pairing of crowder and fibrillating protein.
Collapse
Affiliation(s)
- Annelise H. Gorensek-Benitez
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, CO 80903, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| | - Bryan Kirk
- Department of Biology, Davidson College, Davidson, NC 28035, USA;
| | - Jeffrey K. Myers
- Department of Chemistry, Davidson College, Davidson, NC 28035, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| |
Collapse
|
6
|
Serebryany E, Chowdhury S, Woods CN, Thorn DC, Watson NE, McClelland AA, Klevit RE, Shakhnovich EI. A native chemical chaperone in the human eye lens. eLife 2022; 11:76923. [PMID: 35723573 PMCID: PMC9246369 DOI: 10.7554/elife.76923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Sourav Chowdhury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, United States
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Nicki E Watson
- Center for Nanoscale Systems, Harvard University, Cambridge, United States
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
7
|
Using Sugar-Derived Nanoparticles to Mitigate Amyloid Fibril Formation of Lysozyme. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Milewska M, Milewski A, Wandzik I, Stenzel MH. Structurally analogous trehalose and sucrose glycopolymers – comparative characterization and evaluation of their effects on insulin fibrillation. Polym Chem 2022. [DOI: 10.1039/d1py01517f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Comprehensive comparative characterization of highly structurally similar, RAFT-prepared trehalose and sucrose glycopolymers.
Collapse
Affiliation(s)
- Małgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Andrzej Milewski
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Investigating the effect of sugar-terminated nanoparticles on amyloid fibrillogenesis of β-lactoglobulin. Int J Biol Macromol 2020; 165:291-307. [PMID: 32961178 DOI: 10.1016/j.ijbiomac.2020.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
In vivo tissue deposition of fibrillar protein aggregates is the cause of several degenerative diseases. Evidence suggests that interfering with the pathology-associated amyloid fibrillogenesis by inhibitory molecules is envisaged as the primary therapeutic strategy. Amyloid fibril formation of proteins has been demonstrated to be influenced by nanoparticles/nanomaterials. As compared with their molecular form counterpart, this work examined the effect of sucrose-terminated nanoparticles on the in vitro amyloid fibrillogenesis and structural properties of β-lactoglobulin at pH 2.0 and 80 °C. ThT binding and electron microscopy results demonstrated that sucrose-terminated nanoparticles were able to suppress β-lactoglobulin fibrillogenesis in a concentration-dependent fashion. Importantly, sucrose-terminated nanoparticles showed better β-lactoglobulin fibril-inhibiting ability than sucrose molecules. ANS fluorescence and right-angle light scattering results showed reduced solvent exposure and decreased aggregation, respectively, in the β-lactoglobulin samples upon treatment with sucrose-terminated nanoparticles. Moreover, fluorescence quenching analyses revealed that the static quenching mechanism and formation of a non-fluorescent fluorophore-nanoparticle complex are involved in the nanoparticle-β-lactoglobulin interaction. We believe that the results from this study may suggest that the nanoparticle form of biocompatible sugar-related osmolytes may serve as effective inhibiting/suppressing agents toward protein fibrillogenesis.
Collapse
|
10
|
Odete MA, Cheong FC, Winters A, Elliott JJ, Philips LA, Grier DG. The role of the medium in the effective-sphere interpretation of holographic particle characterization data. SOFT MATTER 2020; 16:891-898. [PMID: 31840154 PMCID: PMC7011191 DOI: 10.1039/c9sm01916b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The in-line hologram of a micrometer-scale colloidal sphere can be analyzed with the Lorenz-Mie theory of light scattering to obtain precise measurements of the sphere's diameter and refractive index. The same technique also can be used to characterize porous and irregularly shaped colloidal particles provided that the extracted parameters are interpreted with effective-medium theory to represent the properties of an equivalent effective sphere. Here, we demonstrate that the effective-sphere model consistently accounts for changes in the refractive index of the medium as it fills the pores of porous particles and therefore yields quantitative information about such particles' structure and composition. In addition to the sample-averaged porosity, holographic perfusion porosimetry gauges the polydispersity of the porosity. We demonstrate these capabilities through measurements on mesoporous spheres, fractal protein aggregates and irregular nanoparticle agglomerates, all of which are noteworthy for their industrial significance.
Collapse
Affiliation(s)
- Mary Ann Odete
- Spheryx, Inc., 330 E. 38th Street, #48J, New York, NY 10016, USA
| | | | | | - Jesse J Elliott
- Department of Physics, University of Chicago, 5720 South Ellis Ave., Chicago, IL 60637, USA
| | - Laura A Philips
- Spheryx, Inc., 330 E. 38th Street, #48J, New York, NY 10016, USA
| | - David G Grier
- Department of Physics and Center for Soft Matter Research, New York University, New York, NY 10003, USA.
| |
Collapse
|
11
|
Wang BB, Wang YY, Zhang XY, Xu ZQ, Jiang P, Jiang FL, Liu Y. Bifunctional carbon dots for cell imaging and inhibition of human insulin fibrillation in the whole aggregation process. Int J Biol Macromol 2020; 147:453-462. [PMID: 31923519 DOI: 10.1016/j.ijbiomac.2019.12.267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Due to the favorable stability, water solubility and good biocompatibility, carbon dots have attracted much attention. Herein, a novel nitrogen-doping bifunctional carbon dots (N-BCDs) with ultra-highly quantum yield (QYabs = 70.4%) is prepared through microwave-assisted method. 50 μg/mL of N-BCDs emit intense fluorescence in HeLa and GES-1 cells with negligible cytotoxicity. In addition, effective inhibition of N-BCDs to human insulin (HI) fibrillation is observed even at 10:1 (mass ratio of HI: N-BCDs) by ThT fluorescence, CD assay and TEM. N-BCDs prevent HI from fibrillation with prolonged lag time and reduced fluorescent intensity at equilibrium, regardless of the addition time of N-BCDs (HI: N-BCDs = 1:1, mass ratio), which has been rarely reported before. Furthermore, the morphology of final HI fibrils is shorter and thinner in the presence of N-BCDs. Mechanism studies reveal that the enhanced hydrogen bond between HI monomers and N-BCDs inhibits nucleation during the lag stage (Ka: 1.54 × 104 L·mol-1, 298 K), while the accumulation of N-BCDs blocks the growth of profibrils in the elongation stage. To the best of our knowledge, it's the first time to observe the accumulation of N-BCDs around HI profibrils with TEM. Our study provides a new strategy for developing efficient nanoparticle inhibitors for protein fibrillation.
Collapse
Affiliation(s)
- Bei-Bei Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Ying Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Yang Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zi-Qiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Peng Jiang
- Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | - Feng-Lei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
12
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
13
|
Schack MM, Dahl K, Rades T, Groenning M, Carpenter JF. Spectroscopic Evidence of Tertiary Structural Differences Between Insulin Molecules in Fibrils. J Pharm Sci 2019; 108:2871-2879. [DOI: 10.1016/j.xphs.2019.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
|
14
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
15
|
Sequeira MA, Herrera MG, Dodero VI. Modulating amyloid fibrillation in a minimalist model peptide by intermolecular disulfide chemical reduction. Phys Chem Chem Phys 2019; 21:11916-11923. [PMID: 31125036 DOI: 10.1039/c9cp01846h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptide structural transformation and aggregation is associated with a large number of outsider aetiology diseases, and it is intrinsically linked to amyloid peptide aggregation. Diphenylalanine self-assembled structures are used as robust minimalist beta amyloids not only to elucidate protein aggregation but also to generate hydrogels. Herein, we employed a neutral model peptide Ac-Phe-Phe-Cys-NH2 (Ac-FFC-NH2) to elucidate the role of intermolecular disulfide bonds in protein fibrillation. The Ac-FFC-NH2 peptide initially self-assembles into nanospheres that evolve to amyloid type fibrils under mild oxidative conditions. Incubation of the peptide in the presence of the chemical reduction agent TCEP inhibits the formation of the fibrils, detecting only spherical nanostructures with no secondary structure. Importantly, we triggered the transformation of the preformed linear straight amyloid fibrils to non-fibrillar structures by TCEP treatment. Under this condition, the amyloid bundles are transformed into rings, which evolve to a new spherical microstructure. We showed that the chemical reduction of intermolecular S-S in internal amyloid sequences might favour the off-path intermediates of amyloid fibril growth, even when the fibrils are formed. Our findings demonstrated that in internal amyloid sequences, the formation of intermolecular S-S promotes the formation of amyloid type fibrils; meanwhile, its reduction stabilises non-fibrillar structures. Altogether, this work provides fundamental understanding at the molecular and supramolecular level, thus facilitating the rational design of therapeutic tools for protein aggregation diseases.
Collapse
Affiliation(s)
- María Alejandra Sequeira
- Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur, 8000FTN Bahía Blanca, Argentina
| | | | | |
Collapse
|
16
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
17
|
Investigation of amyloid formation inhibition of chemically and biogenically from Citrus aurantium L. blossoms and Rose damascena oils of gold nanoparticles: Toxicity evaluation in rat pheochromocytoma PC12 cells. Int J Biol Macromol 2018; 112:703-711. [DOI: 10.1016/j.ijbiomac.2018.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
|