1
|
Gu Q, Lin H, Si C, Wang Z, Wang A, Liu F, Li B, Yang B. Tuning the Active Oxygen Species of Two-Dimensional Borophene Oxide toward Advanced Metal-Free Catalysis. ACS NANO 2024; 18:30574-30583. [PMID: 39444188 DOI: 10.1021/acsnano.4c09002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Two-dimensional (2D) borophene materials are predicted to be ideal catalytic materials due to their structural analogy to graphene. However, the lack of chemical functionalization of borophene hinders its practical application in catalysis. Herein, we reported a massive production of freestanding few-layer 2D borophene oxide (BO) sheets with tunable active oxygen species by a moderate oxidation-assisted exfoliation method. State-of-the-art characterizations demonstrated the evolution of active oxygen species from surface B-O species at the initial stage to the intermediate BxOy (1.5 < x/y < 3) species and eventually to bulk B2O3 with an increasing oxidation duration. As a result, the 2D BO sheet with enhanced B-O species exhibited a strikingly high catalytic activity for the aerobic oxidation of benzylamine into N-benzylidenebenzylamine. The formation rate of imine reaches as high as 29.7 mmol gcatal-1 h-1 under mild reaction conditions, higher than that of pristine borophene, boron oxides, graphene oxide, and other metal/metal-free catalysts in the reported literature. Density functional theory calculations further revealed the critical role of surface B-O species, which favor the adsorption and N-H activation of benzylamine for high activity and suppress the deep dehydrogenation, yielding an outstanding imine selectivity (>90%). This work paves the route for a moderate and scalable synthesis of few-layer BO sheets with highly active B-O species toward advanced metal-free catalysis beyond graphene.
Collapse
Affiliation(s)
- Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, 116023 Dalian, China
| | - Haojian Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Chaowei Si
- College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034 Shenyang, China
| | - Zhen Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, 116023 Dalian, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, 116023 Dalian, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Bo Li
- College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034 Shenyang, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, 116023 Dalian, China
| |
Collapse
|
2
|
Jakubczak M, Bury D, Montes-García V, Ciesielski A, Naguib M, Jastrzębska AM. Bacterial Responses and Material-Cell Interplays With Novel MoAlB@MBene. Adv Healthc Mater 2024:e2402323. [PMID: 39460417 DOI: 10.1002/adhm.202402323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Indexed: 10/28/2024]
Abstract
Developing efficient antibacterial nanomaterials has potential across diverse fields, but it requires a deeper understanding of material-bacteria interactions. In this study, a novel 2D core-shell MoAlB@MBene structure is synthesized using a mild wet-chemical etching approach. The growth of E. coli, S. aureus, and B. subtilis bacteria in the presence of MoAlB@MBene decreased in a concentration-dependent manner, with a prolonged lag phase in the initial 6 h of incubation. Even under dark conditions, MoAlB@MBene triggered the formation of intercellular reactive oxygen species (ROS) and singlet oxygen (1O2) in bacteria, while the bacteria protected themselves by forming biofilm and altering cell morphology. The MoAlB@MBene shows consistent light absorption across the visible range, along with a distinctive UV absorption edge. Two types of band gaps are identified: direct (1.67 eV) and indirect (0.74 eV), which facilitate complex light interactions with MoAlB@MBene. Exposure to simulated white light led to decreased viability rates of E. coli (20.6%), S. aureus (22.9%), and B. subtilis (21.4%). Altogether, the presented study enhances the understanding of bacteria responses in the presence of light-activated 2D nanomaterials.
Collapse
Affiliation(s)
- Michał Jakubczak
- Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw, 02-525, Poland
| | - Dominika Bury
- Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw, 02-525, Poland
| | - Verónica Montes-García
- Institut de Science et d'Ingénierie Supramoléculaires (I.S.I.S.), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires (I.S.I.S.), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Agnieszka M Jastrzębska
- Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw, 02-525, Poland
| |
Collapse
|
3
|
Synnatschke K, Müller A, Gabbett C, Mohn MJ, Kelly AG, Mosina K, Wu B, Caffrey E, Cassidy O, Backes C, Sofer Z, Kaiser U, Coleman JN. Inert Liquid Exfoliation and Langmuir-Type Thin Film Deposition of Semimetallic Metal Diborides. ACS NANO 2024; 18:28596-28608. [PMID: 39382209 PMCID: PMC11503910 DOI: 10.1021/acsnano.4c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Graphite is one of only a few layered materials that can be exfoliated into nanosheets with semimetallic properties, which limits the applications of nanosheet-based electrodes to material combinations compatible with the work function of graphene. It is therefore important to identify additional metallic or semimetallic two-dimensional (2D) nanomaterials that can be processed in solution for scalable fabrication of printed electronic devices. Metal diborides represent a family of layered non-van der Waals crystals with semimetallic properties for all nanosheet thicknesses. While previous reports show that the exfoliated nanomaterial is prone to oxidation, we demonstrate a readily accessible inert exfoliation process to produce quasi-2D nanoplatelets with intrinsic material properties. For this purpose, we demonstrate the exfoliation of three representative metal diborides (MgB2, CrB2, and ZrB2) under inert conditions. Nanomaterial is characterized using a combination of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, IR, and UV-vis measurements, with only minimal oxidation indicated postprocessing. By depositing the pristine metal diboride nanoplatelets as thin films using a Langmuir-type deposition technique, the ohmic behavior of the networks is validated. Furthermore, the material decomposition is studied by using a combination of electrical and optical measurements after controlled exposure to ambient conditions. Finally, we report an efficient, low-cost approach for sample encapsulation to protect the nanomaterials from oxidation. This is used to demonstrate low-gauge factor strain sensors, confirming metal diboride nanosheets as a suitable alternative to graphene for electrode materials in printed electronics.
Collapse
Affiliation(s)
- Kevin Synnatschke
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Alina Müller
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- Chair
of Applied Physical Chemistry, Heidelberg
University, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Cian Gabbett
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Michael Johannes Mohn
- Central
Facility of Electron Microscopy, Electron Microscopy Group of Materials
Science, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Adam G. Kelly
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Kseniia Mosina
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague16628 Czech Republic
| | - Bing Wu
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague16628 Czech Republic
| | - Eoin Caffrey
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Oran Cassidy
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Claudia Backes
- Chair
of Applied Physical Chemistry, Heidelberg
University, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
- Institute
of Physical Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Zdenek Sofer
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague16628 Czech Republic
| | - Ute Kaiser
- Central
Facility of Electron Microscopy, Electron Microscopy Group of Materials
Science, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jonathan N. Coleman
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- Chair
of Applied Physical Chemistry, Heidelberg
University, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Tao J, Arshad N, Maqsood G, Asghar MS, Zhu F, Lin L, Irshad MS, Wang X. The Quest for Two-Dimensional MBenes: From Structural Evolution to Solar-Driven Hybrid Systems for Water-Fuel-Energy Generation and Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401603. [PMID: 38751070 DOI: 10.1002/smll.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Indexed: 10/01/2024]
Abstract
The field of 2D materials has advanced significantly with the emergence of MBenes, a new material derived from the MAX phases family, a novel class of materials that originates from the MAX phases family. Herein, this article explores the unique characteristics and morphological variations of MBenes, offering a comprehensive overview of their structural evolution. First, the discussion explores the evolutionary period of 2D MBenes associated with the several techniques for synthesizing, modifying, and characterizing MBenes to tailor their structure and enhance their functionality. The focus then shifts to the defect chemistry of MBenes, electronic, catalytic, and photothermal properties which play a crucial role in designing multifunctional solar-driven hybrid systems. Second, the recent advancements and potentials of 2D MBenes in solar-driven hybrid systems e.g. photo-electro catalysis, hybrid solar evaporators for freshwater and thermoelectric generators, and phototherapy, emphasizing their crucial significance in tackling energy and environmental issues, are explored. The study further explores the fundamental principles that regulate the improved photocatalytic and photothermal characteristics of MBenes, highlighting their promise for effective utilization of solar energy and remediation of the environment. The study also thoroughly assesses MBenes' scalability, stability, and cost effectiveness in solar-driven systems. Current insights and future directions allow researchers to utilize MBenes for sustainable and varied applications. This review regarding MBenes will be valuable to early researchers intrigued with synthesizing and utilizing 2D materials for solar-powered water-energy-fuel and phototherapy systems.
Collapse
Affiliation(s)
- Junyang Tao
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Naila Arshad
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ghazala Maqsood
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Muhammad Sohail Asghar
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fengshuai Zhu
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Liangyou Lin
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Muhammad Sultan Irshad
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
5
|
Zhang XS, Mao S, Wang J, Onggowarsito C, Feng A, Han R, Liu H, Zhang G, Xu Z, Yang L, Fu Q, Huang Z. Boron nanosheets boosting solar thermal water evaporation. NANOSCALE 2024; 16:4628-4636. [PMID: 38357835 DOI: 10.1039/d3nr06146a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Hydrogel-based solar vapour generators (SVGs) are promising for wastewater treatment and desalination. The performance of SVG systems is governed by solar thermal conversion and water management. Progress has been made in achieving high energy conversion efficiency, but the water evaporation rates are still unsatisfactory under 1 sun irradiation. This study introduced novel two-dimensional (2D) boron nanosheets as additives into hydrogel-based SVGs. The resulting SVGs exhibit an outstanding evaporation rate of 4.03 kg m-2 h-1 under 1 sun irradiation. This significant improvement is attributed to the 2D boron nanosheets, which leads to the formation of a higher content of intermediate water and reduced water evaporation enthalpy to 845.11 kJ kg-1. The SVGs into which boron nanosheets were incorporated also showed high salt resistance and durability, demonstrating their great potential for desalination applications.
Collapse
Affiliation(s)
- Xin Stella Zhang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Shudi Mao
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Jiashu Wang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Casey Onggowarsito
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - An Feng
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Rui Han
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Hanwen Liu
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Guojin Zhang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Zhimei Xu
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Limei Yang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Qiang Fu
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | - Zhenguo Huang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| |
Collapse
|
6
|
Chakrabarty S, Jasuja K. Insights into the Unanticipated Chemical Reactivity of Functionalized Nanosheets Derived from TiB 2. Inorg Chem 2024; 63:1524-1536. [PMID: 38064651 DOI: 10.1021/acs.inorgchem.3c03010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Titanium diboride (TiB2) is a member of the AlB2-type layered metal boride family; the materials of this family are receiving renewed research interest owing to their amenability to nanoscaling. Earlier, we showed that TiB2 can be nanoscaled to yield quasi 2D nanostructures following a dissolution-recrystallization approach. This approach yielded nanosheets that were chemically functionalized with oxy-functional groups. Also, these nanosheets could inherently form a gel-like substance. In this work, we show that these functionalized nanosheets can interact with ascorbic acid in a way that first imparts a characteristic orange hue to the original yellowish nanosheet dispersion. Second, this interaction results in the loss of gel-like behavior of the nanosheet dispersion. We utilize several spectroscopic techniques such as UV-visible, FT-IR, NMR, EPR, XPS, and XANES to unravel this unexplored chemical interaction. The findings show that both titania as well as oxy-boron species react with ascorbic acid, leading to a profound modification of the nanosheets. This modification results in an augmented electrochemical response, implying that the modified nanosheets can be used in novel applications. This study is therefore a step toward gaining an even deeper understanding of the chemical opportunities that these nanoscaled borides can provide.
Collapse
Affiliation(s)
- Satadru Chakrabarty
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382055 Gujarat, India
| | - Kabeer Jasuja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382055 Gujarat, India
| |
Collapse
|
7
|
Zhang D, Wang S, Zhang C, He L, Sun W. Chemically exfoliated boron nanosheets for efficient oxidative dehydrogenation of propane. NANOSCALE 2024; 16:1312-1319. [PMID: 38131277 DOI: 10.1039/d3nr05212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Oxidative dehydrogenation of propane (ODHP) is a promising technique for producing propene due to its low operative temperature and coke-resistant feature. Recently, boron-based catalysts have been widely investigated for ODHP owing to their brilliant performance. Herein, we report that boron in the form of nanosheets can be prepared feasibly by exfoliating layered MgB2 with hydrochloric acid, and can efficiently and stably catalyze ODHP. At 530 °C, the catalyst exhibits propene and ethene selectivities as high as 63.5% and 18.4%, respectively, at a 40% propane conversion. The olefin productivity reaches 2.48 golefin gcat-1 h-1, superior to the commercial h-BN and other reported boron-based catalysts. Even after testing for 100 h at 530 °C, the catalyst still maintains excellent stability. This work expands the effective boron-based catalyst family for ODHP and demonstrates the great potential of the new type of 2D material-boron nanosheet for energy and catalytic applications.
Collapse
Affiliation(s)
- Dake Zhang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Shenghua Wang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Chengcheng Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Sun
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| |
Collapse
|
8
|
Palem RR, Bathula C, Shimoga G, Lee SH, Ghfar AA, Sekar S, Kim HS, Seo YS, Rabani I. Fabrication of Ru loaded MgB 2 with guar gum hybrid for photocatalytic degradation of crystal violet. Int J Biol Macromol 2023; 253:126948. [PMID: 37722634 DOI: 10.1016/j.ijbiomac.2023.126948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Today, dyes/pigment-based materials are confronting a serious issue in harming marine ecology. Annihilate these serious water pollutants using photoactive 2D nanohybrid catalysts showed promising comparativeness over available photocatalysts. In the present work, a facile route to decorate Ruthenium (Ru) on 2D MgB2 flower-like nanostructures was developed via ecofriendly guar gum biopolymer substantial template (MgB2/GG@Ru NFS) and its photocatalytic performance was reported. Synthesis of MgB2@Ru, MgB2/GG@Ru NFS and commercial MgB2, was studied by FTIR, XRD, FE-SEM, EDX, AFM, TEM, UV-vis spectra, and XPS analysis. From the results, the MgB2/GG@Ru NFS exhibited a superior photocatalytic performance (99.7 %) than its precursors MgB2@Ru (79.7 %), and MgB2 (53.7 %), with the degradation efficiency of the crystal violet (CV) within 100 min under visible light irradiation. The proposed photo-catalyst MgB2/GG@Ru NFS showed negligible loss of photocatalytic activity even after five successive cycles, revealing its reusability and enhanced stability due to the network structure. The photocatalytic mechanism for MgB2/GG@Ru NFS was evaluated by trapping experiment of active species, verifying that superoxide (O2-) and electron (e-) contributed significant role in the dye degradation.
Collapse
Affiliation(s)
- Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganesh Shimoga
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; Interaction Lab, Future Convergence Engineering, Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sankar Sekar
- Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea; Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Young-Soo Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
9
|
Zielinkiewicz K, Baranowska D, Mijowska E. Ball milling induced borophene flakes fabrication. RSC Adv 2023; 13:16907-16914. [PMID: 37283869 PMCID: PMC10241196 DOI: 10.1039/d3ra02400h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
To fill the knowledge gap for borophene, as the youngest member of the two-dimensional (2D) nanomaterials family, a facile, cost effective, scalable and reproducible fabrication route is still strongly required. Among so far studied techniques the potential of pure mechanical processes such as ball milling is not explored yet. Therefore, in this contribution, we explore the efficiency to exfoliate bulk boron into a few-layered borophene induced by mechanical energy in the planetary ball mill. It was revealed that the resulting flakes thickness and distribution can be controlled by (i) rotation speed (250-650 rpm), (ii) time of ball-milling (1-12 hours), and mass loading of bulk boron (1-3 g). Furthermore, the optimal conditions for the ball-milling process to induce efficient mechanical exfoliation of boron were determined to be 450 rpm, 6 hours, and 1 g (450 rpm_6 h_1 g), which resulted in the fabrication of regular and thin few-layered borophene flakes (∼5.5 nm). What is more, the mechanical energy induced during ball-milling, and the heat generated inside, affected the structure of borophene resulting in different crystalline phases. Besides being an additional and interesting discovery, it will also open up opportunities to investigate the relevance between the properties and the emerging phase. Structures labeled as β-rhombohedral, γ-orthorhombic, τ-B and the conditions under which they appear, have been described. Therefore, in our study, we open a new door to obtain a bulk quantity of few-layered borophene for further fundamental studies and practical potential assessment.
Collapse
Affiliation(s)
- Klaudia Zielinkiewicz
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Piastow Ave. 42 71-065 Szczecin Poland
| | - Daria Baranowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Piastow Ave. 42 71-065 Szczecin Poland
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Piastow Ave. 42 71-065 Szczecin Poland
| |
Collapse
|
10
|
Rasyotra A, Thakur A, Mandalia R, Ranganathan R, Jasuja K. Nitrogen adsorption via charge transfer on vacancies created during surfactant assisted exfoliation of TiB 2. NANOSCALE 2023; 15:8204-8216. [PMID: 36967617 DOI: 10.1039/d2nr06676a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Titanium diboride (TiB2), a layered ceramic material, comprised of titanium atoms sandwiched in between honeycomb planes of boron atoms, exhibits a promising structure to utilize the rich chemistry offered by the synergy of titanium and boron. TiB2 has been primarily investigated and applied in its bulk form. This perspective is, however, fast evolving with a number of efforts aimed at exfoliating TiB2. Here, we show that it is possible to delaminate TiB2 into ultrathin, minimally functionalized nanosheets with the aid of surfactants. These nanosheets exhibit crystalline nature and their chemical analysis reveals vacant sites within the nanosheets. These vacancies facilitate the chemisorption of N2 onto the TiB2 nanosheets under ambient conditions without the aid of any energy, this finding was unexpected. This remarkable activity of TiB2 nanosheets is attributed to vacancies and the Ti-B synergy, which enhance the adsorption and activation of N2. We obtained supplemental insights into the N2 adsorption by Density Functional Theory (DFT) studies, which reveal how charge transfer among Ti, B, and N2 results in N2 adsorption. The DFT studies also show that nanosheets having more vacancies result in increased adsorption when compared with nanosheets having less vacancies and bulk TiB2.
Collapse
Affiliation(s)
- Anshul Rasyotra
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India.
| | - Anupma Thakur
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India.
| | - Raviraj Mandalia
- Discipline of Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Raghavan Ranganathan
- Discipline of Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Kabeer Jasuja
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India.
| |
Collapse
|
11
|
Gunda H, Ray KG, Klebanoff LE, Dun C, Marple MAT, Li S, Sharma P, Friddle RW, Sugar JD, Snider JL, Horton RD, Davis BC, Chames JM, Liu YS, Guo J, Mason HE, Urban JJ, Wood BC, Allendorf MD, Jasuja K, Stavila V. Hydrogen Storage in Partially Exfoliated Magnesium Diboride Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205487. [PMID: 36470595 DOI: 10.1002/smll.202205487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3-4 nm ultrathin MgB2 nanosheets (multilayers) in high yield. High-pressure hydrogenation of these multilayers at 70 MPa and 330 °C followed by dehydrogenation at 390 °C reveals a hydrogen capacity of 5.1 wt%, which is ≈50 times larger than the capacity of bulk MgB2 under the same conditions. This enhancement is attributed to the creation of defective sites by ball-milling and incomplete Mg surface coverage in MgB2 multilayers, which disrupts the stable boron-boron ring structure. The density functional theory calculations indicate that the balance of Mg on the MgB2 nanosheet surface changes as the material hydrogenates, as it is energetically favorable to trade a small number of Mg vacancies in Mg(BH4 )2 for greater Mg coverage on the MgB2 surface. The exfoliation and creation of ultrathin layers is a promising new direction for 2D metal boride/borohydride research with the potential to achieve high-capacity reversible hydrogen storage at more moderate pressures and temperatures.
Collapse
Affiliation(s)
- Harini Gunda
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Keith G Ray
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | | | - Chaochao Dun
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Maxwell A T Marple
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Sichi Li
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Peter Sharma
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM, 87185, USA
| | - Raymond W Friddle
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Joshua D Sugar
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Jonathan L Snider
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Robert D Horton
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Brendan C Davis
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Jeffery M Chames
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Yi-Sheng Liu
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Harris E Mason
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Jeffrey J Urban
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brandon C Wood
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Mark D Allendorf
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Kabeer Jasuja
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vitalie Stavila
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| |
Collapse
|
12
|
Yang M, Jin H, Sun Z, Gui R. Monoelemental two-dimensional boron nanomaterials beyond theoretical simulations: From experimental preparation, functionalized modification to practical applications. Adv Colloid Interface Sci 2022; 304:102669. [PMID: 35429719 DOI: 10.1016/j.cis.2022.102669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
During the past decade, there is an explosive growth of theoretical and computational studies on 2D boron-based nanomaterials. In terms of extensive predictions from theoretical simulations, borophene, boron nanosheets and 2D boron derivatives show excellent structural, electronic, photonic and nonlinear optical characteristics, and potential applications in a wide range of fields. In recent years, previous studies have reported the successful experimental preparations, superior properties, multi-functionalized modifications of various 2D boron and its derivatives, which show many practical applications in significant fields. To further promote the ever-increasing experimental studies, this present review systematically summarizes recent progress on experimental preparation methods, functionalized modification strategies and practical applications of 2D boron-based nanomaterials and multifunctional derivatives. Firstly, this review summarizes the experimental preparation methods, including molecular beam epitaxy, chemical vapor deposition, liquid-phase exfoliation, chemical reaction, and other auxiliary methods. Then, various strategies for functionalized modification are introduced overall, focusing on borophene derivatives, boron-based nanosheets, atom-introduced, chemically-functionalized borophene and boron nanosheets, borophene or boron nanosheet-based heterostructures, and other functionalized 2D boron nanomaterials. Subsequently, various potential applications are discussed in detail, involving energy storage, catalysis conversion, photonics, optoelectronics, sensors, bio-imaging, biomedicine therapy, and adsorption. We comment the state-of-the-art related studies concisely, and also discuss the current status, probable challenges and perspectives rationally. This review is timely, comprehensive, in-depth and highly attractive for scientists from multiple disciplines and scientific fields, and can facilitate further development of advanced functional low-dimensional nanomaterials and multi-functionalized systems toward high-performance practical applications in significant fields.
Collapse
|
13
|
Türkmen TA, Taşaltın N, Taşaltın C, Baytemir G, Karakuş S. PEDOT: PSS / β12 borophene nanocomposites as an inorganic-organic hybrid electrode for high performance supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Zhang F, Jia C, Zhang N, He X, Li Q, Sun J, Jiang R, Lei Z, Liu ZH. Few-layer Mg-deficient borophene nanosheets: I 2 oxidation and ultrasonic delamination from MgB 2. NANOSCALE 2022; 14:4195-4203. [PMID: 35234763 DOI: 10.1039/d1nr07353b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By using I2 as an oxidant and CH3CN as a reaction medium, few-layer Mg-deficient borophene nanosheets (FBN) with a stoichiometric ratio of Mg0.22B2 are prepared by oxidizing MgB2 in a mixture of CH3CN and HCl for 14 days under nitrogen protection and followed by ultrasonic delaminating in CH3CN for 2 h. The prepared FBN possess a two-dimensional flake morphology, and they show a clear interference fringe with a d-spacing of 0.251 nm corresponding to the (208) plane of rhombohedral boron. While maintaining the hexagonal boron networks of MgB2, the FBN have an average thickness of about 4.14 nm (four monolayer borophene) and a lateral dimension of 500 nm, and the maximum Mg deintercalation rate can reach 78%. The acidity of the reaction system plays an important role; the HCl reaction system not only facilitates the oxidation of MgB2 by I2, but also increases the deintercalation ratio of Mg atoms. Etching of the Mg atom layer with HCl, the negative charge decrease of the boron layer by I2 oxidation, and the Mg chelating effect from CH3COOH due to the hydrolysis of CH3CN in an HCl environment led to a high deintercalation rate of the Mg atom. Density functional theory (DFT) calculations further support the result that the maximum deintercalation rate of Mg atoms is about 78% while maintaining the hexagonal layer structure of boron. This research solves the problems of low Mg atom deintercalation rate and hexagonal boron structure destruction when using the precursor MgB2 to produce borophene nanosheets, which is of great significance for large-scale novel preparation and application of borophene nanosheets.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Nan Zhang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
| |
Collapse
|
15
|
Taşaltın N, Güllülü S, Karakuş S. Dual-role of β borophene nanosheets as highly effective antibacterial and antifungal agent. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Li S, Gunda H, Ray KG, Wong CS, Xiao P, Friddle RW, Liu YS, Kang S, Dun C, Sugar JD, Kolasinski RD, Wan LF, Baker AA, Lee JRI, Urban JJ, Jasuja K, Allendorf MD, Stavila V, Wood BC. Spontaneous dynamical disordering of borophenes in MgB 2 and related metal borides. Nat Commun 2021; 12:6268. [PMID: 34725350 PMCID: PMC8560812 DOI: 10.1038/s41467-021-26512-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Layered boron compounds have attracted significant interest in applications from energy storage to electronic materials to device applications, owing in part to a diversity of surface properties tied to specific arrangements of boron atoms. Here we report the energy landscape for surface atomic configurations of MgB2 by combining first-principles calculations, global optimization, material synthesis and characterization. We demonstrate that contrary to previous assumptions, multiple disordered reconstructions are thermodynamically preferred and kinetically accessible within exposed B surfaces in MgB2 and other layered metal diborides at low boron chemical potentials. Such a dynamic environment and intrinsic disordering of the B surface atoms present new opportunities to realize a diverse set of 2D boron structures. We validated the predicted surface disorder by characterizing exfoliated boron-terminated MgB2 nanosheets. We further discuss application-relevant implications, with a particular view towards understanding the impact of boron surface heterogeneity on hydrogen storage performance. Layered boron compounds attract enormous interest in applications. This work reports first-principles calculations coupled with global optimization to show that the outer boron surface in MgB2 nanosheets undergo disordering and clustering, which is experimentally confirmed in synthesized MgB2 nanosheets.
Collapse
Affiliation(s)
- Sichi Li
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Harini Gunda
- Sandia National Laboratories, Livermore, CA, 94551, USA.,Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Keith G Ray
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | | | - Penghao Xiao
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | | | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - ShinYoung Kang
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Chaochao Dun
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | - Liwen F Wan
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Alexander A Baker
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jonathan R I Lee
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jeffrey J Urban
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kabeer Jasuja
- Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | | | | | - Brandon C Wood
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
17
|
Gilliam MS, Yousaf A, Guo Y, Li DO, Momenah A, Wang QH, Green AA. Evaluating the Exfoliation Efficiency of Quasi-2D Metal Diboride Nanosheets Using Hansen Solubility Parameters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1194-1205. [PMID: 33423497 DOI: 10.1021/acs.langmuir.0c03138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-van der Waals (non-vdW) solids are emerging sources of two-dimensional (2D) nanosheets that can be produced via liquid-phase exfoliation (LPE), and are beginning to expand our understanding of 2D and quasi-2D materials. Recently, nanosheets formed by LPE processing of bulk metal diborides, a diverse family of layered non-vdW ceramic materials, have been reported. However, detailed knowledge of the exfoliation efficiency of these nanomaterials is lacking, and is important for their effective solution-phase processing and for understanding their fundamental surface chemistry, since they have significant differences from more conventional nanosheets produced from layered vdW compounds. Here in this paper we use Hansen solubility theory to investigate nanosheets of the metal borides CrB2 and MgB2 derived from LPE. By preparing dispersions in 33 different solvents, we determine Hansen solubility parameters (δD, δP, δH) for both these metal diborides. We find that they exhibit notably higher δP and δH values compared to conventional vdW materials such as graphene and MoS2, likely as a result of the types of bonds broken in such materials from exfoliation which allows for more favorable interactions with more polar and hydrogen-bonding solvents. We apply the solubility parameters to identify cosolvent blends suitable for CrB2 and MgB2 that produce dispersions with concentrations that match or exceed those of the top-performing individual solvents for each material and that have markedly higher stability compared to the constituent solvents of the blends alone. This work provides insight into the exfoliation effectiveness of different solvents for preparation of nanosheets from metal diborides and non-vdW materials in general. Such knowledge will be crucial for developing liquid-phase exfoliation strategies for incorporating these materials in applications such as nanocomposites, inks, and coatings.
Collapse
Affiliation(s)
- Matthew S Gilliam
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ahmed Yousaf
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuqi Guo
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Duo O Li
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - AbdulAziz Momenah
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Qing Hua Wang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
18
|
Zhang Q, Zhao J, Wu Y, Li J, Jin H, Zhao S, Chai L, Wang Y, Lei Y, Wang S. Rapid and Controllable Synthesis of Nanocrystallized Nickel-Cobalt Boride Electrode Materials via a Mircoimpinging Stream Reaction for High Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003342. [PMID: 32856380 DOI: 10.1002/smll.202003342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Nickel-cobalt borides (denoted as NCBs) have been considered as a promising candidate for aqueous supercapacitors due to their high capacitive performances. However, most reported NCBs are amorphous that results in slow electron transfer and even structure collapse during cycling. In this work, a nanocrystallized NCBs-based supercapacitor is successfully designed via a facile and practical microimpinging stream reactor (MISR) technique, composed of a nanocrystallized NCB core to facilitate the charge transfer, and a tightly contacted Ni-Co borates/metaborates (NCBi ) shell which is helpful for OH- adsorption. These merits endow NCB@NCBi a large specific capacity of 966 C g-1 (capacitance of 2415 F g-1 ) at 1 A g-1 and good rate capability (633.2 C g-1 at 30 A g-1 ), as well as a very high energy density of 74.3 Wh kg-1 in an asymmetric supercapacitor device. More interestingly, it is found that a gradual in situ conversion of core NCBs to nanocrystallized Ni-Co (oxy)-hydroxides inwardly takes place during the cycles, which continuously offers large specific capacity due to more electron transfer in the redox reaction processes. Meanwhile, the electron deficient state of boron in metal-borates shells can make it easier to accept electrons and thus promote ionic conduction.
Collapse
Affiliation(s)
- Qingcheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
- Institute of New Materials and Industrial Technology, Wenzhou University, Wenzhou, Zhejiang, 325025, China
| | - Junping Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
| | - Yechao Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
| | - Jun Li
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
| | - Huile Jin
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
- Institute of New Materials and Industrial Technology, Wenzhou University, Wenzhou, Zhejiang, 325025, China
| | - Shiqiang Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
| | - Lulu Chai
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
| | - Yahui Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Shun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China
- Institute of New Materials and Industrial Technology, Wenzhou University, Wenzhou, Zhejiang, 325025, China
| |
Collapse
|
19
|
James AL, Lenka M, Pandey N, Ojha A, Kumar A, Saraswat R, Thareja P, Krishnan V, Jasuja K. Processable dispersions of photocatalytically active nanosheets derived from titanium diboride: self assembly into hydrogels and paper-like macrostructures. NANOSCALE 2020; 12:17121-17131. [PMID: 32785411 DOI: 10.1039/d0nr03677c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Titanium diboride (TiB2), a layered ceramic material, is well-known for its ultrahigh strength, wear resistance, and chemical inertness. In this work, we present a simple one-pot chemical approach that yields sheet-like nanostructures from TiB2. We serendipitously found that TiB2 crystals can undergo complete dissolution in a mild aqueous solution of H2O2 under ambient conditions. This unexpected dissolution of TiB2 is followed by non-classical recrystallization that results in nanostructures with sheet-like morphology exhibiting Ti-O and B-O functional groups. We show that this pathway can be used to obtain an aqueous dispersion of nanosheets with concentrations ≥3 mg mL-1. Interestingly, these nanosheets tend to transform into a hydrogel without the need of any additives. We found that the degree of gelation depends on the ratio of TiB2 to H2O2, which can be tuned to achieve gels with a shear modulus of 0.35 kPa. We also show this aqueous dispersion of nanosheets is processable and forms hierarchical paper-like macrostructures upon vacuum filtration. Such an ability to assemble into free-standing 3D structures would enable a leap to practical applications. We also show that the high surface area and presence of oxy-functional groups on these nanosheets endow them a superior photocatalytic activity to degrade organic pollutants. This exemplifies the rich potential that TiB2 offers upon nanoscaling. The results presented here not only add a novel material to the 2D flatland but also urge the scientific community to revisit the chemistry of metal borides, that have been traditionally considered as relatively inert ceramics.
Collapse
Affiliation(s)
- Asha Liza James
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kawamura R, Cuong NT, Fujita T, Ishibiki R, Hirabayashi T, Yamaguchi A, Matsuda I, Okada S, Kondo T, Miyauchi M. Photoinduced hydrogen release from hydrogen boride sheets. Nat Commun 2019; 10:4880. [PMID: 31653945 PMCID: PMC6814783 DOI: 10.1038/s41467-019-12903-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
Hydrogen boride nanosheets (HB sheets) are facilely synthesized via ion-exchange treatment on magnesium diboride (MgB2) in an acetonitrile solution. Optical absorption and fluorescence spectra of HB sheets indicate that their bandgap energy is 2.8 eV. According to first-principles calculations, optical absorption seen at 2.8 eV is assigned to the electron transition between the σ-bonding states of B and H orbitals. In addition, density functional theory (DFT) calculations suggest the other allowed transition from the σ-bonding state of B and H orbitals to the antibonding state with the gap of 3.8 eV. Significant gaseous H2 release is found to occur only under photoirradiation, which causes the electron transition from the σ-bonding state to the antibonding state even under mild ambient conditions. The amount of H2 released from the irradiated HB sheets is estimated to be 8 wt%, indicating that the sheets have a high H2-storage capacity compared with previously reported metal H2-storage materials.
Collapse
Affiliation(s)
- Reiya Kawamura
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Nguyen Thanh Cuong
- Department of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takeshi Fujita
- School of Environmental Science and Engineering, Kochi University of Technology, Kochi, 782-8502, Japan
| | - Ryota Ishibiki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Toru Hirabayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Akira Yamaguchi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Iwao Matsuda
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Susumu Okada
- Department of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takahiro Kondo
- Department of Materials Science and Tsukuba Research Center for Energy Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan. .,Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
| |
Collapse
|
21
|
John SK, Anappara AA. Aqueous dispersions of highly luminescent boron-rich nanosheets by the exfoliation of polycrystalline titanium diboride. NEW J CHEM 2019. [DOI: 10.1039/c9nj01502g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent boron-rich nanosheets were synthesized by the liquid-phase exfoliation of polycrystalline titanium diboride, utilizing the synergy of shear-force grinding and ultrasonication.
Collapse
Affiliation(s)
- Saju K. John
- Department of Physics
- Photonic Materials and Devices Laboratory
- National Institute of Technology Calicut (NITC)
- Kozhikode-673601
- India
| | - Aji A. Anappara
- Department of Physics
- Photonic Materials and Devices Laboratory
- National Institute of Technology Calicut (NITC)
- Kozhikode-673601
- India
| |
Collapse
|
22
|
James AL, Khandelwal S, Dutta A, Jasuja K. Boron based nanosheets as reducing templates in aqueous solutions: towards novel nanohybrids with gold nanoparticles and graphene. NANOSCALE 2018; 10:20514-20518. [PMID: 30394479 DOI: 10.1039/c8nr06283h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We show that nanosheets obtained by exfoliating magnesium diboride bear an intrinsic ability to elicit chemical reduction of quinone-based molecules. They also reduce gold salt into ultra-small gold nanoparticles and graphene oxide into reduced graphene oxide. These nanosheets subsequently interface with the partner nanomaterial in solution to form novel nanohybrids.
Collapse
Affiliation(s)
- Asha Liza James
- Discipline of Chemical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India.
| | | | | | | |
Collapse
|
23
|
Gunda H, Das SK, Jasuja K. Simple, Green, and High‐Yield Production of Boron‐Based Nanostructures with Diverse Morphologies by Dissolution and Recrystallization of Layered Magnesium Diboride Crystals in Water. Chemphyschem 2018; 19:880-891. [DOI: 10.1002/cphc.201701033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Harini Gunda
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Saroj Kumar Das
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Kabeer Jasuja
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| |
Collapse
|