1
|
Bregado JL, Secchi AR, Tavares FW. A density functional theory study on interactions in water-bridged dimeric complexes of lignin. Phys Chem Chem Phys 2024; 26:9234-9252. [PMID: 38444363 DOI: 10.1039/d4cp00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignin is the main plant cell wall component responsible for recalcitrance in the process of lignocellulosic biomass conversion into biofuels. The recalcitrance and insolubility of lignin in different reaction media are due in part to the hydrogen bonds and π interactions that hold syringyl (S) and guaiacyl (G) units together and promote the formation of stable water-bridged dimeric complexes (WBDCs): S⋯G and S⋯S, in native lignin. The current understanding of how each type of interaction influences the stability of these complexes within lignin native cell walls is still limited. Here, we found by DFT calculations that hydrogen bonding is more dominant than π-stacking interaction between aromatic rings of WBDCs. Although there is a stronger interaction of hydrogen bonds between subunits and water and higher π-stacking interaction in the S⋯S complex compared to the S⋯G complex, the former complex is less thermodynamically stable than the latter due to the entropic contribution coming from the methoxy substituents in the S-unit. Our results demonstrate that the methoxylation degree of lignin units does not significantly influence the structural geometries of WBDCs; if anything, an enhanced dispersion interaction between ring aromatics results in quasi-sandwich geometries as found in "coiled" lignin structures in the xylem tissue of wood. In the same way as that with ionic liquids, polar solvents can dissolve S-lignin by favorable interactions with the aliphatic hydroxyl group in the α-position as the key site or the aromatic hydroxyl group as the secondary site.
Collapse
Affiliation(s)
- Jurgen Lange Bregado
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
| | - Argimiro R Secchi
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| | - Frederico W Tavares
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| |
Collapse
|
2
|
Esakkimuthu ES, Ponnuchamy V, Mikuljan M, Schwarzkopf M, DeVallance D. Fungal enzyme degradation of lignin-PLA composites: Insights from experiments and molecular docking simulations. Heliyon 2024; 10:e23838. [PMID: 38192859 PMCID: PMC10772188 DOI: 10.1016/j.heliyon.2023.e23838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Fungal enzymes are effective in degrading various polymeric materials. In this study, we assessed the initial degradation of composites consisting of lignin-poly(lactic acid) (PLA) with both unmodified lignin (LIG) and oxypropylated lignin (oLIG) incorporated at 10 % and 40 % weight within the PLA matrix in a fungal environment. Trametes versicolor fungi were used, and the samples were treated only for eight weeks. Although there was no significant difference in weight loss, the degradation process impacted the chemical and thermal properties of the composites, as shown by Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC) analyses. After the degradation process, the carbonyl index values decreased for all composites and the hydroxyl index values increased for LIG/PLA and a reverse trend was observed for oLIG/PLA composites. The first heating scan from DSC results showed that the melting peak and the cold crystallization peak disappeared after the degradation process. Microscopic analysis revealed that LIG/PLA exhibited higher roughness than oLIG/PLA. Molecular docking simulations were carried out using guaiacylglycerol-β-guaiacyl ether (GGE) and lactic acid (LA) as model compounds for lignin and PLA, respectively, with laccase (Lac) enzyme for Trametes versicolor. The docking results showed that GGE had the strongest binding interaction and affinity with Lac than lactic acid and oxypropylated GGE. The oxypropylated GGE formed a shorter hydrogen bonding with the Lac enzyme than GGE and LA. The trend associated with the degradation of composites from experimental and molecular docking findings was consistent. This combined approach provided insights into the degradation process using fungi and had the potential to be applied to different polymeric composites.
Collapse
Affiliation(s)
| | - Veerapandian Ponnuchamy
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000, Koper, Slovenia
| | | | - Matthew Schwarzkopf
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000, Koper, Slovenia
| | - David DeVallance
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000, Koper, Slovenia
| |
Collapse
|
3
|
Kang Y, Lu X, Xu J, Zhou Q, Zhang G, Xin J, Yan D, Sayed IEITEI. The ionic liquids upon perchlorate to promote the C-C/C-O bonds cleavage in alkali lignin under photothermal synergism. Int J Biol Macromol 2024; 255:128125. [PMID: 37984571 DOI: 10.1016/j.ijbiomac.2023.128125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Transforming lignin into aromatic monomers is critically attractive to develop green and sustainable energy supplies. However, the usage of the additional catalysts like metal or base/acid is commonly limited by the caused repolymerized and environmental issues. The key step is to mediate electron transfer in lignin to trigger lignin C-C/C-O bonds cleavage without the catalysts mentioned above. Here, we report that the ionic liquids [BMim][ClO4] was found to trigger lignin electron transfer to cleave the C-C/C-O bonds for aromatic monomers without any additional catalyst. The proton transfer from [BMim]+ to [ClO4]- could polarize the anion and decrease its structure stability, upon which the active hydroxyl radical generated and induced lignin C-C/C-O bonds fragmentation via free radical-mediated routes with the assistance of photothermal synergism. About 4.4 wt% yields of aromatic monomers, mainly composed of vanillin and acetosyringone, are afforded in [BMim][ClO4] under UV-light irradiation in the air at 80 °C. This work opens the way to produce value-added aromatic monomers from lignin using an eco-friendly, energy-efficient, and simple route that may contribute to the sustainable utilization of renewable natural resources.
Collapse
Affiliation(s)
- Ying Kang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Junli Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dongxia Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
4
|
Azougagh O, Jilal I, Jabir L, El-Hammi H, Essayeh S, Mohammed N, Achalhi N, El Yousfi R, El Idrissi A, El Ouardi Y, Laatikainen K, Abou-Salama M, El Barkany S. Dissolution mechanism of cellulose in a benzyltriethylammonium/urea deep eutectic solvent (DES): DFT-quantum modeling, molecular dynamics and experimental investigation. Phys Chem Chem Phys 2023; 25:22870-22888. [PMID: 37587837 DOI: 10.1039/d3cp02335d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In this paper, a benzyltriethylammonium/urea DES was investigated as a new green and eco-friendly medium for the progress of organic chemical reactions, particularly the dissolution and the functionalization of cellulose. In this regard, the viscosity-average molecular weight of cellulose (M̄w) during the dissolution/regeneration process was investigated, showing no significant degradation of the polymer chains. Moreover, X-ray diffraction patterns indicated that the cellulose dissolution process in the BTEAB/urea DES decreased the crystallinity index from 87% to 75%, and there was no effect on type I cellulose polymorphism. However, a drastic impact of the cosolvents (water and DMSO) on the melting point of the DES was observed. Besides, to understand the evolution of cellulose-DES interactions, the formation mechanism of the system was studied in terms of H-bond density and radial distribution function (RDF) using molecular dynamics modeling. Furthermore, density functional theory (DFT) was used to evaluate the topological characteristics of the polymeric system such as potential energy density (PED), laplacian electron density (LED), energy density, and kinetic energy density (KED) at bond critical points (BCPs) between the cellulose and the DES. The quantum theory of atoms in molecules (AIM), Bader's quantum theory (BQT), and reduced density gradient (RDG) scatter plots have been exploited to estimate and locate non-covalent interactions (NCIs). The results revealed that the dissolution process is attributed to the physical interactions, mainly the strong H-bond interactions.
Collapse
Affiliation(s)
- Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Issam Jilal
- LIMOME Laboratory, Dhar El Mehraz Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fes 30000, Morocco
| | - Loubna Jabir
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Hayat El-Hammi
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Soumya Essayeh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Nor Mohammed
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohammed 1st University, 60000 Oujda, Morocco
| | - Ridouan El Yousfi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohammed 1st University, 60000 Oujda, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohammed 1st University, 60000 Oujda, Morocco
| | - Youssef El Ouardi
- LIMOME Laboratory, Dhar El Mehraz Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796 Atlas, Fes 30000, Morocco
- Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Katri Laatikainen
- Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohammed 1st University, P. B. 300, Nador 62700, Morocco.
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| |
Collapse
|
5
|
Synthesis and Modification of Nanoparticles with Ionic Liquids: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Yang Y, Xu J, Kong Y, Zhou J, Wang X. Breakthrough of lignin valorization: A novel alcohol-dichoromethane binary mixture solvent for lignin dissolution with excellent properties. Int J Biol Macromol 2023; 225:219-226. [PMID: 36343839 DOI: 10.1016/j.ijbiomac.2022.10.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
A novel binary solvent system consisting of alcohols (e.g., methanol, ethanol, isopropanol) and dichloromethane was developed as an efficient dissolution system for dissolving various types of lignin. It was found that in this dissolution system, adjusting the volume ratio of alcohol and dichloromethane will significantly affect the solubility of lignin. At the same time, this study proposed that the reason why the solvent can dissolve lignin was the hydrophobic skeleton and hydrophilic groups can be solvated by dichloromethane and alcohols respectively, which significantly promoted the dissolution of lignin. Furthermore, the solvent did not significantly alter the structure of the lignin. The proposed novel solvent is simple, efficient, versatile and flexible, can adapt to the high diversity of lignin, and has broad application prospects.
Collapse
Affiliation(s)
- Yingying Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingyu Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Kong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Jiang D, He Y, Zhang J, Yin J, Ding J, Wang S, Li H. Conjugate acid-base bi-functional polymeric ionic liquids (CAB-PILs) as efficient catalysts for CO2 capture and subsequent glycidol cycloaddition reaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Zhu X, Zhang C, Ma H, Lu F. Stereo-Recognition of Hydrogen Bond and Its Implications for Lignin Biomimetic Synthesis. Biomacromolecules 2022; 23:4985-4994. [PMID: 36332059 DOI: 10.1021/acs.biomac.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hydrogen bond (H-bond) is essential to stabilizing the three-dimensional biological structure such as protein, cellulose, and lignin, which are integral parts of animal and plant cells; thus, stereo-recognition of the H-bond is extremely attractive. Herein, a methodology combining the variable-temperature 1H NMR technique with the density functional theory was established to recognize the underlying H-bonding patterns in lignin diastereomers. This method successfully classified the intramolecular and intermolecular H-bonds with slope values varying between 50.2-201.5 and 221.9-655.4, respectively, from the natural logarithm of the hydroxyl proton chemical shift versus the inverse of the temperature plot. Moreover, this slope was found to be correlated with the interaction distance between the H-bond donor and acceptor. Finally, it was proposed that the stereo-preferential formation of the β-O-4 structure (erythro vs threo form) during lignin biomimetic synthesis was probably influenced by their intramolecular H-bonding patterns, thus making it easier to reach thermodynamic equilibrium.
Collapse
Affiliation(s)
- Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| | - Cong Zhang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Haixia Ma
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| |
Collapse
|
9
|
Wang W, Zhu B, Xu Y, Li B, Xu H. Mechanism study of ternary deep eutectic solvents with protonic acid for lignin fractionation. BIORESOURCE TECHNOLOGY 2022; 363:127887. [PMID: 36064081 DOI: 10.1016/j.biortech.2022.127887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This paper investigated the fractionation of lignin by ternary DES of different polyols using simulation calculation. ChCl-EG-PTSA showed the highest degradability of lignin with the absolute value of total interaction energy of -8023.80 kJ/mol, and the total number of hydrogen bonds was 91.4. The highest degradability was observed for ChCl:EG: PTSA = 2:4:1. The results show that CL- plays a dominant role in lignin fractionation and readily forms hydrogen bonds with γ-OH. The difference is that the polyol preferred to form hydrogen bonds with α-OH in lignin. The addition of PTSA provided protons to the original system. It formed a new π-π stacking interaction with the lignin benzene ring, which destroyed the π-π stacking interaction between the original lignin. And increased the interaction of DES on lignin from -39.73 kcal/mol to -58.15 kcal/mol based on DFT.
Collapse
Affiliation(s)
- Weixian Wang
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, PR China
| | - Baoping Zhu
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, PR China
| | - Yang Xu
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Dalian National Laboratory for Clean Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Huanfei Xu
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, PR China; CAS Key Laboratory of Biofuels, Dalian National Laboratory for Clean Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
10
|
Song Y, Norris F, Hinchcliffe D, Xu Y, Zhang X, Nockemann P. Ionic liquid-assisted synthesis of mesoporous polymers and carbon materials: the self-assembly mechanism. NANOSCALE 2022; 14:14212-14222. [PMID: 36125101 DOI: 10.1039/d2nr02875a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft-templating synthesis has been widely employed to fabricate ordered mesoporous polymer and carbon materials with effectively tuneable pore sizes. However, the commonly used templating agents, block copolymers, are normally decomposed during the process, thus are barely recyclable; this increases the costs and hampers the scale-up feasibility. Therefore, it becomes imperative to seek promising alternatives; amphiphilic ionic liquids (ILs) are excellent candidates due to their good recyclability. This study explored the templating behaviour of IL templates for preparing mesoporous polymers and carbons. In details, the self-assembly of ternary systems (comprising of IL templates, precursors and solvent) were investigated by a combination of coarse-grained molecular dynamics (CGMD) simulations, density function theory (DFT) calculations and experimental techniques. The results indicate that the morphologies of IL templates are tuneable not only by the adjustment of water content in the mixture but also by the selection of suitable precursors. Material precursors containing increasing numbers of hydroxyl moieties also induce various precursor-template spatial correlations, resulting in different topological structures of nanomaterials. This work presents a fundamental investigation into the mechanisms of templating synthesis with amphiphilic ILs as recyclable templates and gives insight into the effective design of coveted carbon nanomaterials for targeted applications.
Collapse
Affiliation(s)
- Yaoguang Song
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| | - Fraser Norris
- Department of Chemical and Process Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK.
| | - Daryl Hinchcliffe
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaolei Zhang
- Department of Chemical and Process Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK.
| | - Peter Nockemann
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| |
Collapse
|
11
|
Wang X, Zheng K, Peng Z, Liu B, Jia X, Tian J. Exploiting proton masking to protect amino achieve efficient capture CO2 by amino-acids deep eutectic solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Choudhary H, Pidatala VR, Mohan M, Simmons BA, Gladden JM, Singh S. Renewable Schiff-Base Ionic Liquids for Lignocellulosic Biomass Pretreatment. Molecules 2022; 27:molecules27196278. [PMID: 36234813 PMCID: PMC9573442 DOI: 10.3390/molecules27196278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Growing interest in sustainable sources of chemicals and energy from renewable and reliable sources has stimulated the design and synthesis of renewable Schiff-base (iminium) ionic liquids (ILs) to replace fossil-derived ILs. In this study, we report on the synthesis of three unique iminium-acetate ILs from lignin-derived aldehyde for a sustainable “future” lignocellulosic biorefinery. The synthesized ILs contained only imines or imines along with amines in their structure; the ILs with only imines group exhibited better pretreatment efficacy, achieving >89% sugar release. Various analytical and computational tools were employed to understand the pretreatment efficacy of these ILs. This is the first study to demonstrate the ease of synthesis of these renewable ILs, and therefore, opens the door for a new class of “Schiff-base ILs” for further investigation that could also be designed to be task specific.
Collapse
Affiliation(s)
- Hemant Choudhary
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Venkataramana R. Pidatala
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mood Mohan
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Blake A. Simmons
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John M. Gladden
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
- Correspondence:
| |
Collapse
|
13
|
Zhang Y, Ma N, Wang T, Fan J. Work function regulation of surface-engineered Ti 2CT 2 MXenes for efficient electrochemical nitrogen reduction reaction. NANOSCALE 2022; 14:12610-12619. [PMID: 35880702 DOI: 10.1039/d2nr01861f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical conversion of nitrogen to ammonia is a promising method in modern agriculture and industry due to its suitability and feasibility under mild conditions. Therefore, seeking electrocatalysts and understanding the catalytic mechanisms are of great importance. In this work, by combining the concept of the synergetic effect of the terminal vacancy and transition metal active center, we studied the whole catalytic mechanism of defective Ti2CT2 MXenes with functional groups (T = O, F, H, OH) by employing first-principles calculations. It is demonstrated that the electron transfer behavior of 2D transition metal carbides can be tuned by modifying the surface functional groups. Herein, the rarely investigated work function regulation is proved to effectively alter the electron transfer ability, thus the binding strength of key intermediates on the surface can be optimized. Besides, Ti2CO2 with an oxygen vacancy is identified as a promising candidate through a distal mechanism, where the calculated electronic properties reveal that the introduction of in-gap states is responsible for activating N2 with physical adsorption. In addition, obvious orbital splitting of the σ and π* orbitals of N2 is observed due to the hybridization of frontier orbitals. The symmetry matching rule of the frontier orbitals of π* 2p and the σ 2p orbitals of N with Ti d orbitals further illustrates the "acceptance-donation" interaction. These theoretical insights highlight the underlying mechanism of the synergetic effect of surficial vacancy and exposed transition metal atoms, and provide an alternative view of designing efficient NRR electrocatalysts.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ninggui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Tairan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Lin X, Jiang K, Liu X, Han D, Zhang Q. Review on development of ionic liquids in lignocellulosic biomass refining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Kazachenko AS, Akman F, Vasilieva NY, Malyar YN, Fetisova OY, Lutoshkin MA, Berezhnaya YD, Miroshnikova AV, Issaoui N, Xiang Z. Sulfation of Wheat Straw Soda Lignin with Sulfamic Acid over Solid Catalysts. Polymers (Basel) 2022. [DOI: doi.org/10.3390/polym14153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soda lignin is a by-product of the soda process for producing cellulose from grassy raw materials. Since a method for the industrial processing of lignin of this type is still lacking, several research teams have been working on solving this problem. We first propose a modification of soda lignin with sulfamic acid over solid catalysts. As solid catalysts for lignin sulfation, modified carbon catalysts (with acid sites) and titanium and aluminum oxides have been used. In the elemental analysis, it is shown that the maximum sulfur content (16.5 wt%) was obtained with the Sibunit-4® catalyst oxidized at 400 °C. The incorporation of a sulfate group has been proven by the elemental analysis and Fourier-transform infrared spectroscopy. The molecular weight distribution has been examined by gel permeation chromatography. It has been demonstrated that the solid catalysts used in the sulfation process causes hydrolysis reactions and reduces the molecular weight and polydispersity index. It has been established by the thermal analysis that sulfated lignin is thermally stabile at temperatures of up to 200 °C. According to the atomic force microscopy data, the surface of the investigated film consists of particles with an average size of 50 nm. The characteristics of the initial and sulfated β-O-4 lignin model compounds have been calculated and recorded using the density functional theory.
Collapse
|
16
|
Kazachenko AS, Akman F, Vasilieva NY, Malyar YN, Fetisova OY, Lutoshkin MA, Berezhnaya YD, Miroshnikova AV, Issaoui N, Xiang Z. Sulfation of Wheat Straw Soda Lignin with Sulfamic Acid over Solid Catalysts. Polymers (Basel) 2022; 14:polym14153000. [PMID: 35893964 PMCID: PMC9331396 DOI: 10.3390/polym14153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023] Open
Abstract
Soda lignin is a by-product of the soda process for producing cellulose from grassy raw materials. Since a method for the industrial processing of lignin of this type is still lacking, several research teams have been working on solving this problem. We first propose a modification of soda lignin with sulfamic acid over solid catalysts. As solid catalysts for lignin sulfation, modified carbon catalysts (with acid sites) and titanium and aluminum oxides have been used. In the elemental analysis, it is shown that the maximum sulfur content (16.5 wt%) was obtained with the Sibunit-4® catalyst oxidized at 400 °C. The incorporation of a sulfate group has been proven by the elemental analysis and Fourier-transform infrared spectroscopy. The molecular weight distribution has been examined by gel permeation chromatography. It has been demonstrated that the solid catalysts used in the sulfation process causes hydrolysis reactions and reduces the molecular weight and polydispersity index. It has been established by the thermal analysis that sulfated lignin is thermally stabile at temperatures of up to 200 °C. According to the atomic force microscopy data, the surface of the investigated film consists of particles with an average size of 50 nm. The characteristics of the initial and sulfated β-O-4 lignin model compounds have been calculated and recorded using the density functional theory.
Collapse
Affiliation(s)
- Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Correspondence:
| | - Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey;
| | - Natalya Yu. Vasilieva
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Yuriy N. Malyar
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Olga Yu. Fetisova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
| | - Maxim A. Lutoshkin
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
| | - Yaroslava D. Berezhnaya
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
| | - Angelina V. Miroshnikova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia; (N.Y.V.); (Y.N.M.); (O.Y.F.); (M.A.L.); (Y.D.B.); (A.V.M.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
17
|
Ding WL, Zhang T, Wang Y, Xin J, Yuan X, Ji L, He H. Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of Lignin. J Phys Chem B 2022; 126:3693-3704. [DOI: 10.1021/acs.jpcb.1c10684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei-Lu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqing Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ji
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Computational approach in lignin structural models: Influence of non-covalent intramolecular interactions on βO4 bond properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Yu K, Ding WL, Lu Y, Wang Y, Liu Y, Liu G, Huo F, He H. Ionic liquids screening for lignin dissolution: COSMO-RS simulations and experimental characterization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Micro-phase separation promoted by electrostatic field in electrospinning of alkaline polymer electrolytes: DFT and MD simulations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Synthesis of new Tetrazole based-semiconducting polymers for optoelectronic application: Study of the effect of anthracene group on photophysical properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Azougagh O, Essayeh S, Achalhi N, El Idrissi A, Amhamdi H, Loutou M, El Ouardi Y, Salhi A, Abou-Salama M, El Barkany S. New benzyltriethylammonium/urea deep eutectic solvent: Quantum calculation and application to hyrdoxylethylcellulose modification. Carbohydr Polym 2022; 276:118737. [PMID: 34823773 DOI: 10.1016/j.carbpol.2021.118737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022]
Abstract
In this paper, a new deep eutectic solvent (DES) has been successfully synthesized that is based on benzyltriethylammonium bromide as a hydrogen bond acceptor (HBA) and urea as a hydrogen bond donor (HBD). However, its usability in modifying cellulose derivatives, especially acylating hydroxyethylcellulose (HEC) was investigated. The chemical modification (acetylation) of HEC was carried out in BTEAB/urea DES system without any additional conventional solvent or catalyst. However, the proposed structure of acetylated HEC (HECA) was confirmed according to the structural spectra analyses FTIR-ATR, 1H, 13C, and APT-NMR. The crystalline behavior of acetylated and unmodified HEC in the DES system has been evaluated using XRD patterns, where the thermal stability was evaluated basing on the TD-TGA thermograms. Hence, SEM images and EDX spectra were recorded to prove the changes that are expected at the morphological level and elemental profile. Yet, the nanometric sheets aspect was observed. The Functional Density Theory (DFT) was investigated as a useful computational tool to understand mechanism and donor-acceptor interactions. The topological parameters (electron density Laplacian, kinetic energy density, potential energy density, and energy density) at the bond critical points (BCP), between TBEAB and urea, are deducted according to Quantum Bader's theory, and Atoms-in-molecules (AIM). The non-covalent interactions and steric effect in the DES system were studied using the reduced density gradient isosurface (RDG). Theoretical and computational calculations revealed that the H-bonds and the electrostatic coexist, as predominant interactions in the BTEAB-based DES resulting chemical structure, and mechanism formation. The physical interactions between the component entities of DES lead to a new equilibrium that is more stable than that of HBA and HBD in their separate states.
Collapse
Affiliation(s)
- Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Soumya Essayeh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohamed 1st University, 60000 Oujda, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohamed 1st University, 60000 Oujda, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Mohamed Loutou
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Youssef El Ouardi
- LIMOME Laboratory, Dhar El Mehraz Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Atlas, Fes 30000, Morocco; Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Amin Salhi
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco.
| |
Collapse
|
23
|
Wang Z, Luo H, Martin HJ, Wang T, Sun Y, Arnould MA, Thapaliya BP, Dai S. Controlling the elasticity of polyacrylonitrile fibers via ionic liquids containing cyano-based anions. RSC Adv 2022; 12:8656-8660. [PMID: 35424785 PMCID: PMC8984951 DOI: 10.1039/d2ra00858k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 01/26/2023] Open
Abstract
As the predominant precursor for high-performance carbon fiber manufacturing, the fabrication of polyacrylonitrile (PAN)-based composite fibers attracts great interest. Ionic liquids (ILs) have recently been investigated for melt-spinning of ultrafine PAN fibers. The plasticizing properties of ILs are significantly affected by the structure of ILs and can be influenced by electronegativity, steric effects, etc. Herein, we report a facile strategy to control the elasticity of the PAN/ILs fibers by tuning the anion structure of ILs. Particularly, the ILs containing nitrile-rich groups exhibited enhanced plasticizing effect and nucleating ability on dissolving PAN components, achieving highly stretchable PAN/ILs fibers. Highly stretchable PAN/ILs fibers were fabricated through melt-spinning with ionic liquids containing cyano-based anions.![]()
Collapse
Affiliation(s)
- Zongyu Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huimin Luo
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Halie J. Martin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yifan Sun
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Mark A. Arnould
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bishnu P. Thapaliya
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
24
|
Li Q, Dong Y, Hammond KD, Wan C. Revealing the role of hydrogen bonding interactions and supramolecular complexes in lignin dissolution by deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Insight into the adsorption of Imidazolium-based ionic liquids on graphene by first principles simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhang T, Ding WL, Zhang Y, Bi K, Lu Y, Ji L, He H. Investigating the property and strength of intermolecular interaction in saturated and unsaturated cyclic cations constructed ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zhou S, Jin K, Buehler MJ. Understanding Plant Biomass via Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003206. [PMID: 32945027 DOI: 10.1002/adma.202003206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.
Collapse
Affiliation(s)
- Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Kai Jin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
28
|
Jin Y, Lin J, Cheng Y, Lu C. Lignin-Based High-Performance Fibers by Textile Spinning Techniques. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3378. [PMID: 34207222 PMCID: PMC8234621 DOI: 10.3390/ma14123378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
As a major component of lignocellulosic biomass, lignin is one of the largest natural resources of biopolymers and, thus, an abundant and renewable raw material for products, such as high-performance fibers for industrial applications. Direct conversion of lignin has long been investigated, but the fiber spinning process for lignin is difficult and the obtained fibers exhibit unsatisfactory mechanical performance mainly due to the amorphous chemical structure, low molecular weight of lignin, and broad molecular weight distribution. Therefore, different textile spinning techniques, modifications of lignin, and incorporation of lignin into polymers have been and are being developed to increase lignin's spinnability and compatibility with existing materials to yield fibers with better mechanical performance. This review presents the latest advances in the textile fabrication techniques, modified lignin-based high-performance fibers, and their potential in the enhancement of the mechanical performance.
Collapse
Affiliation(s)
- Yanhong Jin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiaxian Lin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yu Cheng
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
Revealing of Supercritical Water Gasification Process of Lignin by Reactive Force Field Molecular Dynamics Simulations. Processes (Basel) 2021. [DOI: 10.3390/pr9040714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gasification with supercritical water is an efficient process that can be used for the valorization of biomass. Lignin is the second most abundant biopolymer in biomass and its conversion is fundamental for future energy and value-added chemicals. In this paper, the supercritical water gasification process of lignin by employing reactive force field molecular dynamics simulations (ReaxFF MD) was investigated. Guaiacyl glycerol-β-guaiacyl ether (GGE) was considered as a lignin model to evaluate the reaction mechanism and identify the components at different temperatures from 1000 K to 5000 K. The obtained results revealed that the reactions and breaking of the lignin model started at 2000 K. At the primary stage of the reaction at 2000 K the β-O-4 bond tends to break into several compounds, forming mainly guaiacol and 1,3-benzodioxole. In particular, 1,3-benzodioxole undergoes dissociation and forms cyclopentene-based ketones. Afterward, dealkylation reaction occurred through hydroxyl radicals of water to form methanol, formaldehyde and methane. Above 2500 K, H2, CO and CO2 are predominantly formed in which water molecules contributed hydrogen and oxygen for their formation. Understanding the detailed reactive mechanism of lignin’s gasification is important for efficient energy conversion of biomass.
Collapse
|
30
|
Tankov I, Yankova R. Nature of the chemical interactions in the multifunctional ionic liquid tris(2-aminothiazolium) hydrogen sulfate sulfate monohydrate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Hu T, Wang Y, Huo F, He H, Zhang S. Understanding Structural and Transport Properties of Dissolved Li 2 S 8 in Ionic Liquid Electrolytes through Molecular Dynamics Simulations. Chemphyschem 2021; 22:419-429. [PMID: 33502098 DOI: 10.1002/cphc.202000555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/12/2020] [Indexed: 11/08/2022]
Abstract
Lithium-sulfur batteries with high energy density are considered as one of the most promising future energy storage devices. However, the parasitic lithium polysulfides shuttle phenomenon severely hinders the commercialization of such batteries. Ionic liquids have been found to suppress the lithium polysulfides solubility, diminishing the shuttle effect effectively. Herein, we performed classical molecular dynamics simulations to explore the microscopic mechanism and transport behaviors of typical Li2 S8 species in ionic liquids and ionic liquid-based electrolyte systems. We found that the trifluoromethanesulfonate anions ([OTf]- ) exhibit higher coordination strength with lithium ions compared with bis(trifluoromethanesulfonyl)imide anions ([TFSI]- ) in static microstructures. However, the dynamical characteristics indicate that the presence of the [OTf]- anions in ionic liquid electrolytes bring faster Li+ exchange rate and easier dissociation of Li+ solvation structures. Our simulation models offer a significant guidance to future studies on designing ionic liquid electrolytes for lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tianyuan Hu
- Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yanlei Wang
- Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Feng Huo
- Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Hongyan He
- Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Suojiang Zhang
- Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
32
|
Kramer CAC, de Carvalho LS. α-Oxidation of banana lignin with atmospheric oxygen catalyzed by Co 3O 4. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00053e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Banana lignin was subjected to oxidation, converting alpha hydroxyl to carbonyl. In this process, atmospheric oxygen acted as an oxidizing agent, CO3O4 as a catalyst under mild conditions of temperature and pressure.
Collapse
|
33
|
Ponnuchamy V, Sandak A, Sandak J. Multiscale modelling investigation of wood modification with acetic anhydride. Phys Chem Chem Phys 2020; 22:28448-28458. [PMID: 33306769 DOI: 10.1039/d0cp05165a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) and molecular dynamics (MD) simulations were employed to investigate the interaction of cellulose and lignin with acetic anhydride for explaining the wood modification process. Cellulose was modelled with a cellobiose unit and dibenzodioxocin was used to represent the lignin model. Results obtained from both methods revealed that acetic anhydride interacted substantially more with the cellobiose model than the lignin model. The interaction energy of cellobiose-acetic anhydride was higher (about 20 kJ mol-1) than that of lignin-acetic anhydride. DFT results on hydrogen bonding indicated that the hydroxyl group from cellobiose and the aromatic hydroxyl group from lignin models have similar energy values, which explain the equal strength of hydrogen bond interaction. The same trend was also obtained for the substitution of acetyl group in the hydroxyl group. MD results have also predicted that acetic anhydride forms a stronger interaction with cellobiose than with the lignin model, and these findings were in agreement with the DFT results.
Collapse
|
34
|
Chen L, Song Z, Zhi X, Du B. Photoinduced Antimicrobial Activity of Curcumin-Containing Coatings: Molecular Interaction, Stability and Potential Application in Food Decontamination. ACS OMEGA 2020; 5:31044-31054. [PMID: 33324812 PMCID: PMC7726744 DOI: 10.1021/acsomega.0c04065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/26/2020] [Indexed: 06/01/2023]
Abstract
Polyvinyl acetate (PVAc) and curcumin (Cu) were utilized for preparing new protecting PVAc-Cu x (x = 1, 5 and 10) coatings exerting antimicrobial photodynamic activity upon white light irradiation. Toward Salmonella typhimurium or Staphylococcus aureus, the killing efficiency represented the dependence on the Cu concentration and irradiation intensity. Toward S. aureus, the killing efficiency of PVAc-Cu 10 coating reached 93% at an energy density of 72 J/cm2. With the change in storage time of coating, the results implied significant stability of photosterilization efficiency within 60 days. Compared with the control experiment, lower total viable counts (TVCs) and total volatile basic nitrogen (TVB-N) values in fresh meat packaged by PVDC films with PVAc-Cu 10 coatings during storage at 4 °C demonstrated the practicability of the PVAc-Cu x coatings in decontaminating fresh pork. PVAc packed curcumin tightly within polymer chains, thus preventing tautomerization or, more probably, conformational transition, which is advantageous for improving photostability and emission lifetime.
Collapse
Affiliation(s)
- Liwei Chen
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Ziyue Song
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Xiujuan Zhi
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| | - Bin Du
- Beijing Laboratory of Food Quality
and Safety, Beijing Key Laboratory of Agricultural Product Detection
and Control of Spoilage Organisms and Pesticide Residue, Faculty of
Food Science and Engineering, Beijing University
of Agriculture, Beijing 102206, China
| |
Collapse
|
35
|
Ponnuchamy V, Gordobil O, Diaz RH, Sandak A, Sandak J. Fractionation of lignin using organic solvents: A combined experimental and theoretical study. Int J Biol Macromol 2020; 168:792-805. [PMID: 33242547 DOI: 10.1016/j.ijbiomac.2020.11.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Refining of industrial lignin to produce homogeneous fractions is essential for high-value applications. However, the understanding of key interactions between a variety of solvents with lignin polymer is still uncertain. In this work, single-step fractionation of industrial hardwood kraft lignin (HKL) using organic solvents of different polarities - ethanol, acetone, diethyl ether and hexane - was investigated by combining an experimental and theoretical approach. Experimental results revealed that higher polarity solvents (ethanol and acetone) exhibited higher solubility yield compared to moderate and low polarity solvents. The chemical differences between lignin fractions were proven by pyrolysis gas chromatography mass spectrometry and near infrared spectroscopy. Density functional theory (DFT) results indicated that ethanol presented higher interaction energy followed by acetone, diethyl ether and hexane, which was consistent with experimental findings. Hydrogen bond and non-covalent interaction results from DFT demonstrated that the predominant interaction was found for high polarity of ethanol over other solvents and γ-OH in the lignin model is the key site.
Collapse
Affiliation(s)
- Veerapandian Ponnuchamy
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; University of Primorska, Andrej Marušič Institute, Titov trg 4, 6000 Koper, Slovenia.
| | | | - René Herrera Diaz
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; Chemical and Environmental Engineering Department, University of the Basque Country, San Sebastian, Spain
| | - Anna Sandak
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia
| | - Jakub Sandak
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; University of Primorska, Andrej Marušič Institute, Titov trg 4, 6000 Koper, Slovenia
| |
Collapse
|
36
|
Kang Y, Yang Y, Yao X, Liu Y, Ji X, Xin J, Xu J, Dong H, Yan D, He H, Lu X. Weak Bonds Joint Effects Catalyze the Cleavage of Strong C-C Bond of Lignin-Inspired Compounds and Lignin in Air by Ionic Liquids. CHEMSUSCHEM 2020; 13:5945-5953. [PMID: 32964672 DOI: 10.1002/cssc.202001828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Oxidation of lignin to value-added aromatics through selective C-C bond cleavage via metal-free and mild strategies is promising but challenging. It was discovered that the cations of ionic liquids (ILs) could effectively catalyze this kind of strong bond cleavage by forming multiple weak hydrogen bonds, enabling the reaction conducted in air at temperature lower than 373 K without metal-containing catalysts. The cation [CPMim]+ (1-propylronitrile-3-methylimidazolium) afforded the highest efficiency in C-C bond cleavage, in which high yields (>90 %) of oxidative products were achieved. [CPMim]+ could form three ipsilateral hydrogen bonds with the oxygen atom of C=O and ether bonds at both sides of the C-C bond. The weak bonds joint effects could promote adjacent C-H bond cleave to form free radicals and thereby catalyze the fragmentation of the strong C-C. This work opens up an eco-friendly and energy-efficient route for direct valorization of lignin by enhancing IL properties via tuning the cation.
Collapse
Affiliation(s)
- Ying Kang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongqing Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoqian Yao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanrong Liu
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Junli Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huixian Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongxia Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
37
|
The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass. ENERGIES 2020. [DOI: 10.3390/en13184864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lignin is a natural polymer, one that has an abundant and renewable resource in biomass. Due to a tendency towards the use of biochemicals, the efficient utilization of lignin has gained wide attention. The delignification of lignocellulosic biomass makes its fractions (cellulose, hemicellulose, and lignin) susceptible to easier transformation to many different commodities like energy, chemicals, and materials that could be produced using the biorefinery concept. This review gives an overview of the field of lignin separation from lignocellulosic biomass and changes that occur in the biomass during this process, as well as taking a detailed look at the influence of parameters that lead the process of dissolution. According to recent studies, a number of ionic liquids (ILs) have shown a level of potential for industrial scale production in terms of the pretreatment of biomass. ILs are perspective green solvents for pretreatment of lignocellulosic biomass. These properties in ILs enable one to disrupt the complex structure of lignocellulose. In addition, the physicochemical properties of aprotic and protic ionic liquids (PILs) are summarized, with those properties making them suitable solvents for lignocellulose pretreatment which, especially, target lignin. The aim of the paper is to focus on the separation of lignin from lignocellulosic biomass, by keeping all components susceptible for biorefinery processes. The discussion includes interaction mechanisms between lignocellulosic biomass subcomponents and ILs to increase the lignin yield. According to our research, certain PILs have potential for the cost reduction of LC biomass pretreatment on the feasible separation of lignin.
Collapse
|
38
|
Dias RM, Petrin LCG, H. B. Sosa F, da Costa Lopes AM, Coutinho JAP, da Costa MC. Investigation of Kraft Lignin Solubility in Protic Ionic Liquids and Their Aqueous Solutions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rafael M. Dias
- Department of Process and Product Design (DDPP) - School of Chemical Engineering (FEQ), University of Campinas (UNICAMP), Av. Albert Einstein, 500, Campinas, São Paulo 13083-852, Brazil
| | - Lívia C. G. Petrin
- Department of Process and Product Design (DDPP) - School of Chemical Engineering (FEQ), University of Campinas (UNICAMP), Av. Albert Einstein, 500, Campinas, São Paulo 13083-852, Brazil
| | - Filipe H. B. Sosa
- Department of Process and Product Design (DDPP) - School of Chemical Engineering (FEQ), University of Campinas (UNICAMP), Av. Albert Einstein, 500, Campinas, São Paulo 13083-852, Brazil
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - André M. da Costa Lopes
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana C. da Costa
- Department of Process and Product Design (DDPP) - School of Chemical Engineering (FEQ), University of Campinas (UNICAMP), Av. Albert Einstein, 500, Campinas, São Paulo 13083-852, Brazil
| |
Collapse
|
39
|
Wang J, Qian Y, Li L, Qiu X. Atomic Force Microscopy and Molecular Dynamics Simulations for Study of Lignin Solution Self-Assembly Mechanisms in Organic-Aqueous Solvent Mixtures. CHEMSUSCHEM 2020; 13:4420-4427. [PMID: 31951671 DOI: 10.1002/cssc.201903132] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/22/2019] [Indexed: 05/19/2023]
Abstract
Lignin-based nanomaterials fabricated by solution self-assembly in organic-aqueous solvent mixtures are among the most attractive biomass-derived products. To accurately control the structure, size, and properties of lignin-based nanomaterials, it is important to achieve fundamental understanding of its dissolution and aggregation mechanisms. In this work, atomic force microscopy (AFM) and molecular dynamics (MD) simulations are employed to explore the dissolution and aggregation behavior of enzymatic hydrolysis lignin (EHL) in different organic-aqueous solvent mixtures at molecular scale. EHL was found to dissolve well in appropriate organic-aqueous solvent mixtures, such as acetone-water mixture with a volume ratio of 7:3, whereas it aggregated in pure water, ethanol, acetone, and tetrahydrofuran. The interactions between the EHL-coated AFM probe and the substrate were 1.21±0.18 and 0.75±0.35 mN m-1 in water and acetone, respectively. In comparison, the interaction decreased to 0.15±0.08 mN m-1 in acetone-water mixture (7:3 v/v). MD simulations further indicate that the hydrophobic skeleton and hydrophilic groups of lignin could be solvated by acetone and water molecules, respectively, which significantly promoted its dissolution. Conversely, only the hydrophobic skeleton or the hydrophilic groups were solvated in organic solvent or water, respectively, inducing serious aggregation of lignin.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Yong Qian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Libo Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
40
|
Kramer CAC, da Silva ARL, de Carvalho LS. Influence of phenylpropanoid units of lignin and its oxidized derivatives on the stability and βO4 binding properties: DFT and QTAIM approach. Org Biomol Chem 2020; 18:5897-5905. [PMID: 32685944 DOI: 10.1039/d0ob01171a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obtaining lignin products is currently one of the great challenges, mainly because of its stable and poorly reactive structure. This work used a DFT and QTAIM approach, seeking to understand the influence of lignin structure on the reactivity and βO4 binding properties of 18 model structures. The computational modeling used confirmed that lignins derived from more oxygenated monomers have a smaller HOMO-LUMO gap, and therefore are less stable. In the developed study, the replacement of alpha hydroxyl with a carbonyl was able to abruptly change the electron topology, reducing binding energy in βO4 indicating which SHOX model is more susceptible to breakage.
Collapse
Affiliation(s)
- Carlos Augusto Cabral Kramer
- Energy Technology Laboratory, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59075-000, Brazil.
| | - Amison Rick Lopes da Silva
- Theory Chemistry Group, Analytical Chemistry and Chemical Physics Department, Federal University of Ceará, Fortaleza, Ceará 60455-900, Brazil.
| | - Luciene Santos de Carvalho
- Energy Technology Laboratory, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59075-000, Brazil
| |
Collapse
|
41
|
The molecular design and experimental study on the catalytic cleavage of linkages in lignin with binuclear ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Matveevskaya V, Pavlov DI, Sukhikh TS, Gushchin AL, Ivanov AY, Tennikova TB, Sharoyko VV, Baykov SV, Benassi E, Potapov AS. Arene-Ruthenium(II) Complexes Containing 11 H-Indeno[1,2- b]quinoxalin-11-one Derivatives and Tryptanthrin-6-oxime: Synthesis, Characterization, Cytotoxicity, and Catalytic Transfer Hydrogenation of Aryl Ketones. ACS OMEGA 2020; 5:11167-11179. [PMID: 32455240 PMCID: PMC7241045 DOI: 10.1021/acsomega.0c01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 05/05/2023]
Abstract
A series of novel mono- and binuclear arene-ruthenium(II) complexes [(p-cym)Ru(L)Cl] containing 11H-indeno[1,2-b]quinoxalin-11-one derivatives or tryptanthrin-6-oxime were synthesized and characterized by X-ray crystallography, IR, NMR spectroscopy, cyclic voltammetry, and elemental analysis. Theoretical calculations invoking singlet state geometry optimization, solvation effects, and noncovalent interactions were done using density functional theory (DFT). DFT calculations were also applied to evaluate the electronic properties, and time-dependent DFT was applied to clarify experimental UV-vis results. Cytotoxicity for cancerous and noncancerous human cell lines was evaluated with cell viability MTT assay. Complexes demonstrated a moderate cytotoxic effect toward cancerous human cell line PANC-1. The catalytic activity of the complexes was evaluated in transfer hydrogenation of aryl ketones. All complexes exhibited good catalytic activity and functional group tolerance.
Collapse
Affiliation(s)
- Vladislava
V. Matveevskaya
- Kizhner
Research Center, National Research Tomsk
Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Dmitry I. Pavlov
- Kizhner
Research Center, National Research Tomsk
Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Taisiya S. Sukhikh
- Nikolaev
Institute of Inorganic Chemistry, Siberian
Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Artem L. Gushchin
- Nikolaev
Institute of Inorganic Chemistry, Siberian
Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Alexander Yu. Ivanov
- Center
for Magnetic Resonance, Saint Petersburg
State University, 26
Universitetskii Avenue, 198504 Peterhof, Russia
| | - Tatiana B. Tennikova
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii Avenue, 198504 Peterhof, Russia
| | - Vladimir V. Sharoyko
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii Avenue, 198504 Peterhof, Russia
| | - Sergey V. Baykov
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii Avenue, 198504 Peterhof, Russia
| | - Enrico Benassi
- Department
of Chemistry, Shihezi University, 280N 4th Road, 832000 Shihezi, Xinjiang, PR China
| | - Andrei S. Potapov
- Nikolaev
Institute of Inorganic Chemistry, Siberian
Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| |
Collapse
|
43
|
Shahmoradi A, Talebibahmanbigloo N, Javidparvar A, Bahlakeh G, Ramezanzadeh B. Studying the adsorption/inhibition impact of the cellulose and lignin compounds extracted from agricultural waste on the mild steel corrosion in HCl solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112751] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials–A review. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112417] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Dissolution behavior of microcrystalline cellulose in DBU-based deep eutectic solvents: Insights from spectroscopic investigation and quantum chemical calculations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Ju Z, Xiao W, Yao X, Tan X, Simmons BA, Sale KL, Sun N. Theoretical study on the microscopic mechanism of lignin solubilization in Keggin-type polyoxometalate ionic liquids. Phys Chem Chem Phys 2020; 22:2878-2886. [PMID: 31950118 DOI: 10.1039/c9cp05339e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Keggin-type polyoxometalate derived ionic liquids (POM-ILs) have recently been presented as effective solvent systems for biomass delignification. To investigate the mechanism of lignin dissolution in POM-ILs, the system involving POM-IL ([C4C1Im]3[PW12O40]) and guaiacyl glycerol-β-guaiacyl ether (GGE), which contains a β-O-4 bond (the most dominant bond moiety in lignin), was studied using quantum mechanical calculations and molecular dynamics simulations. These studies show that more stable POM-IL structures are formed when [C4C1Im]+ is anchored in the connecting four terminal oxygen region of the [PW12O40]3- surface. The cations in POM-ILs appear to stabilize the geometry by offering strong and positively charged sites, and the POM anion is a good H-bond acceptor. Calculations of POM-IL interacting with GGE show the POM anion interacts strongly with GGE through many H-bonds and π-π interactions which are the main interactions between the POM-IL anion and GGE and are strong enough to force GGE into highly bent conformations. These simulations provide fundamental models of the dissolution mechanism of lignin by POM-IL, which is promoted by strong interactions of the POM-IL anion with lignin.
Collapse
Affiliation(s)
- Zhaoyang Ju
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, China and Advanced Biofuel and Bioproducts Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, Berkeley, CA, USA. and Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Weihua Xiao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, China
| | - Xiaoqian Yao
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xin Tan
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Blake A Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenneth L Sale
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. and Sandia National Laboratories, Livermore, CA, USA
| | - Ning Sun
- Advanced Biofuel and Bioproducts Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, Berkeley, CA, USA. and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
47
|
Ju Z, Yao X, Luo Z, Cao M, Xiao W. Theoretical studies on the noncovalent interaction of fructose and functionalized ionic liquids. Carbohydr Res 2019; 487:107882. [PMID: 31812877 DOI: 10.1016/j.carres.2019.107882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 10/25/2022]
Abstract
As a new kind of solvent and catalyst, the functionalized ionic liquids (ILs) had been successfully used in the conversion of fructose to high value-added biofuels. In this work, a detailed density functional theory (DFT) calculation had been carried out to investigate the interactions of fructose-ILs system. To study the effect of different anions and cations on the interaction with fructose, 25 different kinds of functionalized imidazolium-based ILs were calculated by using M06-2X-D3/6-311 + G** level. It was found that the interaction energies of fructose-anions were higher than those of the fructose-cations. The interaction will become stronger for the fructose and ILs when the alkyl chain of imidazolium-based cations was replaced with a functional group (COOH, OH or HSO3). However, when the length of the alkyl chain increased, it will result in a decrease in interaction energy due to the steric effect. In the anions (Y-SO3), the greater electronegativity of SO3 will lead to strong interaction with fructose. Also, this work simulates the interaction of fructose and ion pairs, with the results showing that hydrogen bonds (H-bonds) and π-stacking play an important role in the system. The present study provided basic aids to understand the structures and noncovalent interaction of fructose and functionalized ILs as well as the microscopic mechanism of fructose dissolution in the ILs.
Collapse
Affiliation(s)
- Zhaoyang Ju
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, PR China; CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaoqian Yao
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Zhifan Luo
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing, 102600, PR China
| | - Meijuan Cao
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing, 102600, PR China
| | - Weihua Xiao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
48
|
Zhang T, Zhang Y, Wang Y, Huo F, Li Z, Zeng Q, He H, Li X. Theoretical Insights Into the Depolymerization Mechanism of Lignin to Methyl p-hydroxycinnamate by [Bmim][FeCl 4] Ionic Liquid. Front Chem 2019; 7:446. [PMID: 31275927 PMCID: PMC6591258 DOI: 10.3389/fchem.2019.00446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022] Open
Abstract
Depolymerization of lignin into valuable aromatic compounds is an important starting point for its valorization strategies, which requires the cleavage of C-O and C-C bonds between lignin monomer units. The catalytic cleavage of these bonds is still difficult and challenging. Our previous experimental investigation (Green Chem., 2018, 20: 3743) has shown that methyl p-hydroxycinnamate (MPC) can be produced from molecular tailoring of H unit in lignin by the cleavage of the γ-O ester bond. In this study, the mechanism of [Bmim][FeCl4]-catalyzed depolymerization of lignin was investigated by using the density functional theory (DFT) method. The results reveal that [FeCl4]- anion of the catalyst plays a decisive role in the whole catalytic process, where two possible activation modes including three different potential reaction pathways can realize the depolymerization of lignin model compound. The calculated overall barriers of the catalytic conversion along these potential routes show that the third potential pathway, i.e., methanol firstly activated by [Bmim][FeCl4], has the most probability with the lowest energy barrier, while the second pathway is excluded because the energy barrier is too high. Also, the results illustrate that the solvent effect is beneficial to the reduction of the relative energy for the reaction to form the transition states. Hence, the obtained molecular level information can identify the favorable conversion process catalyzed by metallic ionic liquids to a certain extent, and it is desirable to enhance the utilization of biomass as a ubiquitous feedstock.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhangmin Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Qiang Zeng
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuehui Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
49
|
Density functional theory study towards investigating the adsorption properties of the γ-Fe2O3 nanoparticles as a nanocarrier for delivery of Flutamide anticancer drug. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00056-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Zhang Y, Huo F, Wang Y, Xia Y, Tan X, Zhang S, He H. Theoretical Elucidation of β-O-4 Bond Cleavage of Lignin Model Compound Promoted by Sulfonic Acid-Functionalized Ionic Liquid. Front Chem 2019; 7:78. [PMID: 30828575 PMCID: PMC6384239 DOI: 10.3389/fchem.2019.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/28/2019] [Indexed: 12/04/2022] Open
Abstract
While the depolymerization of lignin to chemicals catalyzed by ionic liquids has attracted significant attention, the relevant molecular mechanism, especially the cleavage of specific bonds related to efficient depolymerization, still needs to be deeply understood for the complexity of this natural aromatic polymer. This work presents a detailed understanding of the cleavage of the most abundant β-O-4 bond in the model system, guaiacylglycerol β-guaiacyl ether, by a Brønsted acidic IL (1-methyl-3-(propyl-3-sulfonate) imidazolium bisulfate ([C3SO3Hmim][HSO4]) using density functional theory calculation and molecular dynamics simulation. It has been found that [C3SO3Hmim][HSO4] generates zwitterion/H2SO4via proton transfer with an energy barrier of 0.38 kcal/mol, which plays a dominant role in the lignin depolymerization process. Subsequently, the reaction can be carried out via three potential pathways, including (1) the dehydration of α-C-OH, (2) dehydration of γ-C-OH, and (3) the protonation of β-O. The electrophilic attack of H2SO4 and the hydrogen-bonding interaction between GG and zwitterion are the two most important factors to promote the depolymerization reaction. In all steps, the dehydration of α-C-OH route is computed to be favored for the experiment. The relatively higher energy barrier for β-O-4 bond dissociation among these reaction steps is attributed to the hindrance of the self-assembled clusters of GG in the mixed system. Further, the dense distribution of H13([C3SO3Hmim]) surrounding O21(GG), indicated by sharp peaks in RDFs, reveals that -SO3H in cations plays a substantial role in solvating lignin. Hopefully, this work will demonstrate new insights into lignin depolymerization by functionalized ILs in biomass conversion chemistry.
Collapse
Affiliation(s)
- Yaqin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yu Xia
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xin Tan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|