1
|
Guo Z, Bai G, Zhao W, Yang L, Du T, Zhuo K, Wang J, Wang Y. Activation and Inhibition of Isomerization of a Cationic Azobenzene Surfactant in the Large Void Space of Polyglycerol Dendron Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4015-4025. [PMID: 36897316 DOI: 10.1021/acs.langmuir.2c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Owing to the unique geometric structure of dendritic amphiphiles with voluminous dendrons, their micelles can harbor a large void space, which provides a new research focus and approach for micellar functionalization. In this work, we used the void space to construct a UV responsive micelle system of the mixed dendritic amphiphile (C12-(G3)2) and cationic azobenzene surfactant (C4AzoTAB). The synthesized C12-(G3)2 that possesses double third generation polyglycerol (PG) dendrons and a single alkyl chain is expected to highlight the large void space within the inside of the micelles. Thus, the aims of this work are to achieve the isomerization of C4AzoTAB in situ and to deeply understand the intermolecular interaction in the mixed micelles. The effect of the large void room with a wall decorated with the ether oxygen atoms on the isomerization of C4AzoTAB was studied by isomerization kinetics, conductivity measurements, isothermal titration calorimetry (ITC), and 1H NMR and 2D NOESY spectroscopies. The isomerization behavior of C4AzoTAB in C12-(G3)2 micelles was presented in terms of its kinetic constant, counterionic association, interaction enthalpy, and position and orientation of C4AzoTAB. The results of NMR and conductivity show that the quaternary ammonium group of C4AzoTAB situates on the surface of the mixed micelles with C12-(G3)2 both before and after UV-irradiation, while the position of azobenzene group in C12-(G3)2 micelles depends on its conformation. The C12-(G3)2 micelles can inhibit the UV response of the trans-isomer and activate the thermal relaxation of the cis-isomer, which has a potential application in the field of light-controlled smart nanocarriers.
Collapse
Affiliation(s)
- Zhijun Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenqi Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ling Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tingru Du
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
2
|
Guo Z, Bai G, Zhan X, Zhuo K, Wang J, Wang Y. Supramolecular Vector/Drug Coassemblies of Polyglycerol Dendrons and Rutin Enhance the pH Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3392-3402. [PMID: 35266719 DOI: 10.1021/acs.langmuir.1c03131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A coassembly strategy for a supramolecular vector/drug was proposed with a biocompatible ternary dodecyl-bi(third-generation polyglycerol (PG) dendrons) (C12-(G3)2) amphiphile, dodecyl sulfobetaine (SB3-12) surfactant, and poorly water-soluble drug rutin. C12-(G3)2 and rutin will mutually enhance their pH response by protonation and deprotonation of dendritic PG and rutin's ionization as the pH changes from the acidic gastric lumen to the weakly alkaline intestine. SB3-12 may increase the payload and bring about sustained release for rutin by intermolecular interactions. Self-assembling behaviors of C12-(G3)2, SB3-12, sodium dodecyl sulfate (SDS), and dodecyl trimethylammonium bromide (DTAB) and their hybrids with rutin were characterized by UV-vis spectroscopy, a fluorescence probe, and 1H NMR. UV-vis and 1H NMR were used to identify the position and orientation of rutin in the vectors. The functions of the vector/drug were confirmed by measuring the solubility and in vitro release of rutin. The ternary coassembling vector/drug easily imparted functions of pH-responsive and sustained release without complex synthetic processes. The nanocaves framed by PG dendrons in the micelles provide pH-responsive compartments for rutin and SB3-12 in the supramolecular vector/drug anchors that accommodate rutin by weak interactions. The finely matched supramolecular vector/drug coassemblies exhibit the pH-responsive function for a potential application in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhijun Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xize Zhan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
3
|
Kumar A, Singh M, Panda AK, Tyagi YK. Amide-Linked Dendron-based Amphiphiles: A class of pH sensitive and highly biocompatible drug carrier for sustained drug release. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1975280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashwani Kumar
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Mamta Singh
- Product Development Cell- II, National Institute of Immunology (NII), Aruna Asaf Ali Marg, India
| | - Amulya Kumar Panda
- Product Development Cell- II, National Institute of Immunology (NII), Aruna Asaf Ali Marg, India
| | - Yogesh Kumar Tyagi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, India
| |
Collapse
|
4
|
Krishna, Parshad B, Achazi K, Böttcher C, Haag R, Sharma SK. Newer Non-ionic A 2 B 2 -Type Enzyme-Responsive Amphiphiles for Drug Delivery. ChemMedChem 2021; 16:1457-1466. [PMID: 33559331 DOI: 10.1002/cmdc.202100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Indexed: 12/29/2022]
Abstract
A new series of nonionic gemini amphiphiles have been synthesized in a multi-step chemoenzymatic approach by using a novel A2 B2 -type central core consisting of conjugating glycerol and propargyl bromide on 5-hydroxy isophthalic acid. A pair of hydrophilic monomethoxy poly(ethylene glycol) (mPEG) and hydrophobic linear alkyl chains (C12 /C15 ) were then added to the core to obtain amphiphilic architectures. The aggregation tendency in aqueous media was studied by dynamic light scattering, fluorescence spectroscopy and cryogenic transmission electron microscopy. The nanotransport potential of the amphiphiles was studied for model hydrophobic guests, that is, the dye Nile Red and the drug Nimodipine by using UV/Vis and fluorescence spectroscopy. Evaluation of the viability of amphiphile-treated A549 cells showed them to be well tolerated up to the concentrations studied. Being ester based, these amphiphiles exhibit stimuli-responsive sensitivity towards esterases, and a rupture of amphiphilic architecture was observed in the presence of immobilized Candida antarctica lipase (Novozym 435), thus facilitating release of the encapsulated guest from the aggregate.
Collapse
Affiliation(s)
- Krishna
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Badri Parshad
- Department of Chemistry, University of Delhi, Delhi, 110007, India.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
5
|
Baltin ME, Sabirova DE, Kiseleva EI, Kamalov MI, Abdullin TI, Petrova NV, Ahmetov NF, Sachenkov OA, Baltina TV, Lavrov IA. Comparison of systemic and localized carrier-mediated delivery of methylprednisolone succinate for treatment of acute spinal cord injury. Exp Brain Res 2021; 239:627-638. [PMID: 33388811 DOI: 10.1007/s00221-020-05974-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Localized carrier-mediated administration of drugs is a promising approach to treatment of acute phase of spinal cord injury (SCI) as it allows enhanced and/or sustained drug delivery to damaged tissues along with minimization of systemic side effects. We studied the effect of locally applied self-assembling micellar formulation of methylprednisolone succinate (MPS) with trifunctional block copolymer of ethylene oxide and propylene oxide (TBC) on functional recovery and tissue drug content after SCI in rats in comparison with local and systemic administration of MPS alone. Variations in the amplitude of motor evoked responses in the hindlimb muscles induced by epidural stimulation during acute phase of SCI and restoration of movements during chronic period after local vs. systemic application of MPS were evaluated in this study. Results demonstrate that local delivery of MPS in combination with TBC facilitates spinal cord sensorimotor circuitry, increasing the excitability. In addition, this formulation was found to be more effective in improvement of locomotion after SCI compared to systemic administration. LC-MS/MS data shows that the use of TBC carrier increases the glucocorticoid content in treated spinal cord by more than four times over other modes of treatment. The results of this study demonstrate that the local treatment of acute SCI with MPS in the form of mixed micelles with TBC can provide improved therapeutic outcome by promoting drug accumulation and functional restoration of the spinal cord.
Collapse
Affiliation(s)
- Maxim E Baltin
- Rehabilitation in Movement Disorders Laboratory, Kazan Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Diana E Sabirova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Elvira I Kiseleva
- Rehabilitation in Movement Disorders Laboratory, Kazan Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Marat I Kamalov
- Laboratory of Bioactive Polymers and Peptides, Institute of Fundamental Medicine and Biology, Kazan Federal University, 9 Parizhskoy Kommuny Str, Kazan, 420021, Russian Federation
| | - Timur I Abdullin
- Laboratory of Bioactive Polymers and Peptides, Institute of Fundamental Medicine and Biology, Kazan Federal University, 9 Parizhskoy Kommuny Str, Kazan, 420021, Russian Federation
| | - Natalia V Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, Kazan, 420111, Russian Federation
| | - Nafis F Ahmetov
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Oscar A Sachenkov
- Department of Theoretical Mechanics, Institute of Mathematics and Mechanics, Kazan Federal University, 18 Kremlyovskaya Str, Kazan, 420008, Russian Federation
| | - Tatiana V Baltina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation.
| | - Igor A Lavrov
- Rehabilitation in Movement Disorders Laboratory, Kazan Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| |
Collapse
|
6
|
Salih M, Walvekar P, Omolo CA, Elrashedy AA, Devnarain N, Fasiku V, Waddad AY, Mocktar C, Govender T. A self-assembled polymer therapeutic for simultaneously enhancing solubility and antimicrobial activity and lowering serum albumin binding of fusidic acid. J Biomol Struct Dyn 2020; 39:6567-6584. [PMID: 32772814 DOI: 10.1080/07391102.2020.1803140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The global antimicrobial resistance crisis has prompted worldwide efforts to develop new and more efficient antimicrobial compounds, as well as to develop new drug delivery strategies and targeting mechanisms. This study aimed to synthesize a novel polyethylene glycol-fusidic acid (PEG-FA) conjugate for self-assembly into nano-sized structures and explore its potential for simultaneously enhancing aqueous solubility and antibacterial activity of FA. In addition, the ability of PEG-FA to bind to HSA with lower affinity than FA is also investigated. Haemolysis and in vitro cytotoxicity studies confirmed superior biosafety of the novel PEG-FA compared to FA. The water solubility of FA after PEG conjugation was increased by 25-fold compared to the bare drug. PEG-FA nanoparticles displayed particle size, polydispersity index and zeta potential of 149.3 ± 0.21 nm, 0.267 ± 0.01 and 5.97 ± 1.03 mV, respectively. Morphology studies using high-resolution transmission electron microscope revealed a homogenous spherical shape of the PEG-FA nanoparticles. In silico studies showed that Van der Waals forces facilitated PEG-FA self-assembly. HSA binding studies showed that PEG-FA had very weak or no interaction with HSA using in silico molecular docking (-2.93 kcal/mol) and microscale thermophoresis (Kd=14999 ± 1.36 µM), which may prevent bilirubin displacement. Conjugation with PEG did not inhibit the antibacterial activity of FA but rather enhanced it by 2.5-fold against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, compared to the bare FA. These results show that PEG-FA can simultaneously enhance solubility and antibacterial activity of FA, whilst also reducing binding of HSA to decrease its side effects.
Collapse
Affiliation(s)
- Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pavan Walvekar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Ahmed A Elrashedy
- School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayman Y Waddad
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Sun Z, Xi L, Zheng K, Zhang Z, Baldridge KK, Olson MA. Classical and non-classical melatonin receptor agonist-directed micellization of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2020; 16:4788-4799. [PMID: 32400822 DOI: 10.1039/d0sm00424c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The addition of molecular recognition units into structures of amphiphiles is a means by which soft matter capable of undergoing template-directed micellization can be obtained. These supramolecular amphiphiles can bind with molecular templates using non-covalent bonding interactions, forming host-guest complexes that hold the amphiphiles together as they undergo micellization. In most cases, such templates are synthesized and designed for a specific molecular recognition motif. It is not clear, however, to what extent these types of amphiphile systems are responsive to members of a biologically derived class of molecular targets, for example, melatonin receptor agonists and their numerous isosteres. Herein, we describe the template-directed micellization and arrangement at the air-water interface of a bipyridinium-based gemini surfactant, driven by the influence of donor-acceptor CT interactions with a series of bioactive classical and non-classical melatonin isosteres. Under the conditions of templation by either 5-methoxytryptophol, N-acetylserotonin, N-acetyltryptamine, or the pharmaceutical agent agomelatine, favorable Gibbs free energies of micellization were observed with decreases in CMC by up to 70%, and concomitant increases of 28% in surface pressure, and decreases of 20% in contact angle versus untemplated solutions. Solid state thermochromic transition temperatures for inkjet-printed patterns of the templated amphiphile solutions were inversely correlated with trends observed for their respective CMCs, and exhibited no correlation to their binding constants. These findings contend for the generalizable use of melatonin receptor agonists as targets and/or templates for chemical systems, which rely on π-stacking donor-acceptor CT interactions in water to facilitate the actions of binding, sequestration, or template-directed self-assembly.
Collapse
Affiliation(s)
- Zhimin Sun
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Lihui Xi
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kai Zheng
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Zhao Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kim K Baldridge
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| |
Collapse
|
8
|
Omolo CA, Megrab NA, Kalhapure RS, Agrawal N, Jadhav M, Mocktar C, Rambharose S, Maduray K, Nkambule B, Govender T. Liposomes with pH responsive 'on and off' switches for targeted and intracellular delivery of antibiotics. J Liposome Res 2019; 31:45-63. [PMID: 31663407 DOI: 10.1080/08982104.2019.1686517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
pH responsive drug delivery systems are one of the new strategies to address the spread of bacterial resistance to currently used antibiotics. The aim of this study was to formulate liposomes with 'On' and 'Off'' pH responsive switches for infection site targeting. The vancomycin (VCM) loaded liposomes had sizes below 100 nm, at pH 7.4. The QL-liposomes had a negative zeta potential at pH 7.4 that switched to a positive charge at acidic pH. VCM release from the liposome was quicker at pH 6 than pH 7.4. The OA-QL-liposome showed 4-fold lower MIC at pH 7.4 and 8- and 16-fold lower at pH 6.0 against both MSSA and MRSA compared to the bare drug. OA-QL liposome had a 1266.67- and 704.33-fold reduction in the intracellular infection for TPH-1 macrophage and HEK293 cells respectively. In vivo studies showed that the amount of MRSA recovered from mice treated with formulations was 189.67 and 6.33-fold lower than the untreated and bare VCM treated mice respectively. MD simulation of the QL lipid with the phosphatidylcholine membrane (POPC) showed spontaneous binding of the lipid to the bilayer membrane both electrostatic and Van der Waals interactions contributed to the binding. These studies demonstrated that the 'On' and 'Off' pH responsive liposomes enhanced the activity targeted and intracellular delivery VCM.
Collapse
Affiliation(s)
- Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nagia A Megrab
- Department of Pharmaceutics and Industrial Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Kaminee Maduray
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MDF. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int J Mol Sci 2019; 20:E2747. [PMID: 31167476 PMCID: PMC6600223 DOI: 10.3390/ijms20112747] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Maria de Fatima Pina
- Medicines and Healthcare Regulatory Products Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, UK.
| |
Collapse
|
10
|
Taraban MB, Deredge DJ, Smith ME, Briggs KT, Feng Y, Li Y, Jiang ZX, Wintrode PL, Yu YB. Conformational transition of a non-associative fluorinated amphiphile in aqueous solution. II. Conformational transition vs. supramolecular assembly. RSC Adv 2019; 9:1956-1966. [PMID: 35516151 PMCID: PMC9059749 DOI: 10.1039/c8ra08795d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Unlike many known amphiphiles, the fluorinated amphiphilic dendrimer studied in this work demonstrated a concentration-dependent conformational transition rather than micellization or assembly. Hydrophobic and hydrophilic interactions with water were suggested as the most probable driving force of this transition. This assumption was consistent with the observed 19F chemical shift changes of the dendrimer compared to a known micelle-forming fluorinated amphiphile. Since water is an important factor in the process, trends of the concentration-dependent changes in water proton transverse relaxation rate served as an indicator of structural changes and/or supramolecular assembly. The conformational transition process was also confirmed by ion-mobility mass-spectrometry. We suggested that structural features, namely, steric hindrances, prevented the micellization/assembly of the dendrimer of this study. This conclusion might inform the approach to develop novel unconventional amphiphiles.
Collapse
Affiliation(s)
- Marc B Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Margaret E Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Katharine T Briggs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yue Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yu Li
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Zhong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| |
Collapse
|
11
|
Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin. Int J Pharm 2018; 550:149-159. [DOI: 10.1016/j.ijpharm.2018.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
|
12
|
Omolo CA, Kalhapure RS, Agrawal N, Rambharose S, Mocktar C, Govender T. Formulation and Molecular Dynamics Simulations of a Fusidic Acid Nanosuspension for Simultaneously Enhancing Solubility and Antibacterial Activity. Mol Pharm 2018; 15:3512-3526. [PMID: 29953816 DOI: 10.1021/acs.molpharmaceut.8b00505] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to formulate a nanosuspension (FA-NS) of fusidic acid (FA) to enhance its aqueous solubility and antibacterial activity. The nanosuspension was characterized using various in vitro, in silico, and in vivo techniques. The size, polydispersity index, and zeta potential of the optimized FA-NS were 265 ± 2.25 nm, 0.158 ± 0.026, and -16.9 ± 0.794 mV, respectively. The molecular dynamics simulation of FA and Poloxamer-188 showed an interaction and binding energy of -74.42 kJ/mol and -49.764 ± 1.298 kJ/mol, respectively, with van der Waals interactions playing a major role in the spontaneous binding. There was an 8-fold increase in the solubility of FA in a nanosuspension compared to the bare drug. The MTT assays showed a cell viability of 75-100% confirming the nontoxic nature of FA-NS. In vitro antibacterial activity revealed a 16- and 18-fold enhanced activity against Staphylococcus aureus (SA) and methicillin-resistant SA (MRSA), respectively, when compared to bare FA. Flowcytometry showed that MRSA cells treated with FA-NS had almost twice the percentage of dead bacteria in the population, despite having an 8-fold lower MIC in comparison to the bare drug. The in vivo skin-infected mice showed a 76-fold reduction in the MRSA load for the FA-NS treated group compared to that of the bare FA. These results show that the nanosuspension of antibiotics can enhance their solubility and antibacterial activity simultaneously.
Collapse
Affiliation(s)
- Calvin A Omolo
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa.,School of Pharmacy , The University of Texas at El Paso , 500 W. University Avenue , El Paso , Texas 79968 , United States
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa.,Division of Emergency Medicine, Department of Surgery , University of Cape Town , Cape Town 7700 , South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences , College of Health Sciences, University of KwaZulu-Natal , Private Bag , X54001 Durban , South Africa
| |
Collapse
|
13
|
Huang D, Wu D. Biodegradable dendrimers for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:713-727. [PMID: 29853143 DOI: 10.1016/j.msec.2018.03.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 01/09/2023]
Abstract
Dendrimers, as a type of artificial polymers with unique structural features, have been extensively explored for their applications in biomedical fields, especially in drug delivery. However, one important concern about the most commonly used dendrimers exists - the nondegradability, which may cause side effects induced by the accumulation of synthetic polymers in cells or tissues. Therefore, biodegradable dendrimers incorporating biodegradability with merits of dendrimers such as well-defined architectures, copious internal cavities and surface functionalities, are much more promising for developing novel nontoxic drug carriers. Herein, we review the recent advances in design and synthesis of biodegradable dendrimers, as well as their applications in fabricating drug delivery systems, with the aim to provide researchers in the related fields a good understanding of biodegradable dendrimers for drug delivery.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|