1
|
Palanisamy S, Wu HM, Lee LY, Yuan SSF, Wang YM. Fabrication of 3D Amino-Functionalized Metal-Organic Framework on Porous Nickel Foam Skeleton to Combinate Follicle Stimulating Hormone Antibody for Specific Recognition of Follicle-Stimulating Hormone. JACS AU 2021; 1:2249-2260. [PMID: 34977896 PMCID: PMC8715490 DOI: 10.1021/jacsau.1c00371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 05/19/2023]
Abstract
In this study, a superficial and highly efficient hydrothermal synthesis method was developed for the in situ growth of amine-functionalized iron containing metal-organic frameworks (H2N-Fe-MIL-101 MOFs) on porous nickel foam (NicF) skeletons (H2N-Fe-MIL-101/NicF). The uniform decoration of the H2N-Fe-MIL-101 nanosheets thus generated on NicF was immobilized with follicle-stimulating hormone (FSH) antibody (Ab-FSH) to detect FSH antigen. In the present work, the Ab-FSH tagged H2N-Fe-MIL-101/NicF electrode was first applied as an immunosensor for the recognition of FSH, electrochemically. With all of the special characteristics, this material demonstrated superior specific recognition and sensitivity for FSH with an estimated detection limit (LOD) of 11.6 and 11.5 fg/mL for buffered and serum solutions, respectively. The availability of specific functional groups on MOFs makes them an interesting choice for exploring molecular sensing applications utilizing Ab-FSH tagged biomolecules.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, Center for Intelligent Drug Systems and Smart
Bio-devices (IDSB), National
Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Hsu-Min Wu
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, Center for Intelligent Drug Systems and Smart
Bio-devices (IDSB), National
Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Li-Yun Lee
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, Center for Intelligent Drug Systems and Smart
Bio-devices (IDSB), National
Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Shyng-Shiou F. Yuan
- Translational
Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department
of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty
and College of Medicine, Kaohsiung Medical
University, Kaohsiung 807, Taiwan
| | - Yun-Ming Wang
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, Center for Intelligent Drug Systems and Smart
Bio-devices (IDSB), National
Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
- Department
of Biomedical Science and Environmental Biology, School of Dentistry,
Center for Cancer Research, Kaohsiung Medical
University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Javeed R, Hussain D, Jabeen F, Sajid MS, Fatima B, Ashiq MN, Najam-Ul-Haq M. Apo-H (beta-2-glycoprotein) intact N-glycan analysis by MALDI-TOF-MS using sialic acid derivatization. Anal Bioanal Chem 2021; 413:7441-7449. [PMID: 34686894 DOI: 10.1007/s00216-021-03701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Apo-H is a plasma glycoprotein. Nearly 19% of the molecular weight of this protein is composed of glycans. Up- and down-regulation and structural changes in protein glycans provide diagnostic value for disease detection. Here, an efficient, sensitive, and optimized method is developed for Apo-H N-glycans analysis by MALDI-TOF-MS in positive mode. This bioanalytical method includes sample preparation, sample purification, and detection. An Apo-H enrichment method is developed using standard proteins by anti-Apo-H beads followed by enrichment from plasma samples. SDS-PAGE confirms the Apo-H protein enrichment, which is further verified by LC-MS/MS analysis. The lower ionization efficiency of sialylated glycan hampers their analysis by MALDI-MS. For this, stabilization of sialic acids is done by selective derivatization of carboxyl groups to differentiate between α(2,3)- and α(2,6)-linked sialic acids. Glycans are further purified by HILIC-SPE and analyzed by MALDI-MS. Several branched bi- and tri-antennary glycans with fucosylation and sialylation are identified. The reproducibility of the developed method is tested by analyzing multiple replicates of human plasma, where the same glycans are consistently identified. This method could be applied for the Apo-H glycan profiling of large clinical cohorts for diagnostic purposes.
Collapse
Affiliation(s)
- Rabia Javeed
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
3
|
Ali MM, Hussain D, Tang Y, Sun X, Shen Z, Zhang F, Du Z. Boronoisophthalic acid as a novel affinity ligand for the selective capture and release of glycoproteins near physiological pH. Talanta 2021; 225:121896. [PMID: 33592691 DOI: 10.1016/j.talanta.2020.121896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Boronic acid-based affinity materials have gained tremendous attention for the selective separation and recognition of cis-diol containing biomolecules. But often, these boronate affinity materials are stuck to some serious issues like high binding pH and weak affinity, especially in the case of glycoproteins. Here in this study, we used 5-boronoisophthlic acid as a novel affinity ligand for the selective capture and release of glycoproteins. The pKa value of 5-boronoisophthalic acid is investigated to be 7.8 which is just closed to physiological pH and is ideally suitable for the fast binding and elution kinetics of glycoproteins to avoid their degradation and deactivation. The affinity ligand is attached to the surface of polymer support using branched polyethyleneimine (PEI) which enhances the binding strength as it has multiple amine groups available for the attachment of 5-boronoisophthalic for synergistic interactions. The resulting affinity material is characterized and packed in a micropipette-tip using hydrophilic melamine foam as a frit to make the separation process smooth, simple, reliable, and robust. This boronic acid-based affinity tip exhibits binding constants for model glycoproteins in the range of 10-6-10-7 M, binding capacities in the range of 0.662 μM/g, and selectivity up to 1:1000 (HRP to BSA) under optimized extraction conditions. Finally, the boronic-based affinity tip is successfully applied to selectively capture the glycoproteins from the human milk sample, especially lactoferrin which is highly important in dairy manufacture.
Collapse
Affiliation(s)
- Muhammad Mujahid Ali
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yan Tang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuechun Sun
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengchao Shen
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengxia Zhang
- Corporate Laboratory, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Saleem S, Sajid MS, Hussain D, Fatima B, Jabeen F, Najam-ul-Haq M, Saeed A. Highly porous terpolymer-ZIF8@BA MOF composite for identification of mono- and multi-glycosylated peptides/proteins using MS-based bottom-up approach. Mikrochim Acta 2020; 187:555. [DOI: 10.1007/s00604-020-04532-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
|
5
|
Zheng H, Lin H, Chen X, Tian J, Pavase TR, Wang R, Sui J, Cao L. Development of boronate affinity-based magnetic composites in biological analysis: Advances and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Development of molecularly imprinted magnetic iron oxide nanoparticles for doxorubicin drug delivery. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02644-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Mujahid Ali M, Hussain D, Xu B, Sun T, Du Z. Diethylenetriamine assisted functionalization of boronic acid on poly GMA-MAA-DVB for selective enrichment of glycoproteins and glycopeptides. Talanta 2020; 219:121178. [PMID: 32887098 DOI: 10.1016/j.talanta.2020.121178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Cis-diol compounds are class of biomolecules including nucleosides, glycoproteins, saccharides, and nucleotides, which play vital roles in various biological processes. Due to low abundances of these species in the complex biological samples, their identification and analysis is difficult. Boronate affinity materials are commonly used for the isolation and enrichment of cis-diol compounds, due to their unique, facile and selective enrichment mechanism. In this study we report a selective approach to extract nucleosides, glycopeptides and glycoproteins using boronic acid functionalized GMA-MAA-DVB polymer. This novel polymer, reported for the first time in proteomics, have high BET surface area (132.8447 m2 g-1) which contribute to efficient enrichment and average pore size (20.3449 nm) to facilitates the nano confinement effect for strong interactions. Hydrophilic character of methacrylic acid and diethylenetriamine, along with inherent affinity of boronic acid for glycosylated biomolecules result in selectivity up to 1:500 for peptides and 1:1000 for glycoprotein. Binding constant for cis-diol compounds are in the range of 10-4 to 10-6 M and theoretical binding capacity up to 85 mg g-1 for HRP and 180 mg g-1 for IgG, respectively. Furthermore, boronic acid functionalized polymer (BFP) enrich glycoproteins and glycopeptides in range of 1 pg mL-1 and 0.04 ng mL-1 with S/N ≥ 3. Finally, material is applied to enrich the glycoproteins from healthy human saliva sample and six glycoproteins are identified.
Collapse
Affiliation(s)
- Muhammad Mujahid Ali
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 10 0 029, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Bin Xu
- Guangzhou Hexin Instrument Co.,Ltd, Guangzhou, 510530, China
| | - Tangqiang Sun
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 10 0 029, China; College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 10 0 029, China.
| |
Collapse
|
8
|
Hussain D, Raza Naqvi ST, Ashiq MN, Najam-ul-Haq M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020; 208:120413. [DOI: 10.1016/j.talanta.2019.120413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
9
|
Saleem S, Sajid MS, Hussain D, Jabeen F, Najam-ul-Haq M, Saeed A. Boronic acid functionalized MOFs as HILIC material for N-linked glycopeptide enrichment. Anal Bioanal Chem 2020; 412:1509-1520. [DOI: 10.1007/s00216-020-02427-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 01/25/2023]
|
10
|
Derivatization for liquid chromatography-electrospray ionization-mass spectrometry analysis of small-molecular weight compounds. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Mohyuddin A, Hussain D, Fatima B, Athar M, Ashiq MN, Najam-ul-Haq M. Gallic acid functionalized UiO-66 for the recovery of ribosylated metabolites from human urine samples. Talanta 2019; 201:23-32. [DOI: 10.1016/j.talanta.2019.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
|
12
|
Metal–organic framework-based affinity materials in proteomics. Anal Bioanal Chem 2019; 411:1745-1759. [DOI: 10.1007/s00216-019-01610-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
|
13
|
Hayama T, Ohyama K. Recent development and trends in sample extraction and preparation for mass spectrometric analysis of nucleotides, nucleosides, and proteins. J Pharm Biomed Anal 2018; 161:51-60. [PMID: 30145449 DOI: 10.1016/j.jpba.2018.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
This review describes the recent developments in sample extraction and preparation techniques for mass spectrometric analysis of nucleotides, nucleosides, and proteins. Unique materials and techniques have been developed for highly selective extraction of nucleotides and nucleosides by solid-phase extraction strategies using various affinities. However, for proteins, the analysis of small-scale sections of diseased tissues (formalin-fixed, paraffin-embedded tissues) and the direct analysis of an exact lesion on the surface of diseased tissues (liquid extraction surface analysis) have become important advances in this field. In this review, we focus on the latest developments of these techniques and strategies.
Collapse
Affiliation(s)
- Tadashi Hayama
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Johnan, Fukuoka 814-0180, Japan
| | - Kaname Ohyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto-machi, Nagasaki 852-8588, Japan.
| |
Collapse
|
14
|
Li H, Jia Y, Peng H, Li J. Recent developments in dopamine-based materials for cancer diagnosis and therapy. Adv Colloid Interface Sci 2018; 252:1-20. [PMID: 29395035 DOI: 10.1016/j.cis.2018.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Abstract
Dopamine-based materials are emerging as novel biomaterials and have attracted considerable interests in the fields of biosensing, bioimaging and cancer therapy due to their unique physicochemical properties, such as versatile adhesion property, high chemical reactivity, excellent biocompatibility and biodegradability, strong photothermal conversion capacity, etc. In this review, we present an overview of recent research progress on dopamine-based materials for diagnosis and therapy of cancer. The review starts with a summary of the physicochemical properties of dopamine-based materials in general. Then detailed description is followed on their applications in the fields of diagnosis and treatment of cancers. The review concludes with an outline of some remaining challenges for dopamine-based materials to be used for clinical applications.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|