1
|
Schwikkard S, Whitmore H, Sishtla K, Sulaiman RS, Shetty T, Basavarajappa HD, Waller C, Alqahtani A, Frankemoelle L, Chapman A, Crouch N, Wetschnig W, Knirsch W, Andriantiana J, Mas-Claret E, Langat MK, Mulholland D, Corson TW. The Antiangiogenic Activity of Naturally Occurring and Synthetic Homoisoflavonoids from the Hyacinthaceae ( sensu APGII). JOURNAL OF NATURAL PRODUCTS 2019; 82:1227-1239. [PMID: 30951308 PMCID: PMC6771261 DOI: 10.1021/acs.jnatprod.8b00989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Excessive blood vessel formation in the eye is implicated in wet age-related macular degeneration, proliferative diabetic retinopathy, neovascular glaucoma, and retinopathy of prematurity, which are major causes of blindness. Small molecule antiangiogenic drugs are strongly needed to supplement existing biologics. Homoisoflavonoids have been previously shown to have potent antiproliferative activities in endothelial cells over other cell types. Moreover, they demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Here, we tested the antiangiogenic activity of a group of naturally occurring homoisoflavonoids isolated from the family Hyacinthaceae and related synthetic compounds, chosen for synthesis based on structure-activity relationship observations. Several compounds showed interesting antiproliferative and antiangiogenic activities in vitro on retinal microvascular endothelial cells, a disease-relevant cell type, with the synthetic chromane, 46, showing the best activity (GI50 of 2.3 × 10-4 μM).
Collapse
Affiliation(s)
- Sianne Schwikkard
- School of Life Sciences, Pharmacy and Chemistry,
Kingston University, Kingston-upon-Thames, KT1 2EE, UK
- Natural Products Research Group, Department of
Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, United Kingdom
| | - Hannah Whitmore
- Natural Products Research Group, Department of
Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, United Kingdom
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department
of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St.,
Indianapolis, IN 46202, U.S.A
| | - Rania S. Sulaiman
- Eugene and Marilyn Glick Eye Institute, Department
of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St.,
Indianapolis, IN 46202, U.S.A
- Department of Pharmacology and Toxicology,
Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, IN 46202,
U.S.A
- Department of Biochemistry, Faculty of Pharmacy,
Cairo University, Cairo, Egypt
| | - Trupti Shetty
- Eugene and Marilyn Glick Eye Institute, Department
of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St.,
Indianapolis, IN 46202, U.S.A
- Department of Pharmacology and Toxicology,
Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, IN 46202,
U.S.A
| | - Halesha D. Basavarajappa
- Eugene and Marilyn Glick Eye Institute, Department
of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St.,
Indianapolis, IN 46202, U.S.A
- Department of Biochemistry and
Molecular Biology, Indiana University School of Medicine, 1160 W. Michigan St.,
Indianapolis, IN 46202, U.S.A
| | - Catherine Waller
- Natural Products Research Group, Department of
Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, United Kingdom
| | - Alaa Alqahtani
- Natural Products Research Group, Department of
Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, United Kingdom
| | - Lennart Frankemoelle
- School of Life Sciences, Pharmacy and Chemistry,
Kingston University, Kingston-upon-Thames, KT1 2EE, UK
| | - Andy Chapman
- School of Life Sciences, Pharmacy and Chemistry,
Kingston University, Kingston-upon-Thames, KT1 2EE, UK
| | - Neil Crouch
- Biodiversity Economy, South African National
Biodiversity Institute, P.O. Box 52099, 4007 Berea Road, Durban, South Africa
- School of Chemistry and Physics, University of
KwaZulu-Natal, Durban, 4041, South Africa
| | | | - Walter Knirsch
- Institute of Biology, NAWI Graz, University of Graz,
8010 Graz, Austria
| | - Jacky Andriantiana
- Parc Botanique et Zoologique de Tsimbazaza, Rue
Fernand Kassanga, Antananarivo 101, Madagascar
| | - Eduard Mas-Claret
- Natural Products Research Group, Department of
Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, United Kingdom
| | - Moses K Langat
- Natural Products Research Group, Department of
Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, United Kingdom
- School of Chemistry and Physics, University of
KwaZulu-Natal, Durban, 4041, South Africa
| | - Dulcie Mulholland
- Natural Products Research Group, Department of
Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey,
Guildford, GU2 7XH, United Kingdom
- School of Chemistry and Physics, University of
KwaZulu-Natal, Durban, 4041, South Africa
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Department
of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St.,
Indianapolis, IN 46202, U.S.A
- Department of Pharmacology and Toxicology,
Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, IN 46202,
U.S.A
- Department of Biochemistry and
Molecular Biology, Indiana University School of Medicine, 1160 W. Michigan St.,
Indianapolis, IN 46202, U.S.A
| |
Collapse
|