1
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Li T, Wang D, Heng Y, Hou G, Zi G, Ding W, Walter MD. A Comprehensive Study Concerning the Synthesis, Structure, and Reactivity of Terminal Uranium Oxido, Sulfido, and Selenido Metallocenes. J Am Chem Soc 2023. [PMID: 37376858 DOI: 10.1021/jacs.3c03753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Terminal uranium oxido, sulfido, and selenido metallocenes were synthesized, and their reactivity was comprehensively studied. Heating of an equimolar mixture of [η5-1,2,4-(Me3Si)3C5H2]2UMe2 (2) and [η5-1,2,4-(Me3Si)3C5H2]2U(NH-p-tolyl)2 (3) in the presence of 4-dimethylaminopyridine (dmap) in refluxing toluene forms [η5-1,2,4-(Me3Si)3C5H2]2U═N(p-tolyl)(dmap) (4), which is a useful precursor for the preparation of the terminal uranium oxido, sulfido, and selenido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2U═E(dmap) (E = O (5), S (6), Se (7)) employing a cycloaddition-elimination methodology with Ph2C═E (E = O, S) or (p-MeOPh)2CSe, respectively. Metallocenes 5-7 are inert toward alkynes, but they act as nucleophiles in the presence of alkylsilyl halides. The oxido and sulfido metallocenes 5 and 6 undergo [2 + 2] cycloadditions with isothiocyanate PhNCS or CS2, while the selenido derivative 7 does not. The experimental studies are complemented by density functional theory (DFT) computations.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universitüt Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Straub M, Peña J, Flury V, Froidevaux P. Uranium stability in a large wetland soil core probed by electron acceptors, carbonate amendments and wet-dry cycling in a long-term lysimeter experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149783. [PMID: 34482132 DOI: 10.1016/j.scitotenv.2021.149783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Understanding the hydro-biogeochemical conditions that impact the mobility of uranium (U) in natural or artificial wetlands is essential for the management of contaminated environments. Field-based research indicates that high organic matter content and saturation of the soil from the water table create favorable conditions for U accumulation. Despite the installation of artificial wetlands for U remediation, the processes that can release U from wetland soils to underlying aquifers are poorly understood. Here we used a large soil core from a montane wetland in a 6 year lysimeter experiment to study the stability of U accumulated to levels of up to 6000 ppm. Amendments with electron acceptors showed that the wetland soil can reduce sulfate and Fe(III) in large amounts without significant release of U into the soil pore water. However, amendment with carbonate (5 mM, pH 7.5) resulted in a large discharge of U. After a six-month period of imposed drought, the re-flooding of the core led to the release of negligible amounts of U into the pore water. This long-term experiment demonstrates that U is strongly bound to organic matter and that its stability is only challenged by carbonate complexation.
Collapse
Affiliation(s)
- Marietta Straub
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland; Civil and Environmental Engineering, University of California, Davis, United States of America
| | - Virginie Flury
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Haiduc I. Inverse coordination chemistry: oxocarbons, other polyoxo carbocyclic molecules and oxygen heterocycles as coordination centers. Topology and systematization. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1825697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Boreen MA, Arnold J. The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 2020; 49:15124-15138. [DOI: 10.1039/d0dt03151h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This synthesis and diverse reactivity of uranium(iii) and uranium(ii) complexes is discussed.
Collapse
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
6
|
Barluzzi L, Falcone M, Mazzanti M. Small molecule activation by multimetallic uranium complexes supported by siloxide ligands. Chem Commun (Camb) 2019; 55:13031-13047. [PMID: 31608910 DOI: 10.1039/c9cc05605j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and reactivity of uranium compounds supported by the tris-tert-butoxysiloxide ligand is surveyed. The multiple binding modes of the tert-butoxysiloxide ligand have proven very well suited to stabilize highly reactive homo- and heteropolymetallic complexes of uranium that have shown an unusual high reactivity towards small molecules such as CO2, CS2, chalcogens and azides. Moreover, these ligands have allowed the isolation of dinuclear nitride and oxide bridged complexes of uranium in various oxidation states. The ability of the tris-tert-butoxysiloxide ligands to trap alkali ions in these nitride or oxide complexes leads to unprecedented ligand based and metal based reduction and functionalization of N2, CO, CO2 and H2.
Collapse
Affiliation(s)
- Luciano Barluzzi
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marta Falcone
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marinella Mazzanti
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Rosenzweig MW, Hümmer J, Scheurer A, Lamsfus CA, Heinemann FW, Maron L, Mazzanti M, Meyer K. A complete series of uranium(iv) complexes with terminal hydrochalcogenido (EH) and chalcogenido (E) ligands E = O, S, Se, Te. Dalton Trans 2019; 48:10853-10864. [PMID: 30950469 DOI: 10.1039/c9dt00530g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report the synthesis and characterization of a complete series of terminal hydrochalcogenido, U-EH, and chalcogenido uranium(iv) complexes, U≡E (with E = O, S, Se, Te), supported by the (Ad,MeArOH)3tacn (1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane) ligand system. Reaction of H2E with the trivalent precursor [((Ad,MeArO)3tacn)U] (1) yields the corresponding uranium(iv) hydrochalcogenido complexes [((Ad,MeArO)3tacn)U(EH)] (2). Subsequent deprotonation of the terminal hydrochalcogenido species with KN(SiMe3)2, in the presence of 2.2.2-cryptand, gives access to the uranium(iv) complexes with terminal chalcogenido ligands [K(2.2.2-crypt)][((Ad,MeArO)3tacn)U≡E] (3). In order to study the influence of the varying terminal chalogenido ligands on the overall molecular and electronic structure, all complexes were studied by single-crystal X-ray diffractometry, UV/vis/NIR, electronic absorption, and IR vibrational spectroscopy as well as SQUID magnetometry and computational analyses (DFT, MO, NBO).
Collapse
Affiliation(s)
- Michael W Rosenzweig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Julian Hümmer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Carlos Alvarez Lamsfus
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| |
Collapse
|
8
|
Barluzzi L, Chatelain L, Fadaei-Tirani F, Zivkovic I, Mazzanti M. Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex. Chem Sci 2019; 10:3543-3555. [PMID: 30996946 PMCID: PMC6438153 DOI: 10.1039/c8sc05721d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
9
|
Werner D, Deacon GB, Junk PC. Trapping CS22– and S32– between Two Ytterbium Formamidinates. Inorg Chem 2019; 58:1912-1918. [DOI: 10.1021/acs.inorgchem.8b02820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Werner
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Glen B. Deacon
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Peter C. Junk
- College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
10
|
Pagano JK, Arney DSJ, Scott BL, Morris DE, Kiplinger JL, Burns CJ. A sulphur and uranium fiesta! Synthesis, structure, and characterization of neutral terminal uranium(vi) monosulphide, uranium(vi) η2-disulphide, and uranium(iv) phosphine sulphide complexes. Dalton Trans 2019; 48:50-57. [DOI: 10.1039/c8dt02932f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new uranium species, (C5Me5)2U(N-2,6-iPr2-C6H3)(S), (C5Me5)2U(N-2,6-iPr2-C6H3)(η2-S2), and (C5Me5)2U(N-2,6-iPr2-C6H3)(SPMe3) have been prepared.
Collapse
|
11
|
Wu W, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Molecular Thorium Compounds with Dichalcogenide Ligands: Synthesis, Structure, 77Se NMR Study, and Thermolysis. Inorg Chem 2018; 57:14821-14833. [DOI: 10.1021/acs.inorgchem.8b02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Wu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
12
|
Zhang X, Li W, Feng L, Chen X, Hansen A, Grimme S, Fortier S, Sergentu DC, Duignan TJ, Autschbach J, Wang S, Wang Y, Velkos G, Popov AA, Aghdassi N, Duhm S, Li X, Li J, Echegoyen L, Schwarz WHE, Chen N. A diuranium carbide cluster stabilized inside a C 80 fullerene cage. Nat Commun 2018; 9:2753. [PMID: 30013067 PMCID: PMC6048043 DOI: 10.1038/s41467-018-05210-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing Ih(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@Ih(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@Ih(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@Ih(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
Collapse
Affiliation(s)
- Xingxing Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanlu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Lai Feng
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xin Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany
| | - Skye Fortier
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Thomas J Duignan
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Shuao Wang
- School of Radiological and Interdisciplinary Sciences & Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yaofeng Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Giorgios Velkos
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Alexey A Popov
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Nabi Aghdassi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Steffen Duhm
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaohong Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Luis Echegoyen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany.
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, 57068, Siegen, Germany
| | - Ning Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
13
|
Ringgold M, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Thorium Cubanes–Synthesis, Solid-State and Solution Structures, Thermolysis, and Chalcogen Exchange Reactions. Inorg Chem 2018; 57:7129-7141. [DOI: 10.1021/acs.inorgchem.8b00836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marissa Ringgold
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
14
|
Rookes TM, Gardner BM, Balázs G, Gregson M, Tuna F, Wooles AJ, Scheer M, Liddle ST. Crystalline Diuranium Phosphinidiide and μ-Phosphido Complexes with Symmetric and Asymmetric UPU Cores. Angew Chem Int Ed Engl 2017; 56:10495-10500. [PMID: 28677144 PMCID: PMC5577518 DOI: 10.1002/anie.201706002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/11/2022]
Abstract
Reaction of [U(TrenTIPS )(PH2 )] (1, TrenTIPS =N(CH2 CH2 NSiPri3 )3 ) with C6 H5 CH2 K and [U(TrenTIPS )(THF)][BPh4 ] (2) afforded a rare diuranium parent phosphinidiide complex [{U(TrenTIPS )}2 (μ-PH)] (3). Treatment of 3 with C6 H5 CH2 K and two equivalents of benzo-15-crown-5 ether (B15C5) gave the diuranium μ-phosphido complex [{U(TrenTIPS )}2 (μ-P)][K(B15C5)2 ] (4). Alternatively, reaction of [U(TrenTIPS )(PH)][Na(12C4)2 ] (5, 12C4=12-crown-4 ether) with [U{N(CH2 CH2 NSiMe2 But )2 CH2 CH2 NSi(Me)(CH2 )(But )}] (6) produced the diuranium μ-phosphido complex [{U(TrenTIPS )}(μ-P){U(TrenDMBS )}][Na(12C4)2 ] [7, TrenDMBS =N(CH2 CH2 NSiMe2 But )3 ]. Compounds 4 and 7 are unprecedented examples of uranium phosphido complexes outside of matrix isolation studies, and they rapidly decompose in solution underscoring the paucity of uranium phosphido complexes. Interestingly, 4 and 7 feature symmetric and asymmetric UPU cores, respectively, reflecting their differing steric profiles.
Collapse
Affiliation(s)
- Thomas M. Rookes
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Benedict M. Gardner
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Floriana Tuna
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
15
|
Kelly RP, Falcone M, Lamsfus CA, Scopelliti R, Maron L, Meyer K, Mazzanti M. Metathesis of a U V imido complex: a route to a terminal U V sulfide. Chem Sci 2017; 8:5319-5328. [PMID: 28970911 PMCID: PMC5607896 DOI: 10.1039/c7sc01111c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/25/2017] [Indexed: 11/21/2022] Open
Abstract
The metathesis reaction of a UV imido complex supported by sterically demanding tris(tert-butoxy)siloxide ligands with CS2 afforded a terminal UV thiocarbonate but metathesis with H2S afforded the first example of a terminal UV sulfide.
Herein, we report the synthesis and characterisation of the first terminal uranium(v) sulfide and a related UV trithiocarbonate complex supported by sterically demanding tris(tert-butoxy)siloxide ligands. The reaction of the potassium-bound UV imido complex, [U(NAd){OSi(OtBu)3}4K] (4), with CS2 led to the isolation of perthiodicarbonate [K(18c6)]2[C2S6] (6), with concomitant formation of the UIV complex, [U{OSi(OtBu)3}4], and S
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CNAd. In contrast, the reaction of the UV imido complex, [K(2.2.2-cryptand)][U(NAd){OSi(OtBu)3}4] (5), with one or two equivalents of CS2 afforded the trithiocarbonate complex, [K(2.2.2-cryptand)][U(CS3){OSi(OtBu)3}4] (7), which was isolated in 57% yield, with concomitant elimination of the admantyl thiocyanate product, SCNAd. Complex 7 is likely formed by fast nucleophilic addition of a UV terminal sulfide intermediate, resulting from the slow metathesis reaction of the imido complex with CS2, to a second CS2 molecule. The addition of a solution of H2S in thf (1.3 eq.) to 4 afforded the first isolable UV terminal sulfide complex, [K(2.2.2-cryptand)][US{OSi(OtBu)3}4] (8), in 41% yield. Based on DFT calculations, triple-bond character with a strong covalent interaction is suggested for the U–S bond in complex 7.
Collapse
Affiliation(s)
- Rory P Kelly
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Marta Falcone
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Carlos Alvarez Lamsfus
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Laurent Maron
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Karsten Meyer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
16
|
Rookes TM, Gardner BM, Balázs G, Gregson M, Tuna F, Wooles AJ, Scheer M, Liddle ST. Crystalline Diuranium Phosphinidiide and μ-Phosphido Complexes with Symmetric and Asymmetric UPU Cores. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas M. Rookes
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Benedict M. Gardner
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Matthew Gregson
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Stephen T. Liddle
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
17
|
Gardner BM, King DM, Tuna F, Wooles AJ, Chilton NF, Liddle ST. Assessing crystal field and magnetic interactions in diuranium-μ-chalcogenide triamidoamine complexes with U IV-E-U IV cores (E = S, Se, Te): implications for determining the presence or absence of actinide-actinide magnetic exchange. Chem Sci 2017; 8:6207-6217. [PMID: 28989654 PMCID: PMC5628351 DOI: 10.1039/c7sc01998j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022] Open
Abstract
We report the synthesis and characterisation of a family of diuranium(iv)-μ-chalcogenide complexes including a detailed examination of their electronic structures and magnetic behaviours. Treatment of [U(TrenTIPS)] [1, TrenTIPS = N(CH2CH2NSiPri3)3] with Ph3PS, selenium or tellurium affords the diuranium(iv)-sulfide, selenide, and telluride complexes [{U(TrenTIPS)}2(μ-E)] (E = S, 2; Se, 5; Te, 6). Complex 2 is also formed by treatment of [U(TrenTIPS){OP(NMe2)3}] (3) with Ph3PS, whereas treatment of 3 with elemental sulfur gives the diuranium(iv)-persulfido complex [{U(TrenTIPS)}2(μ-η2:η2-S2)] (4). Complexes 2-6 have been variously characterised by single crystal X-ray diffraction, NMR, IR, and optical spectroscopies, room temperature Evans and variable temperature SQUID magnetometry, elemental analyses, and complete active space self consistent field spin orbit calculations. The combined characterisation data present a self-consistent picture of the electronic structure and magnetism of 2, 5, and 6, leading to the conclusion that single-ion crystal field effects, and not diuranium magnetic coupling, are responsible for features in their variable-temperature magnetisation data. The presence of magnetic coupling is often implied and sometimes quantified by such data, and so this study highlights the importance of evaluating other factors, such as crystal field effects, that can produce similar magnetic observables, and to thus avoid misassignments of such phenomena.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - David M King
- School of Chemistry , The University of Nottingham , University Park , Nottingham , NG7 2RD , UK
| | - Floriana Tuna
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Ashley J Wooles
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Nicholas F Chilton
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Stephen T Liddle
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| |
Collapse
|
18
|
Rosenzweig MW, Heinemann FW, Maron L, Meyer K. Molecular and Electronic Structures of Eight-Coordinate Uranium Bipyridine Complexes: A Rare Example of a Bipy2– Ligand Coordinated to a U4+ Ion. Inorg Chem 2017; 56:2792-2800. [DOI: 10.1021/acs.inorgchem.6b02954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael W. Rosenzweig
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Karsten Meyer
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen−Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
19
|
Solola LA, Zabula AV, Dorfner WL, Manor BC, Carroll PJ, Schelter EJ. Cerium(IV) Imido Complexes: Structural, Computational, and Reactivity Studies. J Am Chem Soc 2017; 139:2435-2442. [PMID: 28076948 DOI: 10.1021/jacs.6b12369] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of alkali metal capped cerium(IV) imido complexes, [M(solv)x][Ce═N(3,5-(CF3)2C6H3)(TriNOx)] (M = Li, K, Rb, Cs; solv = TMEDA, THF, Et2O, or DME), was isolated and fully characterized. An X-ray structural investigation of the cerium imido complexes demonstrated the impact of the alkali metal counterions on the geometry of the [Ce═N(3,5-(CF3)2C6H3)(TriNOx)]- moiety. Substantial shortening of the Ce═N bond was observed with increasing size of the alkali metal cation. The first complex featuring an unsupported, terminal multiple bond between a Ce(IV) ion and a ligand fragment was also isolated by encapsulation of a Cs+ counterion with 2.2.2-cryptand. This complex shows the shortest recorded Ce═N bond length of 2.077(3) Å. Computational investigation of the cerium imido complexes using DFT methods showed a relatively larger contribution of the cerium 5d orbital than the 4f orbital to the Ce═N bonds. The [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)] complex cleaves the Si-O bond in (Me3Si)2O, yielding the [(Me3SiO)CeIV(TriNOx)] adduct. The reaction of the rubidium capped imido complex with benzophenone resulted in the formation of a rare Ce(IV)-oxo complex, that was stabilized by a supramolecular, tetrameric oligomerization of the Ce═O units with rubidium cations.
Collapse
Affiliation(s)
- Lukman A Solola
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Alexander V Zabula
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Walter L Dorfner
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Arnold PL, Turner ZR. Carbon oxygenate transformations by actinide compounds and catalysts. Nat Rev Chem 2017. [DOI: 10.1038/s41570-016-0002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Damon PL, Wu G, Kaltsoyannis N, Hayton TW. Formation of a Ce(IV) Oxo Complex via Inner Sphere Nitrate Reduction. J Am Chem Soc 2016; 138:12743-12746. [PMID: 27622564 DOI: 10.1021/jacs.6b07932] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reaction of Ce(NO3)3(THF)4 with Li3(THF)3(NN'3) (NN'3 = N(CH2CH2NR)3, R = SitBuMe2) in Et2O, in the presence of 12-crown-4, results in the formation of [Li(12-crown-4)][(NN'3)Ce(O)] (1) in 36% yield. This transformation proceeds via formation of a Ce(III) nitrate intermediate, [Li(12-crown-4)][(NN'3)Ce(κ2-O2NO)] (2), which undergoes inner sphere nitrate reduction. In addition, reaction of 1 with tBuMe2SiCl results in the formation of (NN'3)Ce(OSitBuMe2) (3), confirming the nucleophilic character of its oxo ligand. Natural bond orbital and quantum theory of atoms-in-molecules data reveal the Ce-O interaction in 1 to be significantly covalent, and strikingly similar to analogous U-O bonding.
Collapse
Affiliation(s)
- Peter L Damon
- Department of Chemistry & Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry & Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Nikolas Kaltsoyannis
- School of Chemistry, University of Manchester , Oxford Road, Manchester, M13 9PL, U.K
| | - Trevor W Hayton
- Department of Chemistry & Biochemistry, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Rosenzweig MW, Scheurer A, Lamsfus CA, Heinemann FW, Maron L, Andrez J, Mazzanti M, Meyer K. Uranium(iv) terminal hydrosulfido and sulfido complexes: insights into the nature of the uranium-sulfur bond. Chem Sci 2016; 7:5857-5866. [PMID: 30034726 PMCID: PMC6024247 DOI: 10.1039/c6sc00677a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the synthesis and characterization of a series of terminal uranium(iv) hydrosulfido and sulfido complexes, supported by the hexadentate, tacn-based ligand framework (Ad,MeArO)3tacn3- (= trianion of 1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane). The hydrosulfido complex [((Ad,MeArO)3tacn)U-SH] (2) is obtained from the reaction of H2S with the uranium(iii) starting material [((Ad,MeArO)3tacn)U] (1) in THF. Subsequent deprotonation with potassium bis(trimethylsilyl)amide yields the mononuclear uranium(iv) sulfido species in good yields. With the aid of dibenzo-18-crown-6 and 2.2.2-cryptand, it was possible to isolate a terminal sulfido species, capped by the potassium counter ion, and a "free" terminal sulfido species with a well separated cation/anion pair. Spectroscopic and computational analyses provided insights into the nature of the uranium-sulfur bond in these complexes.
Collapse
Affiliation(s)
- Michael W Rosenzweig
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| | - Carlos A Lamsfus
- LPCNO , Université de Toulouse , INSA Toulouse , 135 Avenue de Rangueil , 31077 Toulouse , France
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| | - Laurent Maron
- LPCNO , Université de Toulouse , INSA Toulouse , 135 Avenue de Rangueil , 31077 Toulouse , France
| | - Julie Andrez
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| |
Collapse
|