1
|
Youm SG, Howell MT, Chiang CH, Lu L, Kuruppu Arachchige NMK, Ankner JF, Strzalka J, Losovyj Y, Garno JC, Nesterov EE. Precision Synthesis of Conjugated Polymer Films by Surface-Confined Stepwise Sonogashira Cross-Coupling. Molecules 2024; 29:5466. [PMID: 39598855 PMCID: PMC11597661 DOI: 10.3390/molecules29225466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Thin films of poly(arylene ethynylene)-conjugated polymers, including low-energy-gap donor-acceptor polymers, can be prepared via stepwise polymerization utilizing surface-confined Sonogashira cross-coupling. This robust and efficient polymerization protocol yields conjugated polymers with a precise molecular structure and with nanometer-level control of the organization and the uniform alignment of the macromolecular chains in the densely packed film. In addition to high stability and predictable and well-defined molecular organization and morphology, the surface-confined conjugated polymer chains experience significant interchain electronic interactions, resulting in dominating intermolecular π-electron delocalization which is primarily responsible for the electronic and spectroscopic properties of polymer films. The fluorescent films demonstrate remarkable performance in chemosensing applications, showing a turn-off fluorescent response on the sub-ppt (part per trillion) level of nitroaromatic explosives in water. This unique sensitivity is likely related to the enhanced exciton mobility in the uniformly aligned and structurally monodisperse polymer films.
Collapse
Affiliation(s)
- Sang Gil Youm
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Mitchell T. Howell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Chien-Hung Chiang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lu Lu
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA;
| | - Jayne C. Garno
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Evgueni E. Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Yang WC, Chen CT. Expedient Azide-Alkyne Huisgen Cycloaddition Catalyzed by a Combination of VOSO 4 with Cu(0) in Aqueous Media. ACS ORGANIC & INORGANIC AU 2024; 4:235-240. [PMID: 38585512 PMCID: PMC10995936 DOI: 10.1021/acsorginorgau.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/09/2024]
Abstract
A series of vanadium(III), vanadyl(IV/V) species, inorganic metal oxides, and transition-metal oxides was examined as cocatalysts with Cu(0) powder for copper(I)-catalyzed azide-alkyne cycloaddition. Among them, vanadyl(IV) species bearing acetylacetonate, acetate, and sulfate, vanadyl(V) isopropoxide, and vanadate were suitable for the click reactions of per-acetyl and per-benzyl β-azido glycosides with three different terminal alkynes in CH3CN. Water-soluble vanadyl(IV) sulfate was further selected for efficient click reactions for unprotected β-glycosyl azides and even compatible with a thiol-containing substrate in aqueous media at ambient temperature.
Collapse
Affiliation(s)
- Wen-Chieh Yang
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan R.O.C
| | - Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
3
|
Sundaramoorthy R, Vadivelu M, Thirumoorthy K, Karthikeyan K, Praveen C. Step-Economical Mechanosynthesis of Hybrid Azoles: Deciphering Their π-Orbital and Pharmacological Characteristics. ChemMedChem 2023; 18:e202300008. [PMID: 37055351 DOI: 10.1002/cmdc.202300008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
A hybrid pharmacophore strategy for unifying 1,2,3-triazole with 1,2,4-triazole cores to prepare mixed triazoles was accomplished by a ball-milling approach. The developed chemistry works under the catalysis of cupric oxide nanoparticles with salient features like one-jar operation, lower number of synthetic steps, catalyst recyclability, time-dependent product control, and good overall yields. π-Orbital properties based on theoretical calculations supported the suitability of these molecules for pharmacological screening. Therefore, the biological potency of the synthesized molecules was evaluated for antioxidant, anti-inflammatory, and anti-diabetic activities. By virtue of their proton-donating tendency, all compounds showed promising radical-scavenging activity with the inhibition level reaching up to 90 %. These molecular hybrids also exhibited anti-inflammatory and anti-diabetic potencies similar to those of standard compounds, owing to their electron-rich nature. Finally, α-amylase inhibitory potential was demonstrated in silico; significant regions necessary for enzyme inhibition were identified by hydrogen bonding interactions.
Collapse
Affiliation(s)
- Ramachandran Sundaramoorthy
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Murugan Vadivelu
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Kulandaivel Thirumoorthy
- Department of Chemistry, Saveetha School of Engineering, SIMATS, Chennai, 632014, Tamil Nadu, India
| | - Kesavan Karthikeyan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| |
Collapse
|
4
|
Aivali S, Andrikopoulos KC, Andreopoulou AK. Nucleophilic Aromatic Substitution of Pentafluorophenyl-Substituted Quinoline with a Functional Perylene: A Route to the Modification of Semiconducting Polymers. Polymers (Basel) 2023; 15:2721. [PMID: 37376367 DOI: 10.3390/polym15122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
A systematic study of the influence of the chemical substitution pattern of semiconducting polymers carrying side chain perylene diimide (PDI) groups is presented. Semiconducting polymers based on perflurophenyl quinoline (5FQ) were modified via a readily accessible nucleophilic substitution reaction. The perfluorophenyl group was studied as an electron-withdrawing reactive functionality on semiconducting polymers that can undergo fast nucleophilic aromatic substitution. A PDI molecule, functionalized with one phenol group on the bay area, was used for the substitution of the fluorine atom at the para position in 6-vinylphenyl-(2-perfluorophenyl)-4-phenyl quinoline. The final product was polymerized under free radical polymerization providing polymers of 5FQ incorporated with PDI side groups. Alternatively, the post-polymerization modification of the fluorine atoms at the para position of the 5FQ homopolymer with the PhOH-di-EH-PDI was also successfully tested. In this case, the PDI units were partially introduced to the perflurophenyl quinoline moieties of the homopolymer. The para-fluoro aromatic nucleophilic substitution reaction was confirmed and estimated via 1H and 19F NMR spectroscopies. The two different polymer architectures, namely, fully or partially modified with PDI units, were studied in terms of their optical and electrochemical properties, while their morphology was evaluated using TEM analysis, revealing polymers of tailor-made optoelectronic and morphological properties. This work provides a novel molecule-designing method for semiconducting materials of controlled properties.
Collapse
Affiliation(s)
- Stefania Aivali
- Department of Chemistry, University of Patras, University Campus, GR26504 Rio-Patras, Greece
- Département de Chimie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | | | | |
Collapse
|
5
|
Fenoy GE, Hasler R, Quartinello F, Marmisollé WA, Lorenz C, Azzaroni O, Bäuerle P, Knoll W. "Clickable" Organic Electrochemical Transistors. JACS AU 2022; 2:2778-2790. [PMID: 36590273 PMCID: PMC9795466 DOI: 10.1021/jacsau.2c00515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of "clickable" organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin-biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.
Collapse
Affiliation(s)
- Gonzalo E. Fenoy
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Roger Hasler
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
| | - Felice Quartinello
- Department
of Agrobiotechnology, IFA-Tulln, Institute
of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Waldemar A. Marmisollé
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Christoph Lorenz
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Omar Azzaroni
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Peter Bäuerle
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Knoll
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Department
of Scientific Coordination and Management, Danube Private University, 3500 Krems, Austria
| |
Collapse
|
6
|
Rimmele M, Glöcklhofer F, Heeney M. Post-polymerisation approaches for the rapid modification of conjugated polymer properties. MATERIALS HORIZONS 2022; 9:2678-2697. [PMID: 35983884 PMCID: PMC9620492 DOI: 10.1039/d2mh00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Post-polymerisation functionalisation provides a facile and efficient way for the introduction of functional groups on the backbone of conjugated polymers. Using post-polymerisation functionalisation approaches, the polymer chain length is usually not affected, meaning that the resulting polymers only differ in their attached functional groups or side chains, which makes them particularly interesting for investigating the influence of the different groups on the polymer properties. For such functionalisations, highly efficient and selective reactions are needed to avoid the formation of complex mixtures or permanent defects in the polymer backbone. A variety of suitable synthetic approaches and reactions that fulfil these criteria have been identified and reported. In this review, a thorough overview is given of the post-polymerisation functionalisations reported to date, with the methods grouped based on the type of reaction used: cycloaddition, oxidation/reduction, nucleophilic aromatic substitution, or halogenation and subsequent cross-coupling reaction. Instead of modifications on the aliphatic side chains of the conjugated polymers, we focus on modifications directly on the conjugated backbones, as these have the most pronounced effect on the optical and electronic properties. Some of the discussed materials have been used in applications, ranging from solar cells to bioelectronics. By providing an overview of this versatile and expanding field for the first time, we showcase post-polymerisation functionalisation as an exciting pathway for the creation of new conjugated materials for a range of applications.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Synthesis of Metalorganic Copolymers Containing Various Contorted Units and Iron(II) Clathrochelates with Lateral Butyl Chains: Conspicuous Adsorbents of Lithium Ions and Methylene Blue. Polymers (Basel) 2022; 14:polym14163394. [PMID: 36015650 PMCID: PMC9412635 DOI: 10.3390/polym14163394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, 1H- and 13C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (qm) value of 2.31 mg g-1 for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (qm) of 480.77 mg g-1; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (qe,cal) of 45.40 mg g-1.
Collapse
|
8
|
Sampath S, Vadivelu M, Raheem AA, Indirajith R, Parthasarathy K, Karthikeyan K, Praveen C. Practical Coprecipitation Approach for High-Aspect Ratio Cupric Oxide Nanoparticles: A Sustainable Catalytic Platform for Huisgen and Fluorogenic Click Chemistry. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sugirdha Sampath
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
- Department of Metallurgical & Materials Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Murugan Vadivelu
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Ravanan Indirajith
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Kannabiran Parthasarathy
- Animal & Mineral Origin Drug Research Laboratory, CCRS─Siddha Central Research Institute, Chennai 600106, India
| | - Kesavan Karthikeyan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| |
Collapse
|
9
|
Khadiya NM, Modhavadiya VA. CuAAC-Ensembled 1,2,3-Triazole-Linked Biphenyl and N-Arylamide Systems as Diverse Antimicrobial Agents. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s107042802207017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Synthesis of new Tetrazole based-semiconducting polymers for optoelectronic application: Study of the effect of anthracene group on photophysical properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Bhaumick P, Choudhury LH. Multicomponent click polymerization for the synthesis of coumarin containing 1,4-polytriazoles and their application as dye adsorbent. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Kaya K, Yagci Y. Contemporary Approaches for Conventional and Light‐Mediated Synthesis of Conjugated Heteroaromatic Polymers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kerem Kaya
- Chemistry Department Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Yusuf Yagci
- Chemistry Department Istanbul Technical University Maslak Istanbul 34469 Turkey
| |
Collapse
|
13
|
Ponikiewski Ł, Sowa S. Ring Opening of Triflates Derived from Benzophospholan-3-one Oxides by Aryl Grignard Reagents as a Route to 2-Ethynylphenyl(diaryl)phosphine Oxides. J Org Chem 2021; 86:14928-14941. [PMID: 34699223 PMCID: PMC8576819 DOI: 10.1021/acs.joc.1c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new simple method for the synthesis of 2-ethynylphenyl(diaryl)phosphine oxides via ring opening of benzophosphol-3-yl triflates has been developed. This process occurs via nucleophilic attack of a Grignard reagent at the phosphorus center, which results in ring opening and cleavage of a leaving group. The reaction proceeds under mild conditions and, within 15-60 min, leads to a library of previously unavailable 2-ethynylphenylphosphine oxides in yields up to 98%.
Collapse
Affiliation(s)
- Łukasz Ponikiewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - Sylwia Sowa
- Department of Organic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Marie Curie-Sklodowska University in Lublin, 33 Gliniana Street, Lublin PL-20-614, Poland
| |
Collapse
|
14
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
15
|
Baig N, Shetty S, Moustafa MS, Al-Mousawi S, Alameddine B. Selective removal of toxic organic dyes using Trӧger base-containing sulfone copolymers made from a metal-free thiol-yne click reaction followed by oxidation. RSC Adv 2021; 11:21170-21178. [PMID: 35479362 PMCID: PMC9034147 DOI: 10.1039/d1ra03783h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Three copolymers TCP1–3 bearing Trӧger's base (TB) units intercalated with various thioether groups were synthesized using a catalyst-free thiol-yne click reaction. TCP1–3 display excellent solubility in common organic solvents allowing for their structural, and photophysical characterization. The thioether groups in TCP1–3 were selectively oxidized into their respective sulfone derivatives under mild oxidation reaction conditions affording the postmodified copolymers TCP4–6. Investigation of organic dye uptake from water by TCP1–6 proved their efficiency as selective adsorbents removing up to 100% of the cationic dye methylene blue (MEB) when compared to anionic dyes, such as Congo red (CR), methyl orange (MO) and methyl blue (MB). The sulfone-containing copolymers TCP4–6 display superior and faster MEB removal efficiencies with respect to their corresponding synthons TCP1–3. Copolymers TCP1–3 with Trӧger's base units and aryl thioether groups were made via a click reaction. Selective oxidation of the thioethers into sulfone groups afforded TCP4–6 which display up to 100% removal efficiency of methylene blue from water.![]()
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait +965 2530 7476.,Functional Materials Group, CAMB, GUST Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait +965 2530 7476.,Functional Materials Group, CAMB, GUST Kuwait
| | | | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait +965 2530 7476.,Functional Materials Group, CAMB, GUST Kuwait
| |
Collapse
|
16
|
Saini P, Sonika, Singh G, Kaur G, Singh J, Singh H. Robust and Versatile Cu(I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions: Review. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Opsomer T, Dehaen W. Metal-free syntheses of N-functionalized and NH-1,2,3-triazoles: an update on recent developments. Chem Commun (Camb) 2021; 57:1568-1590. [PMID: 33491711 DOI: 10.1039/d0cc06654k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of the latest developments in the metal-free synthesis of non-benzo-fused N-functionalized and NH-1,2,3-triazoles is provided in this feature article. Synthetic studies that appeared from 2016 until August 2020 are organized according to a wide-ranging classification, comprising oxidative and eliminative azide-dipolarophile cycloadditions, diazo transfer reactions and N-tosylhydrazone-mediated syntheses. The newly developed methods constitute a significant contribution to the field of 1,2,3-triazole synthesis in terms of structural variation via either the exploration of novel reactions, or the exploitation of existing methodologies.
Collapse
Affiliation(s)
- Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | |
Collapse
|
18
|
Prakash R, Opsomer T, Dehaen W. Triazolization of Enolizable Ketones with Primary Amines: A General Strategy toward Multifunctional 1,2,3-Triazoles. CHEM REC 2020; 21:376-385. [PMID: 33350560 DOI: 10.1002/tcr.202000151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
The development of metal-free syntheses toward 1,2,3-triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5-disubstituted 1,2,3-triazoles from readily available substrates remained a challenge that was addressed by our group in 2016. A metal-free three-component reaction, which we have dubbed the triazolization reaction, was established for the rapid synthesis of 1,5-disubstituted, fully functionalized and NH-1,2,3-triazoles. This novel approach stands out because it utilizes widely available starting materials, namely primary amines and enolizable ketones. Furthermore, the broad substrate scope is a major advantage, and was further expanded by the number of modified protocols that have been reported. Triazolization products have successfully found utility as intermediates in various synthetic transformations, and were the subject of a few interesting biological activity studies.
Collapse
Affiliation(s)
- Rashmi Prakash
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
19
|
Lovell TC, Fosnacht KG, Colwell CE, Jasti R. Effect of curvature and placement of donor and acceptor units in cycloparaphenylenes: a computational study. Chem Sci 2020; 11:12029-12035. [PMID: 34094422 PMCID: PMC8162840 DOI: 10.1039/d0sc03923c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Cycloparaphenylenes have promise as novel fluorescent materials. However, shifting their fluorescence beyond 510 nm is difficult. Herein, we computationally explore the effect of incorporating electron accepting and electron donating units on CPP photophysical properties at the CAM-B3LYP/6-311G** level. We demonstrate that incorporation of donor and acceptor units may shift the CPP fluorescence as far as 1193 nm. This computational work directs the synthesis of bright red-emitting CPPs. Furthermore, the nanohoop architecture allows for interrogation of strain effects on common conjugated polymer donor and acceptor units. Strain results in a bathochromic shift versus linear variants, demonstrating the value of using strain to push the limits of low band gap materials.
Collapse
Affiliation(s)
- Terri C Lovell
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403 USA
| | - Kaylin G Fosnacht
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403 USA
| | - Curtis E Colwell
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403 USA
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
20
|
Weber M, Han HH, Li BH, Odyniec ML, Jarman CEF, Zang Y, Bull SD, Mackenzie AB, Sedgwick AC, Li J, He XP, James TD. Pinkment: a synthetic platform for the development of fluorescent probes for diagnostic and theranostic applications. Chem Sci 2020; 11:8567-8571. [PMID: 34123116 PMCID: PMC8163375 DOI: 10.1039/d0sc02438d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reaction-based fluorescent-probes have proven successful for the visualisation of biological species in various cellular processes. Unfortunately, in order to tailor the design of a fluorescent probe to a specific application (i.e. organelle targeting, material and theranostic applications) often requires extensive synthetic efforts and the synthetic screening of a range of fluorophores to match the required synthetic needs. In this work, we have identified Pinkment-OH as a unique “plug-and-play” synthetic platform that can be used to develop a range of ONOO− responsive fluorescent probes for a variety of applications. These include theranostic-based applications and potential material-based/bioconjugation applications. The as prepared probes displayed an excellent sensitivity and selectivity for ONOO− over other ROS. In vitro studies using HeLa cells and RAW 264.7 macrophages demonstrated their ability to detect exogenously and endogenously produced ONOO−. Evaluation in an LPS-induced inflammation mouse model illustrated the ability to monitor ONOO− production in acute inflammation. Lastly, theranostic-based probes enabled the simultaneous evaluation of indomethacin-based therapeutic effects combined with the visualisation of an inflammation biomarker in RAW 264.7 cells. Pinkment, a resorufin based ONOO− selective and sensitive ‘plug and play’ fluorescence-based platform for in vitro and in vivo use, enables facile functionalisation for various imaging and theranostic applications.![]()
Collapse
Affiliation(s)
- Maria Weber
- Department of Chemistry, University of Bath Bath BA2 7AY UK .,Centre for Doctoral Training, Centre for Sustainable & Circular Technologies, University of Bath Bath BA2 7AY UK
| | - Hai-Hao Han
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,Key Laboratory for Advanced Materials & Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 PR China
| | - Bo-Han Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 PR China
| | | | | | - Yi Zang
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Amanda B Mackenzie
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK.,Centre for Therapeutic Innovation, University of Bath Bath BA2 7AY UK
| | - Adam C Sedgwick
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Jia Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 PR China .,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 PR China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| |
Collapse
|
21
|
A brief minireview of poly-triazole: Alkyne and azide substrate selective, metal-catalyst expansion. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Yadav S, Sharma S, Dutta S, Sharma A, Adholeya A, Sharma RK. Harnessing the Untapped Catalytic Potential of a CoFe 2O 4/Mn-BDC Hybrid MOF Composite for Obtaining a Multitude of 1,4-Disubstituted 1,2,3-Triazole Scaffolds. Inorg Chem 2020; 59:8334-8344. [PMID: 32469208 DOI: 10.1021/acs.inorgchem.0c00752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metal-organic frameworks derived nanostructures with extraordinary variability, and many unprecedented properties have recently emerged as promising catalytic materials to address the challenges in the field of modern organic synthesis. In this contribution, the present work reports the fabrication of an intricately designed magnetic MOF composite based on Mn-BDC (manganese benzene-1,4-dicarboxylate/manganese terephthalate) microflakes via a facile and benign in situ solvothermal approach. Structural information about the as-synthesized hybrid composite has been obtained with characterization techniques such as TEM, SEM, XRD, FT-IR, AAS, EDX, ED-XRF, and VSM analysis. Upon investigation of catalytic performance, the resulting material unveils remarkable efficacy toward facile access of a diverse array of pharmaceutically active 1,2,3-triazoles from a multicomponent coupling reaction of terminal alkynes, sodium azide, and alkyl or aryl halides as coupling partners. In addition to a wide substrate scope, the catalyst with highly accessible active sites also possesses a stable catalytic metal center along with superb magnetic properties that facilitate rapid and efficient separation. The prominent feature that makes this protocol highly desirable is the ambient and greener reaction conditions in comparison to literature precedents reported to date. Further, a plausible mechanistic pathway is also proposed to rationalize the impressive potential of the developed catalytic system in the concerned reaction. We envision that findings from our study would not only provide new insights into the judicious design of advanced MOF based architectures but also pave the way toward greening of industrial manufacturing processes to tackle critical environmental and economic issues.
Collapse
Affiliation(s)
- Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Shivani Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Aditi Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurugram 122102, India
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India
| |
Collapse
|
23
|
Wu Z, Liao X, Yuan L, Wang Y, Zheng Y, Zuo J, Pan Y. Visible‐Light‐Mediated Click Chemistry for Highly Regioselective Azide–Alkyne Cycloaddition by a Photoredox Electron‐Transfer Strategy. Chemistry 2020; 26:5694-5700. [DOI: 10.1002/chem.202000252] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng‐Guang Wu
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Xiang‐Ji Liao
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Li Yuan
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - You‐Xuan Zheng
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| |
Collapse
|
24
|
Liu Q, Xiong G, Chen Y, Li Y. The crystal structure of 1-benzyl-4-(2-(phenylethynyl)phenyl)-1 H-1,2,3-triazole, C 23H 17N 3. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C23H17N3, monoclinic, P21 (no. 4), a = 11.7817(14) Å, b = 5.3165(6) Å, c = 14.1747(16) Å, β = 95.731(2)°, V = 883.43(18) Å3, Z = 2, R
gt(F) = 0.0663, wR
ref(F
2) = 1567, T = 298(2) K.
Collapse
Affiliation(s)
- Quan Liu
- College of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430025 , China
| | - Guowei Xiong
- College of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430025 , China
| | - Yunfeng Chen
- College of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430025 , China
| | - Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University , Huaihua 418008 , China
| |
Collapse
|
25
|
Liu X, Xiang L, Li J, Wu Y, Zhang K. Stoichiometric imbalance-promoted step-growth polymerization based on self-accelerating 1,3-dipolar cycloaddition click reactions. Polym Chem 2020. [DOI: 10.1039/c9py01362h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stoichiometric imbalance-promoted step growth polymerization method was developed based on self-accelerating 1,3-dipolar cycloaddition click reactions of Sondheimer diyne and varied 1,3-dipoles, such as diazo, sydnone, and nitrone groups.
Collapse
Affiliation(s)
- Xianfeng Liu
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Lue Xiang
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Jiayi Li
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| | - Ying Wu
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
26
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
27
|
Brunel D, Dumur F. Recent advances in organic dyes and fluorophores comprising a 1,2,3-triazole moiety. NEW J CHEM 2020. [DOI: 10.1039/c9nj06330g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the copper catalyzed azide alkyne cycloaddition in the early 2000s, tremendous efforts have been devoted to enlarging the scope of applications of this relatively simple to handle reaction.
Collapse
|
28
|
Li B, Hu R, Qin A, Tang BZ. Copper-based ionic liquid-catalyzed click polymerization of diazides and diynes toward functional polytriazoles for sensing applications. Polym Chem 2020. [DOI: 10.1039/c9py01443h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient copper-based ionic liquid-catalyzed azide–alkyne click polymerization was developed, and functional polytriazoles were produced which could be used as sensors.
Collapse
Affiliation(s)
- Baixue Li
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
29
|
Kim WG, Baek SY, Jeong SY, Nam D, Jeon JH, Choe W, Baik MH, Hong SY. Chemo- and regioselective click reactions through nickel-catalyzed azide–alkyne cycloaddition. Org Biomol Chem 2020; 18:3374-3381. [DOI: 10.1039/d0ob00579g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nickel-catalyzed [3 + 2] cycloaddition reactions of unsymmetrical alkynes and organic azides afford substituted 1,2,3-triazoles with high levels of chemo- and regioselectivity.
Collapse
Affiliation(s)
- Woo Gyum Kim
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology
- Ulsan 44919
- Republic of Korea
| | - Seung-yeol Baek
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 34141
- Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations
| | - Seo Yeong Jeong
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology
- Ulsan 44919
- Republic of Korea
| | - Dongsik Nam
- Department of Chemistry
- Ulsan National Institute of Science and Technology
- Ulsan 44919
- Republic of Korea
| | - Ji Hwan Jeon
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology
- Ulsan 44919
- Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry
- Ulsan National Institute of Science and Technology
- Ulsan 44919
- Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 34141
- Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations
| | - Sung You Hong
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology
- Ulsan 44919
- Republic of Korea
- Department of Chemistry
| |
Collapse
|
30
|
Guo N, Liu X, Xu H, Zhou X, Zhao H. A simple route towards the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from primary amines and 1,3-dicarbonyl compounds under metal-free conditions. Org Biomol Chem 2019; 17:6148-6152. [PMID: 31187848 DOI: 10.1039/c9ob01156k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An acetic acid-promoted approach that enables the synthesis of 1,4,5-trisubstituted 1,2,3-triazole derivatives has been achieved. This transformation employs readily available primary amines, 1,3-dicarbonyls and tosyl azide as the starting materials via a cycloaddition reaction under metal-free conditions. The reaction provides a simple access to fully substituted 1,2,3-triazoles from commercial substrates in moderate to excellent yields.
Collapse
Affiliation(s)
- Ningxin Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | | | |
Collapse
|
31
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
32
|
Ferlin F, Yetra SR, Warratz S, Vaccaro L, Ackermann L. Reusable Pd@PEG Catalyst for Aerobic Dehydrogenative C-H/C-H Arylations of 1,2,3-Triazoles. Chemistry 2019; 25:11427-11431. [PMID: 31306515 DOI: 10.1002/chem.201902901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Indexed: 01/22/2023]
Abstract
Dehydrogenative C-H arylations of 1,2,3-triazoles were accomplished with the aid of a reusable palladium catalyst in PEG. The widely applicable oxidative palladium catalysis enabled the synthesis of fully decorated 1,2,3-triazoles with a broad functional-group tolerance and ample substrate scope. The sustainability of the aerobic C-H arylation was reflected by the use of PEG as green reaction medium and demonstrated by recycling studies of the catalyst and the reaction medium.
Collapse
Affiliation(s)
- Francesco Ferlin
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany.,Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Santhivardhana Reddy Yetra
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Luigi Vaccaro
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
33
|
Roncaselli LKM, Silva EA, Braunger ML, Souza NC, Ferreira M, de Santana H, Olivati CA. Regioregularity and deposition effect on the physical/chemical properties of polythiophene derivatives films. NANOTECHNOLOGY 2019; 30:325703. [PMID: 30991378 DOI: 10.1088/1361-6528/ab19f0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polythiophene thin films are widely studied for applications in organic electronics. However, some comparisons are still missing, regarding distinct deposition techniques and regioregularity. Here regioregular and regiorandom alkyl-substituted polythiophene derivatives (P3ATs) were deposited on solid substrates using both Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques. The main goal was to verify the possible influence of the regioregularity as well the deposition technique on their optical, electrical and electrochemical properties. LB and LS films of regioregular and regiorandom poly(3-butylthiophene) (P3BT) and poly(3-octylthiophene) (P3OT) were deposited onto glass/Indium-Tin-Oxide) substrates and characterized by UV-visible optical spectroscopy, atomic force microscopy, cyclic voltammetry, and conductivity measurements. The results demonstrated the influence of the deposition technique on the electrical outcome, moreover, the regioregularity affected all the performed characterizations. In addition, this paper may be useful to understand how the amphiphilic molecule addition affected the film properties of regioregular and regiorandom P3ATs, particularly the energy diagram provided by the electrochemical and absorption features.
Collapse
Affiliation(s)
- Lucas K M Roncaselli
- UNESP-Univ Estadual Paulista, Faculdade de Ciências e Tecnologia-Rua Roberto Simonsen 305, CEP 19060-900, Presidente Prudente-SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Heredia DA, Martínez SR, Durantini AM, Pérez ME, Mangione MI, Durantini JE, Gervaldo MA, Otero LA, Durantini EN. Antimicrobial Photodynamic Polymeric Films Bearing Biscarbazol Triphenylamine End-Capped Dendrimeric Zn(II) Porphyrin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27574-27587. [PMID: 31310503 DOI: 10.1021/acsami.9b09119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel biscarbazol triphenylamine end-capped dendrimeric zinc(II) porphyrin (DP 5) was synthesized by click chemistry. This compound is a cruciform dendrimer that bears a nucleus of zinc(II) tetrapyrrolic macrocycle substituted at the meso positions by four identical substituents. These are formed by a tetrafluorophenyl group that possesses a triazole unit in the para position. This nitrogenous heterocyclic is connected to a 4,4'-di(N-carbazolyl)triphenylamine group by means of a phenylenevinylene bridge, which allows the conjugation between the nucleus and this external electropolymerizable carbazoyl group. In this structure, dendrimeric arms act as light-harvesting antennas, increasing the absorption of blue light, and as electroactive moieties. The electrochemical oxidation of the carbazole groups contained in the terminal arms of the DP 5 was used to obtain novel, stable, and reproducible fully π-conjugated photoactive polymeric films (FDP 5). First, the spectroscopic characteristics and photodynamic properties of DP 5 were compared with its constitutional components derived of porphyrin P 6 and carbazole D 7 moieties in solution. The fluorescence emissions of the dendrimeric units in DP 5 were more strongly quenched by the tetrapyrrolic macrocycle, indicating photoinduced energy transfer. In addition, FDP 5 film showed the Soret and Q absorption bands and red fluorescence emission of the corresponding zinc(II) porphyrin. Also, FDP 5 film was highly stable to photobleaching, and it was able to produce singlet molecular oxygen in both N,N-dimethylformamide (DMF) and water. Therefore, the porphyrin units embedded in the polymeric matrix of FDP 5 film mainly retain the photochemical properties. Photodynamic inactivation mediated by FDP 5 film was investigated in Staphylococcus aureus and Escherichia coli. When a cell suspension was deposited on the surface, complete eradication of S. aureus and a 99% reduction in E. coli survival were found after 15 and 30 min of irradiation, respectively. Also, FDP 5 film was highly effective to eliminate individual bacteria attached to the surface. In addition, photodynamic inactivation (PDI) sensitized by FDP 5 film produced >99.99% bacterial killing in biofilms formed on the surface after 60 min irradiation. The results indicate that FDP 5 film represents an interesting and versatile photodynamic active material to eradicate bacteria as planktonic cells, individual attached microbes, or biofilms.
Collapse
Affiliation(s)
- Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| | - Sol R Martínez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| | - M Eugenia Pérez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| | - María I Mangione
- IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , S2002LRK Rosario , Argentina
| | - Javier E Durantini
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| | - Miguel A Gervaldo
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| | - Luis A Otero
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales , Universidad Nacional de Río Cuarto , Ruta Nacional 36 Km 601 , X5804BYA Río Cuarto, Córdoba , Argentina
| |
Collapse
|
35
|
Noy JM, Li Y, Smolan W, Roth PJ. Azide–para-Fluoro Substitution on Polymers: Multipurpose Precursors for Efficient Sequential Postpolymerization Modification. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00109] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Janina-Miriam Noy
- Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Yuman Li
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Willi Smolan
- Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Peter J. Roth
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
36
|
Huang D, Liu Y, Qin A, Tang BZ. Structure–Property Relationship of Regioregular Polytriazoles Produced by Ligand-Controlled Regiodivergent Ru(II)-Catalyzed Azide–Alkyne Click Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yong Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
37
|
Ferlin F, Luciani L, Viteritti O, Brunori F, Piermatti O, Santoro S, Vaccaro L. Polarclean as a Sustainable Reaction Medium for the Waste Minimized Synthesis of Heterocyclic Compounds. Front Chem 2019; 6:659. [PMID: 30761286 PMCID: PMC6362304 DOI: 10.3389/fchem.2018.00659] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Herein we report the use of Rhodiasolv© Polarclean as a novel polar aprotic solvent for the synthesis of decorated heterocycles via dipolar cycloaddition (isooxazoles) or intramolecular C–H functionalization processes (benzo-fused chromenes). The use of Polarclean allowed to isolate the final products in good yields by simple solid filtration or liquid-liquid phase separation, avoiding the need for chromatographic purification. Moreover, since in the synthesis of benzo-fused chromenes, the metal catalyst is retained in Polarclean, the catalyst/reaction medium can be easily reused for consecutive reaction runs, without any apparent loss in efficiency. This methodology is associated with a limited waste production. These results extend the applicability of Polarclean as a promising reaction medium for the replacement of toxic petrol-based solvent.
Collapse
Affiliation(s)
- Francesco Ferlin
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lorenzo Luciani
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Orlando Viteritti
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Francesco Brunori
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Oriana Piermatti
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Stefano Santoro
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Luigi Vaccaro
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| |
Collapse
|
38
|
Cao X, Li Y, Liu B, Gao A, Cao J, Yu Y, Hei X. A fluorescent conjugated polymer photocatalyst based on Knoevenagel polycondensation for hydrogen production. NEW J CHEM 2019. [DOI: 10.1039/c9nj01686d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An organic polymer photocatalyst (p-P) for hydrogen production was designed and synthesized through Knoevenagel condensation with a high yield.
Collapse
Affiliation(s)
- Xinhua Cao
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yiran Li
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Binqian Liu
- State Key Laboratory Breeding Base of Photocatalysis Fuzhou University
- Fuzhou
- P. R. China
| | - Aiping Gao
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Juntao Cao
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yongsheng Yu
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Xiaohan Hei
- College of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan 467000
- China
| |
Collapse
|
39
|
Shang JQ, Fu H, Li Y, Yang T, Gao C, Li YM. Copper-catalyzed decarboxylation/cycloaddition cascade of alkynyl carboxylic acids with azide. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Yang LC, Han L, Ma HW, Liu PB, Shen HY, Li C, Zhang SB, Li Y. Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2203-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Beto CC, Yang Y, Zeman CJ, Ghiviriga I, Schanze KS, Veige AS. Cu-Catalyzed Azide-Pt-Acetylide Cycloaddition: Progress toward a Conjugated Metallopolymer via iClick. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher C. Beto
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Yajing Yang
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Charles J. Zeman
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | | |
Collapse
|
42
|
Electron-deficient 1,2,7,8-tetraazaperylene derivative: Efficient synthesis and copolymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Alameddine B, Baig N, Shetty S, Al-Mousawi S, Al-Sagheer F. Triptycene-containing Poly(vinylene sulfone) derivatives from a metal-free thiol-yne click polymerization followed by a mild oxidation reaction. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Creamer A, Wood CS, Howes PD, Casey A, Cong S, Marsh AV, Godin R, Panidi J, Anthopoulos TD, Burgess CH, Wu T, Fei Z, Hamilton I, McLachlan MA, Stevens MM, Heeney M. Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nat Commun 2018; 9:3237. [PMID: 30104597 PMCID: PMC6089984 DOI: 10.1038/s41467-018-05381-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
Backbone functionalisation of conjugated polymers is crucial to their performance in many applications, from electronic displays to nanoparticle biosensors, yet there are limited approaches to introduce functionality. To address this challenge we have developed a method for the direct modification of the aromatic backbone of a conjugated polymer, post-polymerisation. This is achieved via a quantitative nucleophilic aromatic substitution (SNAr) reaction on a range of fluorinated electron-deficient comonomers. The method allows for facile tuning of the physical and optoelectronic properties within a batch of consistent molecular weight and dispersity. It also enables the introduction of multiple different functional groups onto the polymer backbone in a controlled manner. To demonstrate the versatility of this reaction, we designed and synthesised a range of emissive poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT)-based polymers for the creation of mono and multifunctional semiconducting polymer nanoparticles (SPNs) capable of two orthogonal bioconjugation reactions on the same surface.
Collapse
Affiliation(s)
- Adam Creamer
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Christopher S Wood
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Philip D Howes
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Abby Casey
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Shengyu Cong
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Adam V Marsh
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Robert Godin
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Julianna Panidi
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Thomas D Anthopoulos
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
- Physical Sciences and Engineering Division (PSE) King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Claire H Burgess
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Tingman Wu
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Zhuping Fei
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Iain Hamilton
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | | | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
- Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
45
|
Wang X, Li J, Huang Y, Zhu J, Hu R, Wu W, Jiang H. Facile Synthesis of π-Conjugated Quinazoline-Substituted Ethenes from 2-Ethynylanilines and Benzonitriles under Transition-Metal-Free Conditions. J Org Chem 2018; 83:10453-10464. [DOI: 10.1021/acs.joc.8b01494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yubing Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
46
|
Yang B, Fu C, Li J, Xu G. Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Fu W, Dong L, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Synthesis of Polyquinolines via One-Pot Polymerization of Alkyne, Aldehyde, and Aniline under Metal-Free Catalysis and Their Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Beto CC, Holt ED, Yang Y, Ghiviriga I, Schanze KS, Veige AS. A new synthetic route to in-chain metallopolymers via copper(i) catalyzed azide-platinum-acetylide iClick. Chem Commun (Camb) 2018; 53:9934-9937. [PMID: 28829464 DOI: 10.1039/c7cc06289c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The first example of an in-chain metallo-poly(triazolate) synthesized by CuAAC is reported. Azido-platinum-acetylide (A-M-B) monomers are catalytically polymerized with copper(i) acetate to yield 1,2,3-triazolate linked Pt(ii) units. The metallopolymers are characterized by multinuclear NMR, IR, UV/Vis, GPC, and MS.
Collapse
Affiliation(s)
- C C Beto
- University of Florida, Department of Chemistry, Center for Catalysis, P. O. Box 117200, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
49
|
von Zons T, Brokmann L, Lippke J, Preuße T, Hülsmann M, Schaate A, Behrens P, Godt A. Postsynthetic Modification of Metal–Organic Frameworks through Nitrile Oxide–Alkyne Cycloaddition. Inorg Chem 2018; 57:3348-3359. [DOI: 10.1021/acs.inorgchem.8b00126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tobias von Zons
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Luisa Brokmann
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jann Lippke
- Institute of Inorganic Chemistry and ZFM-Center for Solid State Chemistry and New Materials, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Thomas Preuße
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Andreas Schaate
- Institute of Inorganic Chemistry and ZFM-Center for Solid State Chemistry and New Materials, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Peter Behrens
- Institute of Inorganic Chemistry and ZFM-Center for Solid State Chemistry and New Materials, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
50
|
Michinobu T, Diederich F. The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores. Angew Chem Int Ed Engl 2018; 57:3552-3577. [DOI: 10.1002/anie.201711605] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuyoshi Michinobu
- Department of Materials Science and Engineering; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 1 52-8552 Japan
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|