1
|
Yuan S, Zhao E. Recent advances of lipid droplet-targeted AIE-active materials for imaging, diagnosis and therapy. Biosens Bioelectron 2025; 267:116802. [PMID: 39332250 DOI: 10.1016/j.bios.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Lipid droplets (LDs) are cellular organelles specialized in the storage and regulating the release of lipids critical for energy metabolism. As investigation on LDs deepens, the complex biological functions of LDs are revealed and their relationships with various diseases such as atherosclerosis, fatty liver, obesity, and cancer are uncovered. Fluorescence-based techniques with simple operations, visible results and high non-invasiveness are ideal tools for investigating LD-related biological processes and diseases. Materials with aggregation-induced emission (AIE) characteristics have emerged as promising candidates for investigating LDs due to their high signal-to-noise ratio (S/N), strong photostability, and large Stokes shift. This review discusses the principles and advantages of LD-targeting AIE probes for imaging LDs, diagnosis of LD-associated diseases including atherosclerotic plaques, liver diseases, acute kidney diseases and cancer, therapies with LD-targeting AIE-active photosensitizers and other relevant fields in the past five years. Through typical examples, we illustrate the status of investigating LD-related imaging, diagnosis of diseases and therapy with AIE materials. This review is expected to attract attentions from scientists with different research backgrounds and contribute to the further development of LD-targeting AIE materials.
Collapse
Affiliation(s)
- Sisi Yuan
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Wang J, Cao M, Han L, Shangguan P, Liu Y, Zhong Y, Chen C, Wang G, Chen X, Lin M, Lu M, Luo Z, He M, Sung HHY, Niu G, Lam JWY, Shi B, Tang BZ. Blood-Brain Barrier-Penetrative Fluorescent Anticancer Agents Triggering Paraptosis and Ferroptosis for Glioblastoma Therapy. J Am Chem Soc 2024; 146:28783-28794. [PMID: 39394087 DOI: 10.1021/jacs.4c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Currently used drugs for glioblastoma (GBM) treatments are ineffective, primarily due to the significant challenges posed by strong drug resistance, poor blood-brain barrier (BBB) permeability, and the lack of tumor specificity. Here, we report two cationic fluorescent anticancer agents (TriPEX-ClO4 and TriPEX-PF6) capable of BBB penetration for efficient GBM therapy via paraptosis and ferroptosis induction. These aggregation-induced emission (AIE)-active agents specifically target mitochondria, effectively triggering ATF4/JNK/Alix-regulated paraptosis and GPX4-mediated ferroptosis. Specifically, they rapidly induce substantial mitochondria-derived vacuolation, accompanied by reactive oxygen species generation, decreased mitochondrial membrane potential, and intracellular Ca2+ overload, thereby disrupting metabolisms and inducing nonapoptotic cell death. In vivo imaging revealed that TriPEX-ClO4 and TriPEX-PF6 successfully traversed the BBB to target orthotopic glioma and initiated effective synergistic therapy postintravenous injection. Our AIE drugs emerged as the pioneering paraptosis inducers against drug-resistant GBM, significantly extending survival up to 40 days compared to Temozolomide (20 days) in drug-resistant GBM-bearing mice. These compelling results open up new venues for the development of fluorescent anticancer drugs and innovative treatments for brain diseases.
Collapse
Affiliation(s)
- Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Chaoyue Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ming Lin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mengya Lu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhengqun Luo
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mu He
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Guangle Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
3
|
Huang X, Chang L, Ge J, Wang P, Yin R, Liu G, Wang G. Visualized Enzyme-Activated Fluorescence Probe for Accurately Detecting β-Gal in Living Cells and BALB/c Nude Mice. J Fluoresc 2024:10.1007/s10895-024-03680-2. [PMID: 38607528 DOI: 10.1007/s10895-024-03680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer was one of the major malignant tumors threatening human health and β-Gal was recognized as a principal biomarker for primary colorectal cancer. Thus, designing specific and efficient quantitative detection methods for measuring β-Gal enzyme activity was of great clinical test significance. Herein, an ultrasensitive detection method based on Turn-on fluorescence probe (CS-βGal) was reported for visualizing the detection of exogenous and endogenous β-galactosidase enzyme activity. The test method possessed a series of excellent performances, such as a significant fluorescence enhancement (about 11.3-fold), high selectivity as well as superior sensitivity. Furthermore, under the optimal experimental conditions, a relatively low limit of detection down to 0.024 U/mL was achieved for fluorescence titration experiment. It was thanks to the better biocompatibility and low cytotoxicity, CS-βGal had been triumphantly employed to visual detect endogenous and exogenous β-Gal concentration variations in living cells with noteworthy anti-interference performance. More biologically significant was the fact that the application of CS-βGal in BALB/c nude mice was also achieved successfully for monitoring endogenous β-Gal enzyme activity.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Le Chang
- Nanjing Aoyin Biotechnology Co., Ltd., Nanjing, 210061, Jiangsu, PR China
| | - Jianxin Ge
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Ping Wang
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Rui Yin
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Guanqi Liu
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China
| | - Guopin Wang
- Department of Gastroenterology, Nanjing Jiangbei Hospital, Nanjing, 210048, Jiangsu, PR China.
| |
Collapse
|
4
|
Xue K, Zhao Y, Sun S, Li Y, Qi Z. A near-infrared aggregation-induced emission photosensitizer targeting mitochondria for depleting Cu 2+ to trigger light-activated cancer cells oncosis. Bioorg Chem 2024; 143:107020. [PMID: 38176374 DOI: 10.1016/j.bioorg.2023.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saidong Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yuanhang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
5
|
Zhang R, Zhang C, Lu Q, Liang C, Tian M, Li Z, Yang Y, Li X, Deng Y. Cancer-cell-specific Self-Reporting Photosensitizer for Precise Identification and Ablation of Cancer Cells. Anal Chem 2024; 96:1659-1667. [PMID: 38238102 DOI: 10.1021/acs.analchem.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Cancer-cell-specific fluorescent photosensitizers (PSs) are highly desired molecular tools for cancer ablation with minimal damage to normal cells. However, such PSs that can achieve cancer specification and ablation and a self-reporting manner concurrently are rarely reported and still an extremely challenging task. Herein, we have proposed a feasible strategy and conceived a series of fluorescent PSs based on simple chemical structures for identifying and killing cancer cells as well as monitoring the photodynamic therapy (PDT) process by visualizing the change of subcellular localization. All of the constructed cationic molecules could stain mitochondria in cancer cells, identify cancer cells specifically, and monitor cancer cell viability. Among these, IVP-Br has the strongest ability to produce ROS, which serves as a potent PS for specific recognition and killing of cancer cells. IVP-Br could translocate from mitochondria to the nucleolus during PDT, self-reporting the entire therapeutic process. Mechanism study confirms that IVP-Br with light irradiation causes cancer cell ablation via inducing cell cycle arrest, cell apoptosis, and autophagy. The efficient ablation of tumor through PDT induced by IVP-Br has been confirmed in the 3D tumor spheroid chip. Particularly, IVP-Br could discriminate cancer cells from white blood cells (WBCs), exhibiting great potential to identify circulating tumor cells (CTCs).
Collapse
Affiliation(s)
- Ruoyao Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Chen Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Lu
- China Fire and Rescue Institute, Changping, Beijing 102202, China
| | - Chaohui Liang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Zhao Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanzhan Yang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Zhang RZ, Liu H, Xin CL, Han N, Ma CQ, Yu S, Wang YB, Xing LB. Construction of aggregation-induced emission photosensitizers through host-guest interactions for photooxidation reaction and light-harvesting. J Colloid Interface Sci 2023; 651:894-901. [PMID: 37573735 DOI: 10.1016/j.jcis.2023.07.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
In the present work, we have designed and synthesized a triphenylamine modified cyanophenylenevinylene derivative (TPCI), which can self-assembly with cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) through host-guest interactions to form supramolecular complexes (TPCI-CB[6]) and supramolecular polymers (TPCI-CB[8]) in the aqueous solution. The supramolecular assemblies of TPCI-CB[6] and TPCI-CB[8] not only exhibited high singlet oxygen (1O2) production efficiency as photosensitizers, but also realized the application in the construction of artificial light-harvesting systems due to the excellent fluorescence properties in the aqueous solution. The production efficiency of 1O2 has been effectively improved after the addition of CB[6] and CB[8] for TPCI, which were applied as efficient photosensitizers in the photooxidation reactions of thioanisole and its derivatives with the highest yield of 98% in the aqueous solution. The excellent fluorescence properties of TPCI-CB[6] and TPCI-CB[8] can be used as energy donors in artificial light-harvesting systems with energy acceptors sulforhodamine 101 (SR101) and cyanine dye 5 (Cy5), in which one-step energy transfer processes of TPCI-CB[6]+SR101 and TPCI-CB[8]+Cy5, and a two-step sequential energy transfer process of TPCI-CB[6]+SR101+Cy5 were constructed to simulate the natural photosynthesis system.
Collapse
Affiliation(s)
- Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Cheng-Long Xin
- Shandong Center for Disease Control and Prevention, Jinan 255014, PR China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Chao-Qun Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
7
|
Yang S, Yu H, Liu J, Ma L, Hou Z, Ma J, Miao MZ, Kwok RTK, Sun J, Sung HHY, Williams ID, Lam JWY, Liu X, Tang BZ. Integrating Anion-π + Interaction and Crowded Conformation to Develop Multifunctional NIR AIEgen for Effective Tumor Theranostics via Hippo-YAP Pathway. ACS NANO 2023; 17:21182-21194. [PMID: 37901961 DOI: 10.1021/acsnano.3c05080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The technology of aggregation-induced emission (AIE) presents a promising avenue for fluorescence imaging-guided photodynamic cancer therapy. However, existing near-infrared AIE photosensitizers (PSs) frequently encounter limitations, including tedious synthesis, poor tumor retention, and a limited understanding of the underlying molecular biology mechanism. Herein, an effective molecular design paradigm of anion-π+ interaction combined with the inherently crowded conformation that could enhance fluorescence efficacy and reactive oxygen species generation was proposed through a concise synthetic method. Mechanistically, upon photosensitization, the Hippo signaling pathway contributes to the death of melanoma cells and promotes the nuclear location of its downstream factor, yes-associated protein, which regulates the transcription and expression of apoptosis-related genes. The finding in this study would trigger the development of high-performance and versatile AIE PSs for precision cancer therapy based on a definite regulatory mechanism.
Collapse
Affiliation(s)
- Shiping Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Lunjie Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zhe Hou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Michael Z Miao
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Xiao R, Zheng F, Kang K, Xiao L, Bi A, Chen Y, Zhou Q, Feng X, Chen Z, Yin H, Wang W, Chen Z, Cheng X, Zeng W. Precise visualization and ROS-dependent photodynamic therapy of colorectal cancer with a novel mitochondrial viscosity photosensitive fluorescent probe. Biomater Res 2023; 27:112. [PMID: 37941059 PMCID: PMC10634017 DOI: 10.1186/s40824-023-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prominent global cancer with high mortality rates among human beings. Efficient diagnosis and treatment have always been a challenge for CRC management. Fluorescence guided cancer therapy, which combines diagnosis with therapy into one platform, has brought a new chance for achieving precise cancer theranostics. Among this, photosensitizers, applied in photodynamic therapy (PDT), given the integration of real-time imaging capacity and efficacious treatment feasibility, show great potential to serve as remarkable tools. Although much effort has been put into constructing photosensitizers for locating and destroying CRC cells, it is still in high need to develop novel photosensitizers to attain specific detection and fulfil effective therapy. METHODS Probe HTI was rational synthesized for the diagnosis and treatment of CRC. Spectrometric determination was carried out first, followed by the 1O2 generation ability test. Then, HTI was displayed in distinguishing CRC cells from normal cells Further, the PDT effect of the photosensitizer was studied in vitro. Additionally, HTI was used in CRC BALB/c nude mice model to validate its viscosity labelling and tumor suppression characteristics. RESULTS We successfully fabricated a mitochondrial targeting probe, HTI, together with remarkable viscosity sensitivity, ultralow background interference, and excellent 1O2 generation capacity. HTI was favorably applied to the viscosity detection, displaying a 11-fold fluorescent intensity enhancement in solvents from 1.57 cp to 2043 cp. Then, it was demonstrated that HTI could distinguish CRC cells from normal cells upon the difference in mitochondrial viscosity. Moreover, HTI was qualified for producing 1O2 with high efficiency in cells, supported by the sparkling signals of DCFH after incubation with HTI under light irradiation. More importantly, the viscosity labelling and tumor suppression performance in CRC CDX model was determined, enriching the multifunctional validation of HTI in vivo. CONCLUSIONS In this study, HTI was demonstrated to show a sensitive response to mitochondrial viscosity and possess a high 1O2 generation capacity. Both in vitro cell imaging and in vivo tumor treatment trials proved that HTI was effectively served as a robust scaffold for tumor labeling and CRC cells clearance. This breakthrough discovery held immense potential for advancing the early diagnosis and management of CRC through PDT. By leveraging HTI's properties, medical professionals could benefit from improved diagnostic accuracy and targeted treatment in CRC management, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Runsha Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Kuo Kang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Lei Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Department of Colorectal Surgery, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Yiting Chen
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Qi Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xueping Feng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, 410013, People's Republic of China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China.
| | - Xiaomiao Cheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- Department of Nephrology, Xiangya Changde Hospital, Changde, 415000, People's Republic of China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
9
|
Biesen L, Hartmann Y, Müller TJJ. Diaroyl-S,N-ketene Acetals: Red-Shifted Solid-State and Aggregation-Induced Emitters from a One-Pot Synthesis. Chemistry 2023; 29:e202301908. [PMID: 37475616 DOI: 10.1002/chem.202301908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
10
|
Arsenov MA, Muratov DV, Nelyubina YV, Loginov DA. Tandem C-H Annulation Reaction of Benzaldehydes and Aminobenzoic Acids with Two Equivalents of Alkyne toward Isocoumarin-Conjugated Isoquinolinium Salts: A Family of Organic Luminophores. J Org Chem 2023. [PMID: 37327394 DOI: 10.1021/acs.joc.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel rhodium-catalyzed tandem C-H annulation of commercially available benzaldehydes and aminobenzoic acids with 2 equiv of alkyne is reported for the construction of isocoumarin-conjugated isoquinolinium salts that demonstrate diverse outstanding photoactivity. Depending on the substituents in the isoquinolinium moiety, they display either highly efficient fluorescence (up to 99% of quantum yield) or strong fluorescence quenching, which is provided by the transfer of the HOMO from the isoquinolinium to the isocoumarin moiety. Importantly, the functional groups in the benzaldehyde coupling partner also strongly affect the reaction selectivity, shifting the pathway to the formation of the photoinactive isocoumarin-substituted indenone imines and indenyl amines. Selective formation of the latter can be achieved by using a reduced amount of the oxidizing additive.
Collapse
Affiliation(s)
- Mikhail A Arsenov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
| | - Dmitry V Muratov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
| | - Dmitry A Loginov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, 119991 Moscow, Russian Federation
- G. V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation
| |
Collapse
|
11
|
Gao J, Jiang H, Chen P, Zhang R, Liu N. Photosensitizer-based small molecule theranostic agents for tumor-targeted monitoring and phototherapy. Bioorg Chem 2023; 136:106554. [PMID: 37094481 DOI: 10.1016/j.bioorg.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.
Collapse
Affiliation(s)
- Jiake Gao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
12
|
Ingle J, Basu S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS OMEGA 2023; 8:8925-8935. [PMID: 36936289 PMCID: PMC10018722 DOI: 10.1021/acsomega.3c00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
In recent years, mitochondrion (powerhouse of the cells) gained lots of interest as one of the unorthodox targets for futuristic cancer therapy. As a result, novel small molecules were developed to damage and image mitochondria in cancer models. In this context, aggregation-induced emission probes (AIEgens) received immense attention due to their applications in mitochondria-targeted biosensing, imaging, and biomedical theranostics. On the other hand, phototherapy (photodynamic and photothermal) has emerged as a powerful alternative to manage cancer due to its less invasive nature. However, merging these two areas to engineer mitochondria-targeted phototherapeutic probes for cancer diagnosis and treatment has remained a major challenge. In this mini-review, we will outline the development of novel mitochondria-targeted small molecule AIEgens as imaging agents and photosensitizers for photodynamic therapy along with dual photodymanic-phototheramal therapy and chemo-photodynamic therapy. We will also highlight the current challenges in developing mitochondria-targeted photothermal therapy probes for future biomedical theranostic applications to manage cancer.
Collapse
|
13
|
Fumoto T, Tanaka R, Ooyama Y. Aggregation-induced emission of a bis(imino)acenaphthene zinc complex with tetraphenylethene units. Dalton Trans 2023; 52:5047-5055. [PMID: 36807366 DOI: 10.1039/d2dt03525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Using bis(imino)acenaphthene (BIAN) zinc(II) and palladium(II) complexes with tetraphenylethene (TPE) units as bulky aryl groups, Zn-2 and Pd-2 have been designed and developed, and their photophysical properties in solution and in the solid state have been investigated. Both in solution and in the solid state Zn-2 and Pd-2 show two photoabsorption bands in the ranges of 300 nm to 350 nm and 450 nm to 600 nm, which are assigned to the π-π* transition originating from both the TPE units and naphthalene units and the intraligand charge transfer (ILCT) between the TPE units and the BIAN unit, respectively. Density functional theory (DFT) calculations demonstrated that for Zn-2 the highest occupied molecular orbitals (HOMO) are localized on the TPE units, while the lowest unoccupied molecular orbitals (LUMO) are localized on the BIAN unit, leading to the appearance of a photoabsorption band on the ILCT. The emission from Zn-2 was quenched in solution, but appeared as phosphorescence at around 600 nm by photoexcitation at the ILCT band in the solid state as well as in the aggregated state, which was formed by the addition of n-hexane as a poor solvent to the dichloromethane (DCM) solution. The aggregate formation of Zn-2 in the DCM/n-hexane (10 wt%/90 wt%) solution was confirmed by the Tyndall scattering and scanning electron microscopy (SEM) measurements, demonstrating the aggregation-induced emission (AIE) characteristics of Zn-2. On the other hand, Pd-2 was non-emissive in the solid state and in the aggregated state as well as in solution. Moreover, the DCM-inclusion complexes of Zn-2 and Pd-2 were obtained and their photophysical properties were investigated. It was found that the photoluminescence quantum yield (ΦPL-solid) values of Zn-2 and Zn-2-DCM in the solid state are less than 1%. Single-crystal X-ray structural analysis of Zn-2-DCM revealed the absence of intermolecular π-π interactions. Consequently, it was suggested that the low ΦPL-solid value of Zn-2 is mainly due to the radiationless relaxation of the excitons by dynamic rotation of the phenyl groups of the TPE units, even in the solid state and in the aggregation state.
Collapse
Affiliation(s)
- Takuma Fumoto
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Ryo Tanaka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
14
|
Han C, Sun SB, Ji X, Wang JY. A novel fluorescent probe with ACQ-AIE conversion by alkyl chain engineering for simultaneous visualization of lipid droplets and lysosomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121884. [PMID: 36179563 DOI: 10.1016/j.saa.2022.121884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The AIE bio-probes have attracted extensive attention because of their good brightness, long-term in situ retention ability, photostability and low cytotoxicity. Recently, the transformation of ACQ to AIE has become very popular, which is very important for the further development of AIE probes. Herein, a series of novel dyes (NR-Lyso-Ⅰ, NR-Lyso-Ⅱ, NR-Lyso-III, NR-Lyso-IV) were designed and synthesized. It was found that alkylation of 4-aminonaphthalimide could achieve the transformation of the dye from ACQ to AIE effect due to the growth of carbon chain. Moreover, the AIE probe NR-Lyso-IV exhibited dual-state emission (DSE) and large Stokes shift (>100 nm), excellent selectivity, photostability, and low cytotoxicity, which was able to simultaneous visualize the lipid droplets (LDs) and lysosomes of HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Chen Han
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Shao-Bin Sun
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xun Ji
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jian-Yong Wang
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
15
|
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2023; 10:1095598. [PMID: 36688039 PMCID: PMC9846181 DOI: 10.3389/fchem.2022.1095598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots etc.), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meheli Adhikary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Praveen Kumar Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C. Das
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Seema Bhatnagar,
| |
Collapse
|
16
|
Zhou L, Chen L, Chen S, Pu Z, Gu M, Shen Y. Highly Efficient Photodynamic Therapy with Mitochondria-Targeting Aggregation-Induced Emission Photosensitizer for Retinoblastoma. Adv Healthc Mater 2023; 12:e2202219. [PMID: 36271734 DOI: 10.1002/adhm.202202219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Indexed: 01/26/2023]
Abstract
Retinoblastoma (RB) is an aggressive eye cancer in infancy and childhood, lethal by metastasis if left untreated. Currently, the survival rate and the chance of saving vision depend on the severity of the disease. In this work, a highly efficient photodynamic ophthalmic therapy for RB is reported by employing an isoquinolinium-based aggregation-induced-emission (AIE) photosensitizer (PS) TPE-IQ-2O for photodynamic inactivation (PDI). TPE-IQ-2O is an efficient mitochondria-targeting photosensitizer as an efficient guided photodynamic therapy (PDT) agent against cancer cells. Maximizing cancer-selectively damage to tumors with minimized side effects on normal tissue is essential for effective anticancer PDT and provides long-lasting protection against metastasis. In addition, TPE-IQ-2O can effectively reduce the degree of tissue inflammation by inhibiting the expression of related inflammatory factors. TPE-IQ-2O also exhibits excellent biocompatibility with a neglectable hemolysis effect on mouse red blood cells and almost no killing effect on mammalian cells, which enables its potential applications in the treatment of RB.
Collapse
Affiliation(s)
- Lingbo Zhou
- Eye Center, Wuhan University Renmin Hospital, Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan, Hubei, 430060, China
| | - Luojia Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, 999077, China
| | - Zeyuan Pu
- Eye Center, Wuhan University Renmin Hospital, Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan, Hubei, 430060, China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yin Shen
- Eye Center, Wuhan University Renmin Hospital, Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
17
|
Cen P, Cui C, Zhong Y, Zhou Y, Wang Z, Xu P, Luo X, Xue L, Cheng Z, Wei Y, He Q, Zhang H, Tian M. Visualization of Mitochondria During Embryogenesis in Zebrafish by Aggregation-Induced Emission Molecules. Mol Imaging Biol 2022; 24:1007-1017. [PMID: 35835950 DOI: 10.1007/s11307-022-01752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Aggregation-induced emission (AIE) molecules have been widely utilized for fluorescence imaging in many biomedical applications, benefited from large Stokes shift, high quantum yield, good biocompatibility, and resistance to photobleaching. And visualization of mitochondria is almost investigated in vitro and ex vivo, but in vivo study of mitochondria is more essential for systematic biological research, especially during embryogenesis. Therefore, suitable and time-saving alternatives with simple operation based on AIE molecules are urgently needed compared with traditional transgenic approach. PROCEDURES Five tetraphenylethylene isoquinolinium (TPE-IQ)-based molecules with AIE characteristics and their ability of mitochondrial visualization in vitro and in vivo and mitochondrial tracking during embryogenesis on zebrafish model were investigated. The biosafety of these AIE molecules was also evaluated systematically in vitro and in vivo. RESULTS All these five AIE molecules could image mitochondria in vitro with good biocompatibility. In them, TPE-IQ1 exhibited excellent imaging quality for in vivo visualization and tracking of mitochondria during the 4-day embryogenesis in zebrafish, in comparison with the conventional transgenic fluorescent protein. Furthermore, TPE-IQ1 could visualize mitochondrial damage induced by chemicals in real time on 24-h post fertilization (hpf) embryos. CONCLUSIONS This study indicated TPE-IQ-based AIE molecules had the potential for mitochondrial imaging and tracking during embryogenesis and mitochondrial damage visualization in vivo.
Collapse
Affiliation(s)
- Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Pengfei Xu
- Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyun Luo
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Zhen Cheng
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, China
| | - Qinggang He
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China. .,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China. .,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China.
| |
Collapse
|
18
|
Liu J, Chen W, Zheng C, Hu F, Zhai J, Bai Q, Sun N, Qian G, Zhang Y, Dong K, Lu T. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. Eur J Med Chem 2022; 244:114843. [DOI: 10.1016/j.ejmech.2022.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/14/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
19
|
|
20
|
Abrahamse H, Hamblin MR, George S. Structure and functions of Aggregation-Induced Emission-Photosensitizers in anticancer and antimicrobial theranostics. Front Chem 2022; 10:984268. [PMID: 36110134 PMCID: PMC9468771 DOI: 10.3389/fchem.2022.984268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Photosensitizers with Aggregation-Induced Emission (AIE) can allow the efficient light-mediated generation of Reactive Oxygen Species (ROS) based on their complex molecular structure, while interacting with living cells. They achieve better tissue targeting and allow penetration of different wavelengths of Ultraviolet-Visible-Infrared irradiation. Not surprisingly, they are useful for fluorescence image-guided Photodynamic Therapy (PDT) against cancers of diverse origin. AIE-photosensitizers can also function as broad spectrum antimicrobials, capable of destroying the outer wall of microbes such as bacteria or fungi without the issues of drug resistance, and can also bind to viruses and deactivate them. Often, they exhibit poor solubility and cellular toxicity, which compromise their theranostic efficacy. This could be circumvented by using suitable nanomaterials for improved biological compatibility and cellular targeting. Such dual-function AIE-photosensitizers nanoparticles show unparalleled precision for image-guided detection of tumors as well as generation of ROS for targeted PDT in living systems, even while using low power visible light. In short, the development of AIE-photosensitizer nanoparticles could be a better solution for light-mediated destruction of unwanted eukaryotic cells and selective elimination of prokaryotic pathogens, although, there is a dearth of pre-clinical and clinical data in the literature.
Collapse
Affiliation(s)
- Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Sajan George
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, India
- *Correspondence: Sajan George, ,
| |
Collapse
|
21
|
Upconversion Nanostructures Applied in Theranostic Systems. Int J Mol Sci 2022; 23:ijms23169003. [PMID: 36012269 PMCID: PMC9409402 DOI: 10.3390/ijms23169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Upconversion (UC) nanostructures, which can upconvert near-infrared (NIR) light with low energy to visible or UV light with higher energy, are investigated for theranostic applications. The surface of lanthanide (Ln)-doped UC nanostructures can be modified with different functional groups and bioconjugated with biomolecules for therapeutic systems. On the other hand, organic molecular-based UC nanostructures, by using the triplet-triplet annihilation (TTA) UC mechanism, have high UC quantum yields and do not require high excitation power. In this review, the major UC mechanisms in different nanostructures have been introduced, including the Ln-doped UC mechanism and the TTA UC mechanism. The design and fabrication of Ln-doped UC nanostructures and TTA UC-based UC nanostructures for theranostic applications have been reviewed and discussed. In addition, the current progress in the application of UC nanostructures for diagnosis and therapy has been summarized, including tumor-targeted bioimaging and chemotherapy, image-guided diagnosis and phototherapy, NIR-triggered controlled drug releasing and bioimaging. We also provide insight into the development of emerging UC nanostructures in the field of theranostics.
Collapse
|
22
|
Zheng N, Wang Q, Zhang S, Mao C, He L, Liu S. Recent advances in nanotechnology mediated mitochondria-targeted imaging. J Mater Chem B 2022; 10:7450-7459. [PMID: 35894786 DOI: 10.1039/d2tb00935h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria play a critical role in cell growth and metabolism. And mitochondrial dysfunction is closely related to various diseases, such as cancers, and neurodegenerative and cardiovascular diseases. Therefore, it is of vital importance to monitor mitochondrial dynamics and function. One of the most widely used methods is to use nanotechnology-mediated mitochondria targeting and imaging. It has gained increasing attention in the past few years because of the flexibility, versatility and effectiveness of nanotechnology. In the past few years, researchers have implemented various types of design and construction of the mitochondrial structure dependent nanoprobes following assorted nanotechnology pathways. This review presents an overview on the recent development of mitochondrial structure dependent target imaging probes and classifies it into two main sections: mitochondrial membrane targeting and mitochondrial microenvironment targeting. Also, the significant impact of previous research as well as the application and perspectives will be demonstrated.
Collapse
Affiliation(s)
- Nannan Zheng
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Qinghui Wang
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Shijin Zhang
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Chenchen Mao
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Shaoqin Liu
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
23
|
Hu M, Wang B, Zhang H, Wang H, Li H, Zhang X, Zhang J, Lu Q, Fang G, Wang J, Dong B. A Dual-Labeling Probe for Super-Resolution Imaging to Detect Mitochondrial Reactive Sulfur Species in Live Cells. Front Pharmacol 2022; 13:871059. [PMID: 35721202 PMCID: PMC9198575 DOI: 10.3389/fphar.2022.871059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Mitochondria are the main sites of reactive sulfur species (RSS) production in living cells. RSS in mitochondria play an important role in physiological and pathological processes of life. In this study, a dual-labeling probe that could simultaneously label the mitochondrial membrane and matrix was designed to quantitatively detect RSS of mitochondria in living cells using nano-level super-resolution imaging. Methods: A fluorescent probe CPE was designed and synthesized. The cytotoxicity of CPE was determined and co-localization of CPE with a commercial mitochondrial probe was analyzed in HeLa cells. Then, the uptake patterns of CPE in HeLa cells at different temperatures and endocytosis levels were investigated. The staining characteristics of CPE under different conditions were imaged and quantitated under structured illumination microscopy. Results: A fluorescence probe CPE reacting to RSS was developed, which could simultaneously label the mitochondrial membrane with green fluorescence and the mitochondrial matrix with red fluorescence. CPE was able to demonstrate the mitochondrial morphology and detect the changes of RSS in mitochondria. With the increase of mitochondrial RSS concentration, the light of the red matrix will be quenched. Conclusion: CPE provides a strategy for the design of probes and an attractive tool for accurate examination to changes of mitochondrial morphology and RSS in mitochondria in living cells at the nanoscale.
Collapse
Affiliation(s)
- Maomao Hu
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Boyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Hongdan Zhang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Han Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Huixin Li
- Department of Cardiology, Shandong Traditional Chinese Medicine University, Jinan, China
| | - Xinyu Zhang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jinjin Zhang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qianrun Lu
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Guiqian Fang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Juan Wang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Cardiology, Shandong Traditional Chinese Medicine University, Jinan, China
| |
Collapse
|
24
|
Zhang Z, Bai Q, Manandhar E, Zeng Y, Wu T, Wang M, Yao LY, Newkome GR, Wang P, Xie TZ. Supramolecular cuboctahedra with aggregation-induced emission enhancement and external binding ability. Chem Sci 2022; 13:5999-6007. [PMID: 35685785 PMCID: PMC9132066 DOI: 10.1039/d2sc00082b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023] Open
Abstract
Beyond the AIE (aggregation-induced emission) phenomenon in small molecules, supramolecules with AIE properties have evolved in the AIE family and accelerated the growth of supramolecular application diversity. Inspired by its mechanism, particularly the RIV (restriction of intramolecular vibrations) process, a feasible strategy of constructing an AIE-supramolecular cage based on the oxidation of sulfur atoms and coordination of metals is presented. In contrast to previous strategies that used molecular stacking to limit molecular vibrations, we achieved the desired goal using the synergistic effects of coordination-driven self-assembly and oxidation. Upon assembling with zinc ions, S1 was endowed with a distinct AIE property compared with its ligand L1, while S2 exhibited a remarkable fluorescence enhancement compared to L2. Also, the single cage-sized nanowire structure of supramolecules was obtained via directional electrostatic interactions with multiple anions and rigid-shaped cationic cages. Moreover, the adducts of zinc porphyrin and supramolecules were investigated and characterized by 2D DOSY, ESI-MS, TWIM-MS, UV-vis, and fluorescence spectroscopy. The protocol described here enriches the ongoing research on tunable fluorescence materials and paves the way towards constructing stimuli-responsive luminescent supramolecular cages. Beyond the AIE (aggregation-induced emission) phenomenon in small molecules, supramolecules with AIE properties have evolved in the AIE family and accelerated the growth of supramolecular application diversity.![]()
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Erendra Manandhar
- Departments of Polymer Science and Chemistry, University of Akron Akron OH 44325-4717 USA
| | - Yunting Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - George R Newkome
- Departments of Polymer Science and Chemistry, University of Akron Akron OH 44325-4717 USA
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| |
Collapse
|
25
|
Li L, Yuan G, Qi Q, Lv C, Liang J, Li H, Cao L, Zhang X, Wang S, Cheng Y, He H. Synthesis of tetraphenylethene-based D-A conjugated molecules with near-infrared AIE features, and their application in photodynamic therapy. J Mater Chem B 2022; 10:3550-3559. [PMID: 35420087 DOI: 10.1039/d1tb02598h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, five aggregation-induced emission (AIE) photosensitizers (PSs) with D-π-A structures are smoothly designed and synthesized through donor and acceptor engineering. The photophysical properties and theoretical calculation results show that the synergistic effect of methoxy substituted tetraphenylethene (MTPE), 3,4-ethylenedioxythiophene can enhance the intramolecular charge transfer effect (ICT), and promote the intersystem crossing (ISC) process of the whole molecule. In these AIE-PSs, the best-performing AIE-PS (MTPE-DT-Py) has bright NIR (740 nm) emission, the highest 1O2 generation efficiency (5.9-fold that of Rose Bengal) and efficient mitochondrial targeting ability. Subsequently, PDT anti-cancer and anti-bacterial experiments indicate that MTPE-DT-Py could obviously target mitochondria and kill breast cancer cells (MCF-7), and selectively inactivate S. aureus (G(+)) under white light irradiation. This work mainly proposes a practical design strategy for high effect AIE-PSs and provides more excellent candidates for fluorescence imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Li Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Gang Yuan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Qianjiao Qi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Cheng Lv
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, P. R. China.
| | - Jichao Liang
- College of Life Science, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, P. R. China
| | - Hongjie Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Lei Cao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, P. R. China.
| | - Hanping He
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| |
Collapse
|
26
|
Wang S, Chen C, Wu J, Zhang J, Lam JWY, Wang H, Chen L, Tang BZ. A mitochondria-targeted AIE photosensitizer for enhancing specificity and efficacy of ferroptosis inducer. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
28
|
He S, Yu S, Wei J, Ding L, Yang X, Wu Y. New horizons in the identification of circulating tumor cells (CTCs): An emerging paradigm shift in cytosensors. Biosens Bioelectron 2022; 203:114043. [PMID: 35121449 DOI: 10.1016/j.bios.2022.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells that are shed from a primary tumor into the bloodstream and function as seeds for cancer metastasis at distant locations. Enrichment and identification methods of CTCs in the blood of patients plays an important role in diagnostic assessments and personalized treatments of cancer. However, the current traditional identification methods not only impact the viability of cells, but also cannot determine the type of cancer cells when the disease is unknown. Hence, new methods to identify CTCs are urgently needed. In this context, many advanced and safe technologies have emerged to distinguish between cancer cells and blood cells, and to distinguish specific types of cancer cells. In this review, at first we have briefly discussed recent advances in technologies related to the enrichment of CTCs, which lay a good foundation for the identification of CTCs. Next, we have summarized state-of-the-art technologies to confirm whether a given cell is indeed a tumor cell and determine the type of tumor cell. Finally, the challenges for application and potential directions of the current identification methods in clinical analysis of CTCs have been discussed.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
29
|
Nishimoto E, Mise Y, Fumoto T, Miho S, Tsunoji N, Imato K, Ooyama Y. Tetraphenylethene–anthracene-based fluorescence emission sensor for detection of water with photo-induced electron transfer and aggregation-induced emission characteristics. NEW J CHEM 2022. [DOI: 10.1039/d2nj01599d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a fluorescent sensor for water over a wide range from low to high water content regions in organic solvents, we have designed and developed a PET (photo-induced electron transfer)/AIE...
Collapse
|
30
|
Hu Y, Yin SY, Li Z, Qi W, Chen Y, Li J. A novel AIEgen photosensitizer with an elevated intersystem crossing rate for tumor precise imaging and therapy. Chem Commun (Camb) 2022; 58:13143-13146. [DOI: 10.1039/d2cc05313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An ultraefficient AIEgen photosensitizer (TPE-4QL+) was synthesized based on an alternative elevated intersystem crossing rate for the precise imaging and therapy of tumors.
Collapse
Affiliation(s)
- Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenchen Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
31
|
Tian M, Zhan J, Lin W. Single fluorescent probes enabling simultaneous visualization of duple organelles: Design principles, mechanisms, and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Wang Y, Xia B, Huang Q, Luo T, Zhang Y, Timashev P, Guo W, Li F, Liang X. Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. Adv Healthc Mater 2021; 10:e2100945. [PMID: 34418321 DOI: 10.1002/adhm.202100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Considerable efforts have been made into developing aggregation-induced emission fluorogens (AIEgens)-containing nano-therapeutic systems due to the excellent properties of AIEgens. Compared to other fluorescent molecules, AIEgens have advantages including low background, high signal-to-noise ratio, good sensitivity, and resistance to photobleaching, in addition to being exempt from concentration quenching or aggregation-caused quenching effects. The present review outlines the major developments in the biomedical applications of AIEgens-containing systems. From a literature survey, the recent AIE works are reviewed and the reasons why AIEgens are chosen in various biomedical applications are highlighted. The research activities on AIEgens-containing systems are increasing rapidly, therefore, the present review is timely.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Luo
- School of Medicine Nankai University Tianjin 300071 China
- Department of Interventional Ultrasound Chinese PLA General Hospital Beijing 100853 China
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Weisheng Guo
- Translational Medicine Center Key Laboratory of Molecular Target and Clinical Pharmacology School of Pharmaceutical Sciences and The Second Affiliated Hospital Guangzhou Medical University Guangzhou 510260 China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
33
|
Zhong D, Chen W, Xia Z, Hu R, Qi Y, Zhou B, Li W, He J, Wang Z, Zhao Z, Ding D, Tian M, Tang BZ, Zhou M. Aggregation-induced emission luminogens for image-guided surgery in non-human primates. Nat Commun 2021; 12:6485. [PMID: 34759280 PMCID: PMC9632329 DOI: 10.1038/s41467-021-26417-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
During the past two decades, aggregation-induced emission luminogens (AIEgens) have been intensively exploited for biological and biomedical applications. Although a series of investigations have been performed in non-primate animal models, there is few pilot studies in non-human primate animal models, strongly hindering the clinical translation of AIE luminogens (AIEgens). Herein, we present a systemic and multifaceted demonstration of an optical imaging-guided surgical operation via AIEgens from small animals (e.g., mice and rabbits) to rhesus macaque, the typical non-human primate animal model. Specifically, the folic conjugated-AIE luminogen (folic-AIEgen) generates strong and stable fluorescence for the detection and surgical excision of sentinel lymph nodes (SLNs). Moreover, with the superior tumor/normal tissue ratio and rapid tumor accumulation, folic-AIEgen successfully images and guides the precise resection of invisible cancerous metastases. Taken together, the presented strategies of folic-AIEgen based fluorescence intraoperative imaging and visualization-guided surgery show potential for clinical applications. Most applications of aggregation-induced emission luminogens (AIEgens) have been limited in small animal models. Here, the authors show the versatility of AIEgens-based imaging-guided surgical operation from small animals to rhesus macaque, in support of the clinical translation of AIEgens.
Collapse
Affiliation(s)
- Danni Zhong
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 320000, China.,Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, 94305, USA
| | - Zhiming Xia
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Rong Hu
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Bo Zhou
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wanlin Li
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhiming Wang
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mei Tian
- Department of Nuclear Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ben Zhong Tang
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China. .,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Neuroscienceand Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China.
| | - Min Zhou
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China. .,Cancer Center, Zhejiang University, Hangzhou, 310009, China. .,State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 723] [Impact Index Per Article: 180.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
35
|
Peng C, Sun W, Zhou C, Qiang S, Jiang M, Lam JWY, Zhao Z, Kwok RTK, Cai W, Tang BZ. Vision redemption: Self-reporting AIEgens for combined treatment of bacterial keratitis. Biomaterials 2021; 279:121227. [PMID: 34736151 DOI: 10.1016/j.biomaterials.2021.121227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022]
Abstract
Bacterial keratitis (BK) is one of the most commonly leading causes of visual impairment and blindness worldwide, and suffers the risk of drug-resistant infections due to the abuse of antibiotics. Herein, we report a cationic diphenyl luminogen with aggregation-induced emission called IQ-Cm containing isoquinolinium and coumarin units for theranostic study of BK. IQ-Cm has no obvious cytotoxicity to mammalian cells below a certain concentration, and could preferentially bind to bacteria over mammalian cells. IQ-Cm can be used as a sensitive self-reporting probe to rapidly discriminate live and dead bacteria by the visual emission colors. The intrinsic dark toxicity to bacteria and generation of reactive oxygen species under light irradiation endow IQ-Cm with excellent antibacterial activity in vitro and in BK rabbit models infected with S. aureus. The present study provides a sensitive and efficient theranostic strategy for rapid discrimination of various bacterial states and the combined treatment of BK based on the intrinsic dark antibacterial activity and photodynamic therapy effect.
Collapse
Affiliation(s)
- Chen Peng
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wenjie Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Sujing Qiang
- Department of Ophthalmology, Shanghai Tenth People's Hospital School of Medicine, Tongji University, Shanghai, 200072, China
| | - Meijuan Jiang
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zheng Zhao
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Ryan T K Kwok
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Ben Zhong Tang
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
36
|
Real-time imaging mitochondrial viscosity dynamic during mitophagy mediated by photodynamic therapy. Anal Chim Acta 2021; 1178:338847. [PMID: 34482880 DOI: 10.1016/j.aca.2021.338847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy has been generally developed and approved as a promising theranostic technique in recent years, which requires photosensitizers to bear high efficiency of reactive oxygen species production, precisely targeting ability and excellent biocompatibility. The real-time monitoring the microenvironments such as viscosity dynamic involved in mitophagy mediated by photodynamic therapy is significantly important to understand therapeutic process but barely reported. In this work, a pyridinium-functionalized triphenylamine derivative, (E)-4-(2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)vinyl)-1-methylpyridin-1-ium iodide (Mito-I), was exploited as photosensitizer for mitochondria-targeted photodynamic therapy and as fluorescent probe for imaging the mitochondrial viscosity dynamic during mitophagy simultaneously. The results indicated that the additional phenyl ring in Mito-I was beneficial to promote its efficiency of singlet oxygen production. The excellent capability of targeting mitochondria and singlet oxygen generation allowed Mito-I for the specifically mitochondria-targeted photodynamic therapy. Moreover, Mito-I displayed off-on fluorescence response to viscosity with high selectivity and sensitivity. The observed enhancement in fluorescence intensity of Mito-I revealed the increasingly mitochondrial viscosity during mitophagy mediated by the photodynamic therapy of Mito-I. As a result, this work presents a rare example to realize the mitochondria-targeting photodynamic therapy as well as the real-time monitoring viscosity dynamic during mitophagy, which is of great importance for the basic medical research involved in photodynamic therapy.
Collapse
|
37
|
Liang Z, Sun Y, Duan R, Yang R, Qu L, Zhang K, Li Z. Low Polarity-Triggered Basic Hydrolysis of Coumarin as an AND Logic Gate for Broad-Spectrum Cancer Diagnosis. Anal Chem 2021; 93:12434-12440. [PMID: 34473470 DOI: 10.1021/acs.analchem.1c02591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to accurately diagnose cancer is the cornerstone of early cancer treatment. The mitochondria in cancer cells maintain a higher pH and lower polarity relative to that in normal cells. A probe that reports signals only when both conditions are met may provide a reliable method for cancer detection with reduced false positives. Here, we construct an AND logic gate fluorescent probe using mitochondrial microenvironments as inputs. Utilizing the hydrolysis of a coumarin scaffold, the probe generates fluorescence signals ("ON") only when high pH (>7.0) and low polarity conditions exist simultaneously. Additionally, the higher mitochondrial membrane potential in cancer cells provides an additional level of selectivity because probe has increased affinity for cancer cell mitochondria. These capabilities endow the probe with a high contrast fluorescence diagnosis ability of cancer at cellular and tissue levels (as high as 51.9 fold), which is far exceeding the clinic threshold of 2.0 fold.
Collapse
Affiliation(s)
- Zengqiang Liang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ruihong Duan
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
38
|
Li H, Lu Y, Chung J, Han J, Kim H, Yao Q, Kim G, Wu X, Long S, Peng X, Yoon J. Activation of apoptosis by rationally constructing NIR amphiphilic AIEgens: surmounting the shackle of mitochondrial membrane potential for amplified tumor ablation. Chem Sci 2021; 12:10522-10531. [PMID: 34447545 PMCID: PMC8356816 DOI: 10.1039/d1sc02227j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, the use of aggregation-induced emission luminogens (AIEgens) for biological imaging and phototherapy has become an area of intense research. However, most traditional AIEgens suffer from undesired aggregation in aqueous media with "always on" fluorescence, or their targeting effects cannot be maintained accurately in live cells with the microenvironment changes. These drawbacks seriously impede their application in the fields of bio-imaging and antitumor therapy, which require a high signal-to-noise ratio. Herein, we propose a molecular design strategy to tune the dispersity of AIEgens in both lipophilic and hydrophilic systems to obtain the novel near-infrared (NIR, ∼737 nm) amphiphilic AIE photosensitizer (named TPA-S-TPP) with two positive charges as well as a triplet lifetime of 11.43 μs. The synergistic effects of lipophilicity, electrostatic interaction, and structure-anchoring enable the wider dynamic range of AIEgen TPA-S-TPP for mitochondrial targeting with tolerance to the changes of mitochondrial membrane potential (ΔΨ m). Intriguingly, TPA-S-TPP was difficult for normal cells to be taken up, indicative of low inherent toxicity for normal cells and tissues. Deeper insight into the changes of mitochondrial membrane potential and cleaved caspase 3 levels further revealed the mechanism of tumor cell apoptosis activated by AIEgen TPA-S-TPP under light irradiation. With its advantages of low dark toxicity and good biocompatibility, acting as an efficient theranostic agent, TPA-S-TPP was successfully applied to kill cancer cells and to efficiently inhibit tumor growth in mice. This study will provide a new avenue for researchers to design more ideal amphiphilic AIE photosensitizers with NIR fluorescence.
Collapse
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
39
|
Li J, Liu W, Li Z, Hu Y, Yang J, Li J. PEGylated AIEgen molecular probe for hypoxia-mediated tumor imaging and photodynamic therapy. Chem Commun (Camb) 2021; 57:4710-4713. [PMID: 33977996 DOI: 10.1039/d1cc00967b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a novel PEGylated aggregation-induced emission luminogen (AIEgen) molecular probe for hypoxia-mediated tumor imaging and photodynamic therapy by linking a PEG chain to the AIE-active photosensitizer via a hypoxia-sensitive azo group.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Wei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jinfeng Yang
- Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
40
|
Zhou C, Peng C, Shi C, Jiang M, Chau JHC, Liu Z, Bai H, Kwok RTK, Lam JWY, Shi Y, Tang BZ. Mitochondria-Specific Aggregation-Induced Emission Luminogens for Selective Photodynamic Killing of Fungi and Efficacious Treatment of Keratitis. ACS NANO 2021; 15:12129-12139. [PMID: 34181408 DOI: 10.1021/acsnano.1c03508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of effective antifungal agents remains a big challenge in view of the close evolutionary relationship between mammalian cells and fungi. Moreover, rapid mutations of fungal receptors at the molecular level result in the emergence of drug resistance. Here, with low tendency to develop drug-resistance, the subcellular organelle mitochondrion is exploited as an alternative target for efficient fungal killing by photodynamic therapy (PDT) of mitochondrial-targeting luminogens with aggregation-induced emission characteristics (AIEgens). With cationic isoquinolinium (IQ) moiety and proper hydrophobicity, three AIEgens, namely, IQ-TPE-2O, IQ-Cm, and IQ-TPA, can preferentially accumulate at the mitochondria of fungi over the mammalian cells. Upon white light irradiation, these AIEgens efficiently generate reactive 1O2, which causes irreversible damage to fungal mitochondria and further triggers the fungal death. Among them, IQ-TPA shows the highest PDT efficiency against fungi and negligible toxicity to mammalian cells, achieving the selective and highly efficient killing of fungi. Furthermore, we tested the clinical utility of this PDT strategy by treating fungal keratitis on a fungus-infected rabbit model. It was demonstrated that IQ-TPA presents obviously better therapeutic effects as compared with the clinically used rose bengal, suggesting the success of this PDT strategy and its great potential for clinical treatment of fungal infections.
Collapse
Affiliation(s)
- Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Chen Peng
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chunzi Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Meijuan Jiang
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Joe H C Chau
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Zhiyang Liu
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Haotian Bai
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ben Zhong Tang
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and SCUT-HKUST Joint Research Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Shenzhen Institute of Aggregate Science and Technology, School of Science & Engineering, The Chinese University of Hong Kong, Shenzhen, Longgang, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
41
|
Wu W, Shi L, Duan Y, Xu S, Shen L, Zhu T, Hou L, Meng X, Liu B. Nanobody modified high-performance AIE photosensitizer nanoparticles for precise photodynamic oral cancer therapy of patient-derived tumor xenograft. Biomaterials 2021; 274:120870. [PMID: 34020268 DOI: 10.1016/j.biomaterials.2021.120870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
Photodynamic therapy (PDT) is a promising noninvasive treatment option for patients suffering from superficial tumors, such as oral cancer. However, for photosensitizers (PSs), it remains a grand challenge to simultaneously excel in all the key performance indicators including effective singlet oxygen (1O2) generation under clinical laser, specific targeting function and stable far-red (FR)/near-infrared (NIR) emission with low dark toxicity. In addition, traditional PS nanoparticles (NPs) for clinical use suffer from quenched fluorescence and reduced 1O2 production caused by molecular aggregation. To address these issues, AIEPS5 with aggregation-induced FR/NIR emission and effective 1O2 generation under 532 nm laser irradiation is designed by precise optimization of the chemical structure. By attaching a polyethylene glycol (PEG) chain onto AIEPS5, the yielded amphiphilic AIEPS5-PEG2000 can spontaneously self-assemble into water dispersible NPs, which are further endowed with targeted delivery function via the decoration of anti-Her-2 nanobody (NB). The bespoke AIEPS5-NPs-NB exhibit effective 1O2 generation capability, bright FR/NIR emission centered at 680 nm, and negligible dark toxicity, which outperform Heimbofen, a clinically approved PS in PDT using a patient-derived tumor xenograft model.
Collapse
Affiliation(s)
- Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Lingyue Shen
- Department of Oral and Maxillofacial-Head Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ting Zhu
- Department of Oral and Maxillofacial-Head Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
42
|
Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19543-19571. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular organelles are the cornerstones of cells, and destroying them will cause cell dysfunction and even death. Therefore, realizing precise organelle targeting of photosensitizers (PSs) can help reduce PS dosage, minimize side effects, avoid drug resistance, and enhance therapeutic efficacy in photodynamic therapy (PDT). Organelle-targeted PSs provide a new paradigm for the construction of the next generation of PSs and may provide implementable strategies for future precision medicine. In this Review, the recent targeting strategies of different organelles and the corresponding design principles of molecular and nanostructured PSs are summarized and discussed. The current challenges and opportunities in organelle-targeted PDT are also presented.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
43
|
Gu P, Chen B, Zhai T, Li Q, Zuo X, Wang L, Qin A, Zhou Y, Shen J. Immunostimulatory AIE Dots for Live-Cell Imaging and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19660-19667. [PMID: 33878273 DOI: 10.1021/acsami.1c02128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical properties of nanoscale drug carriers play critical roles in regulating nano-bio interactions. For example, the superior deformability of the softer nanoparticles enables them to pass through the biofilters efficiently, facilitating their long blood circulation and better tumor penetration. However, as a novel nanocarrier system, the elimination efficiency of soft nanoparticles from cells is poorly investigated. Here, we report a facile strategy to prepare soft luminescent nanoparticles through self-assembly of amphiphilic aggregation-induced emission (AIE) fluorophores. The prepared soft AIE dots exhibit strong light emission (quantum yield, ∼27.1%) and can reveal the encapsulation and excretion process of NPs in real time. The cell results showed that soft NPs can greatly increase the transfer speed of nanomaterials into cells and accelerate their elimination from cells through the sacrifice of soft AIE dots. We also show that soft AIE dots loaded with cytosine-phosphate-guanine (CpG) oligodeoxynucleotides can induce strong immunostimulatory effects, producing a high level of various proinflammatory cytokines including tumor necrosis factor (TNF)-R, interleukin (IL)-6, and IL-12. This work demonstrates a new design strategy for synthesizing a soft nanocarrier system that can deliver drugs into cells efficiently and then be eliminated from cells quickly.
Collapse
Affiliation(s)
- Peilin Gu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Zhai
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yi Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
44
|
Liu S, Feng G, Tang BZ, Liu B. Recent advances of AIE light-up probes for photodynamic therapy. Chem Sci 2021; 12:6488-6506. [PMID: 34040725 PMCID: PMC8132949 DOI: 10.1039/d1sc00045d] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
As a new non-invasive treatment method, photodynamic therapy (PDT) has attracted great attention in biomedical applications. The advantages of possessing fluorescence for photosensitizers have made it possible to combine imaging and diagnosis together with PDT. The unique features of aggregation-induced emission (AIE) fluorogens provide new opportunities for facile design of light-up probes with high signal-to-noise ratios and improved theranostic accuracy and efficacy for image-guided PDT. In this review, we summarize the recent advances of AIE light-up probes for PDT. The strategies and principles to design AIE photosensitizers and light-up probes are firstly introduced. The application of AIE light-up probes in photodynamic antitumor and antibacterial applications is further elaborated in detail, from binding/targeting-mediated, reaction-mediated, and external stimuli-mediated light-up aspects. The challenges and future perspectives of AIE light-up probes in the PDT field are also presented with the hope to encourage more promising developments of AIE materials for phototheranostic applications and translational research.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
- Department of Chemistry, The Hong Kong University of Science & Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
45
|
Jia F, Chibhabha F, Yang Y, Kuang Y, Zhang Q, Ullah S, Liang Z, Xie M, Li F. Detection and monitoring of the neuroprotective behavior of curcumin micelles based on an AIEgen probe. J Mater Chem B 2021; 9:731-745. [PMID: 33315037 DOI: 10.1039/d0tb02320e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the role of mitochondrial injury in the pathogenesis of Alzheimer's disease (AD) has attracted extensive attention. Studies have shown that curcumin (Cur) can protect nerve cells from beta-amyloid (Aβ)-induced mitochondrial damage. However, natural Cur encounters limited application due to its poor biocompatibility and bioavailability. To improve the solubility and biocompatibility of natural Cur, we prepared water-soluble curcumin micelles (CurM). Furthermore, the mitochondria-specific aggregation-induced emission (AIE) probe (TPE-Ph-In) was employed to observe the protective effect of CurM on the damage of mitochondrial morphology, distribution, and membrane potential caused by Aβ. Results showed that CurM had higher solubility, stronger stability and retention effect, and better cellular uptake than that of natural Cur. Furthermore, the inhibitory effects of CurM on mitochondrial morphology, distribution, and membrane potential damage induced by Aβ25-35 were observed utilizing TPE-Ph-In as an indicator of mitochondrial morphology and membrane potential. Thus, this method provides a useful strategy for experimental research and clinical treatment of AD with mitochondrial damage as the pathogenic mechanism.
Collapse
Affiliation(s)
- Fujie Jia
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang R, An R, Gu Z, Sun H, Ye D, Liu H. Dehydroberberine Analogue Nanoassemblies for Inducing and Self-Reporting Mitochondrial Dysfunction in Tumor Cells. ACS APPLIED BIO MATERIALS 2021; 4:2033-2043. [DOI: 10.1021/acsabm.0c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem-BIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanni Gu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haifeng Sun
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem-BIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
47
|
Emerging trends in aggregation induced emissive luminogens as bacterial theranostics. J Drug Target 2021; 29:793-807. [PMID: 33583291 DOI: 10.1080/1061186x.2021.1888111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emergence and spread of pathogenic bacteria, particularly antibiotic-resistant strains pose grave global concerns worldwide, which demand for the rapid development of highly selective and sensitive strategies for specific bacterial detection, identification, imaging and therapy. The fascinating feature of aggregation-induced emissive molecules (AIEgens) to display fluorescence in aggregate form can be suitably coupled with nanotechnology for developing theranostic AIE dots that can offer convenient and customised functions such as sensing, imaging, detection, discrimination and cell kill of different bacterial types. The initial section of the article reveals the necessity for incorporating diagnostic imaging with antibacterial therapy, while the latter part delivers mechanistic insights on the benefits of AIE fluorophores in theranostic applications. Further, the review illustrates the recent advancements of AIEgens as theranostic nanolights in bacterial detection, identification and eradication. The review is organised according to the different classes of AIE-active bacterial theranostics such as carrier-free nanoprodrugs, nanomachines for synergistic imaging-guided cancer treatment and bacterial kill, AIE polymers, bioconjugates and nanoparticle carriers. By elucidating their design principles and applications, as well as highlighting the recent trends and perspectives that can be further explored, we hope to instill more research interest in AIE bacterial theranostics for future translational research.HighlightsCombination of aggregation induced emissive fluorophores and nanotechnology for developing bacterial theranostics.AIE theranostics with customised functions for bacterial imaging, detection, discrimination and cell kill.
Collapse
|
48
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Verfahren zur Synthese von Luminogenen mit aggregationsinduzierter Emission. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Qian Wu
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Dong Wang
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| |
Collapse
|
49
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2021; 60:15724-15742. [PMID: 32432807 DOI: 10.1002/anie.202006191] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/12/2022]
Abstract
As a consequence of their intrinsic advantageous properties, luminogens that show aggregation-induced emission (AIEgens) have received increasing global interest for a wide range of applications. Whereas general synthetic methods towards AIEgens largely rely on tedious procedures and limited reaction types, various innovative synthetic methods have now emerged as complementary, and even alternative, strategies. In this Review, we systematically highlight advancements made in metal-catalyzed functionalization and metal-free-promoted pathways for the construction of AIEgens over the past five years, and briefly illustrate new perspectives in this area. The development of innovative synthetic procedures will enable the facile synthesis of AIEgens with great structural diversity for multifunctional applications.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Qian Wu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
50
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|