1
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Wang B, Pareek G, Kundu M. ULK/Atg1: phasing in and out of autophagy. Trends Biochem Sci 2024; 49:494-505. [PMID: 38565496 PMCID: PMC11162330 DOI: 10.1016/j.tibs.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Autophagy - a highly regulated intracellular degradation process - is pivotal in maintaining cellular homeostasis. Liquid-liquid phase separation (LLPS) is a fundamental mechanism regulating the formation and function of membrane-less compartments. Recent research has unveiled connections between LLPS and autophagy, suggesting that phase separation events may orchestrate the spatiotemporal organization of autophagic machinery and cargo sequestration. The Unc-51-like kinase (ULK)/autophagy-related 1 (Atg1) family of proteins is best known for its regulatory role in initiating autophagy, but there is growing evidence that the functional spectrum of ULK/Atg1 extends beyond autophagy regulation. In this review, we explore the spatial and temporal regulation of the ULK/Atg1 family of kinases, focusing on their recruitment to LLPS-driven compartments, and highlighting their multifaceted functions beyond their traditional role.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gautam Pareek
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Zhang L, Li Z, Ma X, Yang W, Hao Y, Zhang L, Piao S. Combination treatment with ferroptosis and autophagy inducers significantly inhibit the proliferation and migration of oral squamous cell carcinoma. Biochem Biophys Res Commun 2024; 709:149842. [PMID: 38554601 DOI: 10.1016/j.bbrc.2024.149842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Oral squamous cell carcinoma (OSCC), a malignancy originating from mucosal epithelial cells. Currently, triggering apoptotic cell death with anticancer drugs is the main way to inhibit OSCC cells. However, the capability to trigger apoptosis in tumors is constrained by the intrinsic resistance of tumor cells to apoptosis, hampering its effectiveness. Thus, utilizing alternative modes of non-apoptotic cell death offers new therapeutic possibilities, such as using a drug combination strategy to simultaneously induce ferroptosis and autophagy has the potential to improve OSCC therapy. In this study, we found the ferroptosis inducer RSL3 has certain inhibitory effects on the proliferation and migration of OSCC cells. Interestingly, our studies showed that RSL3 is also associated with autophagy activation. Based on this finding, we tried to combine RSL3 with the autophagy inducer LYN-1604 to improve the therapeutic effect. The results demonstrated that simultaneous regulation of autophagy and ferroptosis significantly reduced the proliferation and migration of OSCC cells. Taken together, we demonstrated the therapeutic potential of RSL3 in OSCC cells and proposed that simultaneous activation of autophagy and ferroptosis have synergistic effects, which would provide valuable clues for further exploration of targeted therapy for OSCC.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xue Ma
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenwen Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yacui Hao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
6
|
Wu P, Wang X, Yin M, Zhu W, Chen Z, Zhang Y, Jiang Z, Shi L, Zhu Q. ULK1 Mediated Autophagy-Promoting Effects of Rutin-Loaded Chitosan Nanoparticles Contribute to the Activation of NF-κB Signaling Besides Inhibiting EMT in Hep3B Hepatoma Cells. Int J Nanomedicine 2024; 19:4465-4493. [PMID: 38779103 PMCID: PMC11110815 DOI: 10.2147/ijn.s443117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 μg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.
Collapse
Affiliation(s)
- Peng Wu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaoyong Wang
- The People’s Hospital of Rugao, Nantong, People’s Republic of China
| | - Min Yin
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenjie Zhu
- Kangda College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng Chen
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Zhang
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Qiang Zhu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Xu C, Song Y, Liu W, Liu R, Bai Q, Li L, Wang C, Yan G. IL-4 activates ULK1/Atg9a/Rab9 in asthma, NLRP3 inflammasomes, and Golgi fragmentation by increasing autophagy flux and mitochondrial oxidative stress. Redox Biol 2024; 71:103090. [PMID: 38373380 PMCID: PMC10878789 DOI: 10.1016/j.redox.2024.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
During asthma, there is an intensification of pulmonary epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. However, the underlying mechanism remains largely unknown. Therefore, this study investigated the roles of ULK1, Atg9a, and Rab9 in epithelial inflammation, mitochondrial oxidative stress, and Golgi apparatus fragmentation. We found that ULK1 gene knockout reduced the infiltration of inflammatory cells, restored the imbalance of the Th1/Th2 ratio, and inhibited the formation of inflammatory bodies in the lung tissue of house dust mite-induced asthma mice. Moreover, we demonstrated that Atg9a interacted with ULK1 at S467. ULK1 phosphorylated Atg9a at S14. Treatment with ULK1 activator (LYN-1604) and ULK1 inhibitor (ULK-101) respectively promoted and inhibited inflammasome activation, indicating that the activation of inflammasome induced by house dust mite in asthma mice is dependent on ULK1. For validation of the in vivo results, we then used a lentivirus containing ULK1 wild type and ULK1-S467A genes to infect Beas-2b-ULK1-knockout cells and establish a stable cell line. The results suggest that the ULK1 S467 site is crucial for IL-4-induced inflammation and oxidative stress. Experimental verification confirmed that Atg9a was the superior signaling pathway of Rab9. Interestingly, we found for the first time that Rab9 played a very important role in inflammation-induced fragmentation of the Golgi apparatus. Inhibiting the activation of the ULK1/Atg9a/Rab9 signaling pathways can inhibit Golgi apparatus fragmentation and mitochondrial oxidative stress in asthma while reducing the production of NLRP3-mediated pulmonary epithelial inflammation.
Collapse
Affiliation(s)
- Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China
| | - Wanting Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China
| | - Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, 133002, PR China.
| |
Collapse
|
8
|
Chen C, Yang Y, Lee CH, Takizawa S, Zhang Z, Ng HY, Hou LA. Functionalization of seawater reverse osmosis membrane with quorum sensing inhibitor to regulate microbial community and mitigate membrane biofouling. WATER RESEARCH 2024; 253:121358. [PMID: 38402750 DOI: 10.1016/j.watres.2024.121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Membrane biofouling is a challenge to be solved for the stable operation of the seawater reverse osmosis (SWRO) membrane. This study explored the regulation mechanism of quorum sensing (QS) inhibition on microbial community composition and population-level behaviors in seawater desalination membrane biofouling. A novel antibiofouling SWRO membrane (MA_m) by incorporating one of quorum sensing inhibitors (QSIs), methyl anthranilate (MA) was prepared. It exhibited enhanced anti-biofouling performance than the exogenous addition of QSIs, showing long-term stability and alleviating 22 % decrease in membrane flux compared with the virgin membrane. The results observed that dominant bacteria Epsilon- and Gamma-proteobacteria (Shewanella, Olleya, Colwellia, and Arcobacter), which are significantly related to (P ≤ 0.01) the metabolic products (i.e., polysaccharides, proteins and eDNA), are reduced by over 80 % on the MA_m membrane. Additionally, the introduction of MA has a more significant impact on the QS signal-sensing pathway through binding to the active site of the transmembrane sensor receptor. It effectively reduces the abundance of genes encoding QS and extracellular polymeric substance (EPS) (exopolysaccharides (i.e., galE and nagB) and amino acids (i.e., ilvE, metH, phhA, and serB)) by up to 50 % and 30 %, respectively, resulting in a reduction of EPS by more than 50 %, thereby limiting the biofilm formation on the QSI-modified membrane. This study provides novel insights into the potential of QSIs to control consortial biofilm formation in practical SWRO applications.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Sun D, Zhang Z, Yu X, Li H, Wang X, Chen L. The mechanism of UNC-51-like kinase 1 and the applications of small molecule modulators in cancer treatment. Eur J Med Chem 2024; 268:116273. [PMID: 38432059 DOI: 10.1016/j.ejmech.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Autophagy is a process of self-renewal in cells, which not only provides the necessary nutrients for cells, but also clears necrotic organelles. Autophagy disorders are closely related to diseases such as cancer. UNC-51-like kinase 1 (ULK1) is a serine/threonine protein kinase that plays a crucial role in receiving input from energy and nutrient sensors, activating autophagy to maintain cellular homeostasis under stressful conditions. In recent years, targeting ULK1 has become a highly promising strategy for cancer treatment. This review introduces the regulatory mechanism of ULK1 in autophagy through the AMPK/mTOR/ULK1 pathway and reviews the research progress of ULK1 activators and inhibitors and their applications in cancer treatment. In addition, we analyze the binding modes between ULK1 and modulators through virtual molecular docking, which will provide a reliable basis and theoretical guidance for the design and development of new therapeutic drugs targeting ULK1.
Collapse
Affiliation(s)
- Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China
| | - Zhiqi Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinbo Yu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Xiaobo Wang
- Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
10
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
11
|
Zhang S, Li M, Qiu Y, Wu J, Xu X, Ma Q, Zheng Z, Lu G, Deng Z, Huang H. Enhanced VEGF secretion and blood-brain barrier disruption: Radiation-mediated inhibition of astrocyte autophagy via PI3K-AKT pathway activation. Glia 2024; 72:568-587. [PMID: 38009296 DOI: 10.1002/glia.24491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Radiation-induced damage to the blood-brain barrier (BBB) is the recognized pathological basis of radiation-induced brain injury (RBI), a side effect of head and neck cancer treatments. There is currently a lack of therapeutic approaches for RBI due to the ambiguity of its underlying mechanisms. Therefore, it is essential to identify these mechanisms in order to prevent RBI or provide early interventions. One crucial factor contributing to BBB disruption is the radiation-induced activation of astrocytes and oversecretion of vascular endothelial growth factor (VEGF). Mechanistically, the PI3K-AKT pathway can inhibit cellular autophagy, leading to pathological cell aggregation. Moreover, it acts as an upstream pathway of VEGF. In this study, we observed the upregulation of the PI3K-AKT pathway in irradiated cultured astrocytes through bioinformatics analysis, we then validated these findings in animal brains and in vitro astrocytes following radiation exposure. Additionally, we also found the inhibition of autophagy and the oversecretion of VEGF in irradiated astrocytes. By inhibiting the PI3K-AKT pathway or promoting cellular autophagy, we observed a significant amelioration of the inhibitory effect on autophagy, leading to reductions in VEGF oversecretion and BBB disruption. In conclusion, our study suggests that radiation can inhibit autophagy and promote VEGF oversecretion by upregulating the PI3K-AKT pathway in astrocytes. Blocking the PI3K pathway can alleviate both of these effects, thereby mitigating damage to the BBB in patients undergoing radiation treatment.
Collapse
Affiliation(s)
- Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Mingping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
12
|
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, Ji Z, Wang Y, Piao M, Chi G, Ge P. SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol 2024; 69:103030. [PMID: 38181705 PMCID: PMC10791567 DOI: 10.1016/j.redox.2024.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qi Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoxi Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Germain K, So RWL, DiGiovanni LF, Watts JC, Bandsma RHJ, Kim PK. Upregulated pexophagy limits the capacity of selective autophagy. Nat Commun 2024; 15:375. [PMID: 38195640 PMCID: PMC10776696 DOI: 10.1038/s41467-023-44005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
Selective autophagy is an essential process to maintain cellular homeostasis through the constant recycling of damaged or superfluous components. Over a dozen selective autophagy pathways mediate the degradation of diverse cellular substrates, but whether these pathways can influence one another remains unknown. We address this question using pexophagy, the autophagic degradation of peroxisomes, as a model. We show in cells that upregulated pexophagy impairs the selective autophagy of both mitochondria and protein aggregates by exhausting the autophagy initiation factor, ULK1. We confirm this finding in cell models of the pexophagy-mediated form of Zellweger Spectrum Disorder, a disease characterized by peroxisome dysfunction. Further, we extend the generalizability of limited selective autophagy by determining that increased protein aggregate degradation reciprocally reduces pexophagy using cell models of Parkinson's Disease and Huntington's Disease. Our findings suggest that the degradative capacity of selective autophagy can become limited by an increase in one substrate.
Collapse
Affiliation(s)
- Kyla Germain
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Raphaella W L So
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Laura F DiGiovanni
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Robert H J Bandsma
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
| | - Peter K Kim
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
14
|
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The Function of Autophagy in the Initiation, and Development of Breast Cancer. Curr Med Chem 2024; 31:2974-2990. [PMID: 37138421 DOI: 10.2174/0929867330666230503145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
Collapse
Affiliation(s)
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
15
|
Guseva EA, Pavlova JA, Dontsova OA, Sergiev PV. Synthetic Activators of Autophagy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:27-52. [PMID: 38467544 DOI: 10.1134/s0006297924010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024]
Abstract
Autophagy is a central process for degradation of intracellular components that do not operate correctly. Molecular mechanisms underlying this process are extremely difficult to study, since they involve a large number of participants. The main task of autophagy is redistribution of cellular resources in response to environmental changes, such as starvation. Recent studies show that autophagy regulation could be the key to achieve healthy longevity, as well as to create therapeutic agents for treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Thus, development of autophagy activators with established detailed mechanism of action is a really important area of research. Several commercial companies are at various stages of development of such molecules, and some of them have already begun to introduce autophagy activators to the market.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Julia A Pavlova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
16
|
Fan Z, Wan LX, Jiang W, Liu B, Wu D. Targeting autophagy with small-molecule activators for potential therapeutic purposes. Eur J Med Chem 2023; 260:115722. [PMID: 37595546 DOI: 10.1016/j.ejmech.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Autophagy is well-known to be a lysosome-mediated catabolic process for maintaining cellular and organismal homeostasis, which has been established with many links to a variety of human diseases. Compared with the therapeutic strategy for inhibiting autophagy, activating autophagy seems to be another promising therapeutic strategy in several contexts. Hitherto, mounting efforts have been made to discover potent and selective small-molecule activators of autophagy to potentially treat human diseases. Thus, in this perspective, we focus on summarizing the complicated relationships between defective autophagy and human diseases, and further discuss the updated progress of a series of small-molecule activators targeting autophagy in human diseases. Taken together, these inspiring findings would provide a clue on discovering more small-molecule activators of autophagy as targeted candidate drugs for potential therapeutic purposes.
Collapse
Affiliation(s)
- Zhichao Fan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongbo Wu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Li Y, Liu Y, Zhang D, Chen J, Yang G, Tang P, Yang C, Liu J, Zhang J, Ouyang L. Discovery, Synthesis, and Evaluation of Novel Dual Inhibitors of a Vascular Endothelial Growth Factor Receptor and Poly(ADP-Ribose) Polymerase for BRCA Wild-Type Breast Cancer Therapy. J Med Chem 2023; 66:12069-12100. [PMID: 37616488 DOI: 10.1021/acs.jmedchem.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have been approved for the treatment of breast cancer (BC) with breast cancer susceptibility (BRCA) gene mutation. Leveraging new synthetic lethal interactions may be an effective way to broaden the indication of PARP inhibitors for BC patients with wild-type BRCA. Vascular endothelial growth factor receptor (VEGFR)-mediated suppression of angiogenesis has been reported to improve the sensitivity of wild-type BRCA cells to PARP inhibitors through synthetic lethality. Herein, we reported the conjugation of a PARP inhibitor with a VEGFR inhibitor pharmacophore to construct dual VEGFR and PARP inhibitors. The most potent compound 14b is identified to exert promising activities against VEGFR and PARP in the nanomolar range and possesses significant in vitro and in vivo antitumor and antimetastasis features. It also presented a favorable pharmacokinetic characteristics in rats with an oral bioavailability of 60.1%. Collectively, 14b may be a promising therapeutic agent of BRCA wild-type BC.
Collapse
Affiliation(s)
- Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juncheng Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gaoxia Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pan Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengcan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
18
|
Siwakoti B, Lien TS, Lin YY, Pethaperumal S, Hung SC, Sun DS, Cheng CF, Chang HH. The Role of Activating Transcription Factor 3 in Metformin's Alleviation of Gastrointestinal Injury Induced by Restraint Stress in Mice. Int J Mol Sci 2023; 24:10995. [PMID: 37446172 DOI: 10.3390/ijms241310995] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Metformin is one of the most commonly used drugs for type 2 diabetes mellitus. In addition to its anti-diabetic property, evidence suggests more potential applications for metformin, such as antiaging, cellular protection, and anti-inflammation. Studies have reported that metformin activates pathways with anti-inflammatory effects, enhances the integrity of gut epithelial tight junctions, and promotes a healthy gut microbiome. These actions contribute to the protective effect of metformin against gastrointestinal (GI) tract injury. However, whether metformin plays a protective role in psychological-stress-associated GI tract injury remains elusive. We aim to elucidate the potential protective effect of metformin on the GI system and develop an effective intervention strategy to counteract GI injury induced by acute psychological stress. By monitoring the levels of GI-nonabsorbable Evans blue dye in the bloodstream, we assessed the progression of GI injury in live mice. Our findings demonstrate that the administration of metformin effectively mitigated GI leakage caused by psychological stress. The GI protective effect of metformin is more potent when used on wild-type mice than on activating-transcription-factor 3 (ATF3)-deficient (ATF3-/-) mice. As such, metformin-mediated rescue was conducted in an ATF3-dependent manner. In addition, metformin-mediated protection is associated with the induction of stress-induced GI mRNA expressions of the stress-induced genes ATF3 and AMP-activated protein kinase. Furthermore, metformin treatment-mediated protection of CD326+ GI epithelial cells against stress-induced apoptotic cell death was observed in wild-type but not in ATF3-/- mice. These results suggest that metformin plays a protective role in stress-induced GI injury and that ATF3 is an essential regulator for metformin-mediated rescue of stress-induced GI tract injury.
Collapse
Affiliation(s)
- Bijaya Siwakoti
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - You-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Subhashree Pethaperumal
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| |
Collapse
|
19
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
20
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Nie Z, Wang D, Wang S, Wang L. Facile construction of irinotecan loaded mesoporous nano-formulation with surface-initiated polymerization to improve stimuli-responsive drug delivery for breast cancer therapy. Heliyon 2023; 9:e15087. [PMID: 37128309 PMCID: PMC10148107 DOI: 10.1016/j.heliyon.2023.e15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This work uses rice husk to fabricate mesoporous silica nanoparticles (D-RMN) for breast cancer therapy. The biocompatible dual-responsive (DAN-RMN) was developed by polymerizing acrylic acid (AA) and n-isopropyl acrylamide (NIPAM) on the DV-RMN surface monomeric ratio to increase drug delivery efficiency after vinyl groups were added to the surface of nanoparticles (DAN-RMN). Various analytical and spectroscopical methods characterized the fabricated nanoparticles. Additionally, further encapsulation with SN-38 into the DAN-RMN enhances anticancer efficiency. The in-vitro controlled SN-38 release displayed remarkable temperature and pH response. The MTT assay established the biocompatibility and cytotoxicity of natural sources of silica and DAN-RMN. The fabricated SN-38@DAN-RMN nanoparticles effectively killed the MDA-MB-231 and 4T1 cancerous cells, confirmed by the MTT assay. The IC50 values of SN-38@DAN-RMN in MDA-MB-231 and 4T1 for 1.8 μg/mL and 1.7 μg/mL, respectively. In addition, acridine orange-ethidium bromide (AO-EB) dual staining methods were used to determine morphological changes of cell shrinkage and fragmentation. Nuclear staining methods confirmed the nuclear fragmentation and condensation of the cells. Further, the cell death was examined using dual staining Annexin V-FITC/PI in flow cytometric analyses to assess apoptosis in the MDA-MB-231 and 4T1 cell lines. The apoptotic cell ratio of SN-38@DAN-RMN in MDA-MB-231 and 4T1 for 27.8 and 32.8, respectively. Since there is no drug leakage in the blood while the carrier is in circulation, the DAN-RMN nanocarrier may be used for targeted and stimuli-responsive administration using ultrasound imaging.
Collapse
|
22
|
Shuai W, Bu F, Zhu Y, Wu Y, Xiao H, Pan X, Zhang J, Sun Q, Wang G, Ouyang L. Discovery of Novel Indazole Chemotypes as Isoform-Selective JNK3 Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2023; 66:1273-1300. [PMID: 36649216 DOI: 10.1021/acs.jmedchem.2c01410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the pathogenesis of various diseases. In particular, JNK3 and not JNK1/2 is primarily expressed in the brain and plays a key role in mediating neurodegenerative diseases like Parkinson's disease (PD). Due to the sequence similarity of JNK isoforms, developing isoform-selective JNK3 inhibitors to evaluate their biological functions and therapeutic potential in PD has become a challenge. Herein, docking-based virtual screening and structure-activity relationship studies identified 25c with excellent inhibitory activity against JNK3 (IC50 = 85.21 nM) and exhibited an over 100-fold isoform selectivity for JNK3 over JNK1/2 and remarkable kinase selectivity. 25c showed neuroprotective effects on in vitro and in vivo PD models by selectively inhibiting JNK3. Meanwhile, 25c showed an ideal blood-brain barrier permeability and low toxicity. Overall, this study provided a valuable molecular tool for investigating the role of JNK3 in PD and a solid foundation for developing JNK3-targeted drugs in PD treatment.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Duan T, Yang X, Kuang J, Sun W, Li J, Ge J, Zhang M, Cai X, Yu P, Yang J, Zhu X. ULK1 Depletion Protects Mice from Diethylnitrosamine-Induced Hepatocarcinogenesis by Promoting Apoptosis and Inhibiting Autophagy. J Hepatocell Carcinoma 2023; 10:315-325. [PMID: 36874251 PMCID: PMC9983443 DOI: 10.2147/jhc.s399855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose The uncoordinated-51 like kinase 1 (ULK1) is an important serine/threonine protein kinase involved in autophagy, especially for the initiation stage. Previous studies have shown that ULK1 could be used as a prognostic marker in predicting poor progression-free survival and a therapeutic target for hepatocellular carcinoma (HCC) when treated with sorafenib; however, its role during hepatocarcinogenesis remains to be elucidated. Methods CCK8 and colony formation assay were used to detect cell growth ability. Western blotting was performed to determine expression level of protein. Data from public database were downloaded to analyze expression of ULK1 at mRNA level and predict survival time. RNA-seq was conducted to reveal disturbed gene profile orchestrated by ULK1 depletion. A diethylnitrosamine (DEN)-induced HCC mice model was used to uncover the role of ULK1 in hepatocarcinogenesis. Results ULK1 was up-regulated in liver cancer tissues and cell lines, and knockdown of ULK1 promoted apoptosis and suppressed proliferation of liver cancer cells. In in vivo experiments, Ulk1 depletion attenuated starvation-induced autophagy in mice liver, reduced diethylnitrosamine (DEN)-induced hepatic tumor number and size, and prevented tumor progression. Further, RNA-seq analysis revealed a close relationship between Ulk1 and immunity with significant changes in gene sets enriched in the interleukin and interferon pathways. Conclusion ULK1 deficiency prevented hepatocarcinogenesis and inhibited hepatic tumor growth, and might be a molecular target for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Xin Yang
- Department of Toxicology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jingyu Kuang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Wenjie Sun
- Department of Toxicology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jin Li
- Department of Toxicology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Juan Ge
- Department of Toxicology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Mohan Zhang
- Department of Toxicology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiaobo Cai
- Department of Toxicology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Peilin Yu
- Department of Toxicology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Xinqiang Zhu
- Medical Research Center, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, People's Republic of China
| |
Collapse
|
24
|
Teng M, Young DW, Tan Z. The Pursuit of Enzyme Activation: A Snapshot of the Gold Rush. J Med Chem 2022; 65:14289-14304. [PMID: 36265019 DOI: 10.1021/acs.jmedchem.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A range of enzymes drive human physiology, and their activities are tightly regulated through numerous signaling pathways. Depending on the context, these pathways may activate or inhibit an enzyme as a way to ensure proper execution of cellular functions. From a drug discovery and development perspective, pharmacological inhibition of enzymes has been a focus of interest, as many diseases are associated with the upregulation of enzyme function. On the other hand, however, pharmacological activation of enzymes such as kinases and phosphatases has been of increasing interest. In this review, we discuss seven case studies that highlight pharmacological activation strategy, describe the binding modes and pharmacology of the activators, and comment on how this on-demand activation strategy complements the commonly pursued inhibition strategy, thus jointly enabling bidirectional modulation of specific target of interest. Going forward, we expect activators to play important roles as chemical probes and drug leads.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Damian W Young
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
25
|
Ding Y, Wang F, Guo Y, Yang M, Zhang H. Integrated Analysis and Validation of Autophagy-Related Genes and Immune Infiltration in Acute Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3851551. [PMID: 36238493 PMCID: PMC9553342 DOI: 10.1155/2022/3851551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
Background Acute myocardial infarction (AMI) is one of the most critical conditions of coronary heart disease with many uncertainties regarding reduction of ischemia/reperfusion injury, medical treatment strategies, and other aspects. The inflammatory immune response has a bidirectional regulatory role in AMI and plays an essential role in myocardial remodeling after AMI. The purpose of our research was tantamount to explore possible mechanisms of AMI and to analyze the relationship with the immune microenvironment. Methods We firstly analyzed the expression profile of GSE61144 and HADb to identify differentially expressed autophagy-related genes (DEARGs). Then, we performed GO, functional enrichment analysis, and constructed PPI network by Metascape. A lncRNA-miRNA-mRNA ceRNA network was built, and hub genes were extracted by Cytoscape. After that, we used CIBERSORT algorithm to estimate the proportion of immunocytes, followed by correlation analysis to find relationships between hub DEARGs and immunocyte subsets. Finally, we verified those hub genes in another dataset and cellular experiments qPCR. Results Compared with controls, we identified 44 DEARGs and then filtered the genes of MCODE by constructing PPI network for further analysis. A total of 45 lncRNAs, 24 miRNAs, 19 mRNAs, 162 lncRNA-miRNA pairs, and 37 mRNA-miRNA pairs were used to construct a ceRNA network, and 4 hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) were extracted. We then estimated 5 classes of immunocytes that differed between AMI and controls. According to the results of correlation analysis, these 4 hub DEARGs may play modulatory effects in immune infiltrating cells, notably in CD8+ T cells and neutrophils. Finally, the same results were verified in GSE60993 and qPCR experiments. Conclusion Our findings suggest that those hub DEARGs (BCL2, MAPK1, RAF1, and PRKAR1A) and immunocytes probably play functions in the progression of AMI, providing potential diagnostic markers and new perspectives for treatment of AMI.
Collapse
Affiliation(s)
- Yan Ding
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Feng Wang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Yousheng Guo
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Mingwei Yang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Huanji Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen 518033, China
| |
Collapse
|
26
|
Prospect of ULK1 modulators in targeting regulatory T cells. Bioorg Chem 2022; 129:106141. [PMID: 36137312 DOI: 10.1016/j.bioorg.2022.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Regulatory T (Treg) cells play an instrumental role in coordinating immune homeostasis via potent inhibitory effects. Defects in Treg cells lead to autoimmunity, but an overwhelming proportion of Treg cells encourages cancer progression. Hence, targeting Treg cells has emerged as a promising approach for mitigating disease severity. Recent studies have revealed that kinases are a critical component for tuning the fate of Treg cells, but the entire network of Treg-modulating kinases is still unclear. Here, we propose that the autophagy-activating UNC-51-like kinase 1 (ULK1) is a candidate for Treg cell modulation. While accumulating evidence has highlighted the role of autophagy-related kinases in Treg cells, the ULK1-Treg cell axis is yet to be examined. In this review, we predicted the potential role of ULK1 in Treg cell modulation. Furthermore, we summarized current ULK1 activators and inhibitors that can be investigated as Treg-targeting strategies, which might have beneficial outcomes in autoimmunity and cancer.
Collapse
|
27
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
28
|
Pan Z, Chen Y, Pang H, Wang X, Zhang Y, Xie X, He G. Design, synthesis, and biological evaluation of novel dual inhibitors of heat shock protein 90/mammalian target of rapamycin (Hsp90/mTOR) against bladder cancer cells. Eur J Med Chem 2022; 242:114674. [PMID: 35987020 DOI: 10.1016/j.ejmech.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel class of thieno [2,3-d] pyrimidine derivatives containing resorcinol and morpholine fragments as Hsp90/mTOR dual inhibitors was designed, synthesized, and evaluated. In vitro anti-tumor assay results: the obtained compounds demonstrated effectiveness in suppressing the enzymatic activities of the Hsp90 and mTOR and inhibiting the proliferation of J82, T24, and SW780 cancer cell lines. Among these dual inhibitors, the most potent compound 17o, confirmed remarkable inhibitory activities on Hsp90, mTOR, and SW780 cell. Furthermore, the molecular dynamics simulation and a panel of mechanism studies revealed that inhibitor 17o suppressed the proliferation of SW780 cells through the over-activation of the PI3K/AKT/mTOR pathway regulated by mTOR inhibition and apoptosis regulated by the mitochondrial pathway. In subcutaneous J82 xenograft models, the compound 17o also presented considerable in vivo anti-tumor activity. Therefore, our investigations highlight that a new-found dual Hsp90/mTOR inhibitor by rational drug design strategies could be a promising lead compound for targeted bladder cancer therapy and deserves further studies.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haiying Pang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuehua Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
29
|
Fu J, Wu L, Hu G, Shi Q, Wang R, Zhu L, Yu H, Fu L. AMTDB: A comprehensive database of autophagic modulators for anti-tumor drug discovery. Front Pharmacol 2022; 13:956501. [PMID: 36016573 PMCID: PMC9395961 DOI: 10.3389/fphar.2022.956501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human tumors, including breast cancer, osteosarcoma, glioma, etc., suggesting that intervention of autophagy is a promising therapeutic strategy for cancer drug development. Therefore, a high-quality database is crucial for unraveling the complicated relationship between autophagy and human cancers, elucidating the crosstalk between the key autophagic pathways, and autophagic modulators with their remarkable antitumor activities. To achieve this goal, a comprehensive database of autophagic modulators (AMTDB) was developed. AMTDB focuses on 153 cancer types, 1,153 autophagic regulators, 860 targets, and 2,046 mechanisms/signaling pathways. In addition, a variety of classification methods, advanced retrieval, and target prediction functions are provided exclusively to cater to the different demands of users. Collectively, AMTDB is expected to serve as a powerful online resource to provide a new clue for the discovery of more candidate cancer drugs.
Collapse
Affiliation(s)
- Jiahui Fu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lifeng Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gaoyong Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiqi Shi
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruodi Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Leilei Fu, ; Haiyang Yu, ; Lingjuan Zhu,
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Leilei Fu, ; Haiyang Yu, ; Lingjuan Zhu,
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Leilei Fu, ; Haiyang Yu, ; Lingjuan Zhu,
| |
Collapse
|
30
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
31
|
N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules 2022; 27:molecules27144349. [PMID: 35889223 PMCID: PMC9315981 DOI: 10.3390/molecules27144349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Antifungal N-phenacyl derivatives of 4,6- and 5,6-dibromobenzimidazoles are interesting substrates in the synthesis of new antimycotics. Unfortunately, their application is limited by the low synthesis yields and time-consuming separation procedure. In this paper, we present the optimization of the synthesis conditions and purification methods of N-phenacyldibromobenzimidazoles. The reactions were carried out in various base solvent-systems including K2CO3, NaH, KOH, t-BuOK, MeONa, NaHCO3, Et3N, Cs2CO3, DBU, DIPEA, or DABCO as a base, and MeCN, DMF, THF, DMSO, or dioxane as a solvent. The progress of the reaction was monitored using HPLC analysis. The best results were reached when the reactions were carried out in an NaHCO3–MeCN system at reflux for 24 h. Additionally, the cytotoxic activity of the synthesized compounds against MCF-7 (breast adenocarcinoma), A-549 (lung adenocarcinoma), CCRF-CEM (acute lymphoblastic leukemia), and MRC-5 (normal lung fibroblasts) was evaluated. We observed that the studied cell lines differed in sensitivity to the tested compounds with MCF-7 cells being the most sensitive, while A-549 cells were the least sensitive. Moreover, the cytotoxicity of the tested derivatives towards CCRF-CEM cells increased with the number of chlorine or fluorine substituents. Furthermore, some of the active compounds, i.e., 2-(5,6-dibromo-1H-benzimidazol-1-yl)-1-(3,4-dichlorophenyl)ethanone (4f), 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trichlorophenyl)ethanone (5g), and 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trifluorophenyl)ethanone (5j) demonstrated pro-apoptotic properties against leukemic cells with derivative 5g being the most effective.
Collapse
|
32
|
Paredes-Barquero M, Niso-Santano M, Fuentes JM, Martínez-Chacón G. In vitro and in vivo models to study the biological and pharmacological properties of queen bee acid (QBA, 10-hydroxy-2-decenoic acid): A systematic review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Zhou X, Jin W, Chen Y, Zhu L, Mo A, Xie Q. Identification of potential druggable targets of cell cycle with small-molecule inhibitors in oral squamous cell carcinoma. Pharmacogenet Genomics 2022; 32:125-137. [PMID: 34954767 DOI: 10.1097/fpc.0000000000000461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide and there are few crucial regulators and druggable targets for early diagnosis. Therefore, the identification of biomarkers for the early diagnosis and druggable targets of OSCC is imminent. In this study, we integrated gene set enrichment analysis, differential gene expression analysis based on the negative binomial distribution, weighted correlation network analysis, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes into analyzing the OSCC cohort downloaded from The Cancer Genome Atlas, and found that cell cycle and related biologic processes are significantly enriched. Then, we constructed the core gene network of OSCC, which showed the connection of encode human Cyclin-A2 protein, encode RAD51-associated protein 1, encode human centromere-associated protein E (CENPE), encode humans centromere protein I (CENPI) and encode polo-like kinase 1 (PLK1) to several cell cycle-related genes. Survival analysis further showed that low expression of these genes was associated with a better prognosis. Furthermore, we utilized a high-throughput virtual screening to find new CENPE and PLK1 inhibitors, and one of the CENPE inhibitor DB04517 suppressed the proliferation of OSCC cells by cell cycle arrest of cell cycle. Taken together, these candidate regulators could serve as the candidate diagnostic and prognostic biomarkers for OSCC, and specific suppression of these genes may be a potential approach to prevent and treat OSCC with the candidate inhibitors.
Collapse
Affiliation(s)
- Xiaoyi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology
| | - Wenke Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang and
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang and
| | - Anchun Mo
- Department of Oral Implantology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
| |
Collapse
|
34
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
35
|
Mussel-inspired multifunctional surface through promoting osteogenesis and inhibiting osteoclastogenesis to facilitate bone regeneration. NPJ Regen Med 2022; 7:29. [PMID: 35562356 PMCID: PMC9106696 DOI: 10.1038/s41536-022-00224-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Osteogenesis and osteoclastogenesis are closely associated during the bone regeneration process. The development of multifunctional bone repair scaffolds with dual therapeutic actions (pro-osteogenesis and anti-osteoclastogenesis) is still a challenging task for bone tissue engineering applications. Herein, through a facile surface coating process, mussel-inspired polydopamine (PDA) is adhered to the surface of a biocompatible porous scaffold followed by the immobilization of a small-molecule activator (LYN-1604 (LYN)) and the subsequent in situ coprecipitation of hydroxyapatite (HA) nanocrystals. PDA, acting as an intermediate bridge, can provide strong LYN immobilization and biomineralization ability, while LYN targets osteoclast precursor cells to inhibit osteoclastic differentiation and functional activity, which endows LYN/HA-coated hybrid scaffolds with robust anti-osteoclastogenesis ability. Due to the synergistic effects of the LYN and HA components, the obtained three-dimensional hybrid scaffolds exhibited the dual effects of osteoclastic inhibition and osteogenic stimulation, thereby promoting bone tissue repair. Systematic characterization experiments confirmed the successful fabrication of LYN/HA-coated hybrid scaffolds, which exhibited an interconnected porous structure with nanoroughened surface topography, favorable hydrophilicity, and improved mechanical properties, as well as the sustained sequential release of LYN and Ca ions. In vitro experiments demonstrated that LYN/HA-coated hybrid scaffolds possessed satisfactory cytocompatibility, effectively promoting cell adhesion, spreading, proliferation, alkaline phosphatase activity, matrix mineralization, and osteogenesis-related gene and protein secretion, as well as stimulating angiogenic differentiation of endothelial cells. In addition to osteogenesis, the engineered scaffolds also significantly reduced osteoclastogenesis, such as tartrate-resistant acid phosphatase activity, F-actin ring staining, and osteoclastogenesis-related gene and protein secretion. More importantly, in a rat calvarial defect model, the newly developed hybrid scaffolds significantly promoted bone repair and regeneration. Microcomputed tomography, histological, and immunohistochemical analyses all revealed that the LYN/HA-coated hybrid scaffolds possessed not only reliable biosafety but also excellent osteogenesis-inducing and osteoclastogenesis-inhibiting effects, resulting in faster and higher-quality bone tissue regeneration. Taken together, this study offers a powerful and promising strategy to construct multifunctional nanocomposite scaffolds by promoting osteo/angiogenesis and suppressing osteoclastogenesis to accelerate bone regeneration.
Collapse
|
36
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Fu J, Yang Y, Zhu L, Chen Y, Liu B. Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. J Med Chem 2022; 65:5870-5885. [PMID: 35390258 DOI: 10.1021/acs.jmedchem.1c02053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases, which catalyze the phosphorylation of proteins, are involved in several important cellular processes, such as autophagy. Of note, autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human diseases. More recently, the roles of protein kinases in autophagy have been gradually elucidated, and the design of small-molecule compounds to modulate targets to positively or negatively interfere with the cytoprotective autophagy or autophagy-associated cell death may provide a new clue on the current targeted therapy. Thus, in this Perspective, we focus on summarizing the different roles of protein kinases, including positive, negative, and bidirectional regulations of autophagy. Moreover, we discuss several small-molecule compounds targeting these protein kinases in human diseases, highlighting their pivotal roles in autophagy for targeted therapeutic purposes.
Collapse
Affiliation(s)
- Jiahui Fu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Wang XY, Mao HW, Guan XH, Huang QM, Yu ZP, Wu J, Tan HL, Zhang F, Huang X, Deng KY, Xin HB. TRIM65 Promotes Cervical Cancer Through Selectively Degrading p53-Mediated Inhibition of Autophagy and Apoptosis. Front Oncol 2022; 12:853935. [PMID: 35402260 PMCID: PMC8987532 DOI: 10.3389/fonc.2022.853935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif containing 65 (TRIM65) is an E3 ubiquitin ligase that has been implicated in a variety of cellular processes as well as tumor progression, but its biological role and the underlying mechanism in cervical cancer is unclear. Here, we reported that TRIM65 expression in human cervical cancer tissues was significantly higher than that in the adjacent normal cervical tissues, and TRIM65 knockdown enhanced autophagic flux and cell apoptosis, but not cell cycle, to dramatically inhibit the proliferation and migration of cervical cancer cells. Furthermore, our experiments showed that TRIM65 exhibited oncogenic activities via directly targeting p53, a tumor suppressor and a common upsteam regulator between autophagy and apoptosis, promoting ubiquitination and proteasomal degradation of p53. Taken together, our studies demonstrated that TRIM65 knockdown promotes cervical cancer cell death through enhancing autophagy and apoptosis, suggesting that TRIM65 may be a potential therapeutic target for cervical cancer clinically.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Hai-Wei Mao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- Outpatient Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- College of Life Science, Nanchang University, Nanchang, China
- *Correspondence: Hong-Bo Xin, ; Ke-Yu Deng,
| |
Collapse
|
39
|
Zhao R, Fu J, Zhu L, Chen Y, Liu B. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J Hematol Oncol 2022; 15:14. [PMID: 35123522 PMCID: PMC8817562 DOI: 10.1186/s13045-022-01230-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been defined as a class of RNA molecules transcribed from the genome but not encoding proteins, such as microRNAs, long non-coding RNAs, Circular RNAs, and Piwi-interacting RNAs. Accumulating evidence has recently been revealing that ncRNAs become potential druggable targets for regulation of several small-molecule compounds, based on their complex spatial structures and biological functions in cancer therapy. Thus, in this review, we focus on summarizing some new emerging designing strategies, such as high-throughput screening approach, small-molecule microarray approach, structure-based designing approach, phenotypic screening approach, fragment-based designing approach, and pharmacological validation approach. Based on the above-mentioned approaches, a series of representative small-molecule compounds, including Bisphenol-A, Mitoxantrone and Enoxacin have been demonstrated to modulate or selectively target ncRNAs in different types of human cancers. Collectively, these inspiring findings would provide a clue on developing more novel avenues for pharmacological modulations of ncRNAs with small-molecule drugs for future cancer therapeutics.
Collapse
|
40
|
Zhang J, Tang P, Zou L, Zhang J, Chen J, Yang C, He G, Liu B, Liu J, Chiang CM, Wang G, Ye T, Ouyang L. Discovery of Novel Dual-Target Inhibitor of Bromodomain-Containing Protein 4/Casein Kinase 2 Inducing Apoptosis and Autophagy-Associated Cell Death for Triple-Negative Breast Cancer Therapy. J Med Chem 2021; 64:18025-18053. [PMID: 34908415 PMCID: PMC10118286 DOI: 10.1021/acs.jmedchem.1c01382] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is an attractive epigenetic target in human cancers. Inhibiting the phosphorylation of BRD4 by casein kinase 2 (CK2) is a potential strategy to overcome drug resistance in cancer therapy. The present study describes the synthesis of multiple BRD4-CK2 dual inhibitors based on rational drug design, structure-activity relationship, and in vitro and in vivo evaluations, and 44e was identified to possess potent and balanced activities against BRD4 (IC50 = 180 nM) and CK2 (IC50 = 230 nM). In vitro experiments show that 44e could inhibit the proliferation and induce apoptosis and autophagy-associated cell death of MDA-MB-231 and MDA-MB-468 cells. In two in vivo xenograft mouse models, 44e displays potent anticancer activity without obvious toxicities. Taken together, we successfully synthesized the first highly effective BRD4-CK2 dual inhibitor, which is expected to be an attractive therapeutic strategy for triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ling Zou
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
41
|
ULK1 Suppresses Osteoclast Differentiation and Bone Resorption via Inhibiting Syk-JNK through DOK3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2896674. [PMID: 34820053 PMCID: PMC8608530 DOI: 10.1155/2021/2896674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Bone resorption diseases, including osteoporosis, are usually caused by excessive osteoclastogenesis. Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian serine/threonine kinase, may participate in the regulation of bone homeostasis and osteolytic metastasis. In this study, ULK1 expression during osteoclastogenesis was detected with RT-PCR. We knocked down or overexpressed ULK1 through siRNA or lentiviral transduction in bone marrow macrophage (BMM). TRAP and phalloidin staining were performed to detect the osteoclastogenesis activity. Ovariectomized (OVX) mouse model of osteoporosis and a mouse of model osteoclast-induced bone resorption were applied to explore the role of ULK1 in bone resorption in vivo. The results showed that ULK1 expression was downregulated during osteoclast differentiation and was clinically associated with osteoporosis. ULK1 inhibited osteoclast differentiation in vitro. Knockdown of ULK1 expression activated phosphorylation of c-Jun N-terminal kinase (JNK) and spleen tyrosine kinase (Syk). Docking protein 3 (DOK3) was coexpressed with ULK1 during osteoclastogenesis. Downregulation of DOK3 offsets the effect of ULK1 on osteoclastogenesis and induced phosphorylation of JNK and Syk. Activation of ULK1 impeded bone loss in OVX mice with osteoporosis. Additionally, upregulation of ULK1 inhibited osteoclast-induced bone resorption in vivo. Therefore, our study reveals a novel ULK1/DOK3/Syk axis that regulates osteoclast differentiation and bone resorption, and targeting ULK1 is a potential therapeutic strategy for osteoporosis.
Collapse
|
42
|
Ramachandran S, Kaushik IS, Srivastava SK. Pimavanserin: A Novel Autophagy Modulator for Pancreatic Cancer Treatment. Cancers (Basel) 2021; 13:cancers13225661. [PMID: 34830816 PMCID: PMC8616166 DOI: 10.3390/cancers13225661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic tumors exhibit high basal autophagy compared to that of other cancers. Several studies including those from our laboratory reported that enhanced autophagy leads to apoptosis in cancer cells. In this study, we evaluated the autophagy and apoptosis inducing effects of Pimavanserin tartrate (PVT). Autophagic effects of PVT were determined by Acridine Orange assay and Transmission Electron Microscopy analysis. Clinical significance of ULK1 in normal and pancreatic cancer patients was evaluated by R2 and GEPIA cancer genomic databases. Modulation of proteins in autophagy signaling was assessed by Western blotting and Immunofluorescence. Apoptotic effects of PVT was evaluated by Annexin-V/APC assay. Subcutaneous xenograft pancreatic tumor model was used to evaluate the autophagy-mediated apoptotic effects of PVT in vivo. Autophagy was induced upon PVT treatment in pancreatic ducal adenocarcinoma (PDAC) cells. Pancreatic cancer patients exhibit reduced levels of autophagy initiator gene, ULK1, which correlated with reduced patient survival. Interestingly, PVT induced the expression of autophagy markers ULK1, FIP200, Atg101, Beclin-1, Atg5, LC3A/B, and cleavage of caspase-3, an indicator of apoptosis in several PDAC cells. ULK1 agonist LYN-1604 enhanced the autophagic and apoptotic effects of PVT. On the other hand, autophagy inhibitors chloroquine and bafilomycin blocked the autophagic and apoptotic effects of PVT in PDAC cells. Notably, chloroquine abrogated the growth suppressive effects of PVT by 25% in BxPC3 tumor xenografts in nude mice. Collectively, our results indicate that PVT mediated pancreatic tumor growth suppression was associated with induction of autophagy mediated apoptosis.
Collapse
|
43
|
Liu W, Jin W, Zhu S, Chen Y, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death and necroptosis. Drug Discov Today 2021; 27:612-625. [PMID: 34718209 DOI: 10.1016/j.drudis.2021.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Evasion of regulated cell death (RCD), mainly referring to apoptosis, autophagy-dependent cell death, necroptosis, and other subroutines, is one of the well-established hallmarks of cancer cells. Accumulating evidence has revealed several small-molecule compounds that target different subroutines of RCD in cancer therapy. In this review, we summarize key pathways of apoptosis, autophagy-dependent cell death and necroptosis in cancer, and describe small-molecule compounds that target these pathways and have potential as therapeutics. These inspiring findings light the way towards the discovery of more 'magic bullets' that could work individually or cooperatively to target precisely the three RCD subroutines and so improve cancer treatment.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenke Jin
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
44
|
Zhang J, Zou L, Shi D, Liu J, Zhang J, Zhao R, Wang G, Zhang L, Ouyang L, Liu B. Structure-Guided Design of a Small-Molecule Activator of Sirtuin-3 that Modulates Autophagy in Triple Negative Breast Cancer. J Med Chem 2021; 64:14192-14216. [PMID: 34605238 DOI: 10.1021/acs.jmedchem.0c02268] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sirtuin-3 (SIRT3) is an NAD+-dependent protein deacetylase localized primarily in the mitochondria with many links to different types of human cancers. Autophagy, which is a highly conserved lysosomal degradation process in eukaryotic cells, has been recently reported to be positively regulated by SIRT3 in cancer; therefore, activating SIRT3-modulated autophagy may be a promising strategy for drug discovery. In this study, we discovered a small-molecule activator of SIRT3 compound 33c (ADTL-SA1215) with specific SIRT3 deacetylase activity by structure-guided design and high-throughput screening. Subsequently, compound 33c inhibited the proliferation and migration of human breast carcinoma MDA-MB-231 cells by SIRT3-driven autophagy/mitophagy signaling pathways in vitro and in vivo. Collectively, these results demonstrate that pharmacological activation of SIRT3 is a potential therapeutic approach of triple negative breast cancer (TNBC). More importantly, compound 33c may be a first-in-class specific small-molecule activator of SIRT3 that would be utilized for future cancer drug development.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ling Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Danfeng Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.,Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Rongyan Zhao
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Chengdu 610031, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Chengdu 610031, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
45
|
Maniam S, Maniam S. Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22189722. [PMID: 34575883 PMCID: PMC8465612 DOI: 10.3390/ijms22189722] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.
Collapse
Affiliation(s)
- Subashani Maniam
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| |
Collapse
|
46
|
Quinn MCJ, McCue K, Shi W, Johnatty SE, Beesley J, Civitarese A, O'Mara TA, Glubb DM, Tyrer JP, Armasu SM, Ong JS, Gharahkhani P, Lu Y, Gao B, Patch AM, Fasching PA, Beckmann MW, Lambrechts D, Vergote I, Velez Edwards DR, Beeghly-Fadiel A, Benitez J, Garcia MJ, Goodman MT, Dörk T, Dürst M, Modugno F, Moysich K, du Bois A, Pfisterer J, Bauman K, Karlan BY, Lester J, Cunningham JM, Larson MC, McCauley BM, Kjaer SK, Jensen A, Hogdall CK, Hogdall E, Schildkraut JM, Riggan MJ, Berchuck A, Cramer DW, Terry KL, Bjorge L, Webb PM, Friedlander M, Pejovic T, Moffitt M, Glasspool R, May T, Ene GEV, Huntsman DG, Woo M, Carney ME, Hinsley S, Heitz F, Fereday S, Kennedy CJ, Edwards SL, Winham SJ, deFazio A, Pharoah PDP, Goode EL, MacGregor S, Chenevix-Trench G. Identification of a Locus Near ULK1 Associated With Progression-Free Survival in Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:1669-1680. [PMID: 34162658 PMCID: PMC8419101 DOI: 10.1158/1055-9965.epi-20-1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many loci have been found to be associated with risk of epithelial ovarian cancer (EOC). However, although there is considerable variation in progression-free survival (PFS), no loci have been found to be associated with outcome at genome-wide levels of significance. METHODS We carried out a genome-wide association study (GWAS) of PFS in 2,352 women with EOC who had undergone cytoreductive surgery and standard carboplatin/paclitaxel chemotherapy. RESULTS We found seven SNPs at 12q24.33 associated with PFS (P < 5 × 10-8), the top SNP being rs10794418 (HR = 1.24; 95% CI, 1.15-1.34; P = 1.47 × 10-8). High expression of a nearby gene, ULK1, is associated with shorter PFS in EOC, and with poor prognosis in other cancers. SNP rs10794418 is also associated with expression of ULK1 in ovarian tumors, with the allele associated with shorter PFS being associated with higher expression, and chromatin interactions were detected between the ULK1 promoter and associated SNPs in serous and endometrioid EOC cell lines. ULK1 knockout ovarian cancer cell lines showed significantly increased sensitivity to carboplatin in vitro. CONCLUSIONS The locus at 12q24.33 represents one of the first genome-wide significant loci for survival for any cancer. ULK1 is a plausible candidate for the target of this association. IMPACT This finding provides insight into genetic markers associated with EOC outcome and potential treatment options.See related commentary by Peres and Monteiro, p. 1604.
Collapse
Affiliation(s)
- Michael C J Quinn
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karen McCue
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wei Shi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sharon E Johnatty
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew Civitarese
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dylan M Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jonathan P Tyrer
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Sebastian M Armasu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jue-Sheng Ong
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Puya Gharahkhani
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Yi Lu
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bo Gao
- Crown Princess Mary Cancer Care Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Ann-Marie Patch
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter A Fasching
- Division of Hematology and Oncology, Department of Medicine, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Digna R Velez Edwards
- Department of Obstetrics and Gynecology, Vanderbilt Epidemiology Center, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Maria J Garcia
- Human Genetics Group, Spanish National Cancer Centre (CNIO), and Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Computational Oncology Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Marc T Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Community and Population Health Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kirsten Moysich
- Division of Cancer Prevention and Population Sciences, Cancer Pathology & Prevention, Roswell Park Cancer Institute, Buffalo, New York
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | | | - Beth Y Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Bryan M McCauley
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Susanne K Kjaer
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Allan Jensen
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Claus K Hogdall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Marjorie J Riggan
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Daniel W Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Melissa Moffitt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Rosalind Glasspool
- Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, United Kingdom
| | - Taymaa May
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle E V Ene
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | - David G Huntsman
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Woo
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Michael E Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Samantha Hinsley
- Cancer Research UK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, United Kingdom
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Stacey L Edwards
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Worts Causeway, Cambridge, United Kingdom
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Stuart MacGregor
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
47
|
Li Y, Yang G, Zhang J, Tang P, Yang C, Wang G, Chen J, Liu J, Zhang L, Ouyang L. Discovery, Synthesis, and Evaluation of Highly Selective Vascular Endothelial Growth Factor Receptor 3 (VEGFR3) Inhibitor for the Potential Treatment of Metastatic Triple-Negative Breast Cancer. J Med Chem 2021; 64:12022-12048. [PMID: 34351741 DOI: 10.1021/acs.jmedchem.1c00678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We herein report the identification, structural optimization, and structure-activity relationship of thieno[2,3-d]pyrimidine derivatives as a novel kind of selective vascular endothelial growth factor receptor 3 (VEGFR3) inhibitors. N-(4-Chloro-3-(trifluoromethyl)phenyl)-4-(6-(4-(4-methylpiperazin-1-yl)phenyl)thieno[2,3-d]pyrimidin-4-yl)piperazine-1-carboxamide (38k) was the most potent VEGFR3 inhibitor (IC50 = 110.4 nM) among developed compounds. Compared with VEGFR1 and VEGFR2, VEGFR3 was approximately 100 times more selective. Here, compound 38k significantly inhibited proliferation and migration of VEGF-C-induced human dermal lymphatic endothelial cells (HDLEC), MDA-MB-231, and MDA-MB-436 cells by inactivating the VEGFR3 signaling pathway. Additionally, 38k induced cell apoptosis and a prolonged G1/S-phase in MDA-MB-231 and MDA-MB-436 cells. It also presented acceptable pharmacokinetic characteristics in Sprague-Dawley (SD) rats with an oral bioavailability of 30.9%. In the xenograft model in vivo, 38k effectively inhibited breast cancer growth by suppressing the VEGFR3 signaling pathway. 38k pronouncedly resisted the formation of pulmonary metastatic nodules in mice. Collectively, 38k may be a promising therapeutic agent of metastatic breast cancer.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
48
|
Kumar P, Jagtap YA, Patwa SM, Kinger S, Dubey AR, Prajapati VK, Dhiman R, Poluri KM, Mishra A. Autophagy based cellular physiological strategies target oncogenic progression. J Cell Physiol 2021; 237:258-277. [PMID: 34448206 DOI: 10.1002/jcp.30567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Evidence accumulated from past findings indicates that defective proteostasis may contribute to risk factors for cancer generation. Irregular assembly of abnormal proteins catalyzes the disturbance of cellular proteostasis and induces the ability of abnormal cellular proliferation. The autophagy mechanism plays a key role in the regular clearance of abnormal/poor lipids, proteins, and various cellular organelles. The results of functional and effective autophagy deliver normal cellular homeostasis, which establishes supportive metabolism and avoids unexpected tumorigenesis events. Still, the precise molecular mechanism of autophagy in tumor suppression has not been clear. How autophagy triggers selective or nonselective bulk degradation to dissipate tumor promotion under stress conditions is not clear. Under proteotoxic insults to knockdown the drive of tumorigenesis, it is critical for us to figure out the detailed molecular functions of autophagy in human cancers. The current article summarizes autophagy-based theragnostic strategies targeting various phases of tumorigenesis and suggests the preventive roles of autophagy against tumor progression. A better understanding of various molecular partners of autophagic flux will improve and innovate therapeutic approaches based on autophagic-susceptible effects against cellular oncogenic transformation.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som Mohanlal Patwa
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
49
|
Li Y, Yang G, Yang C, Tang P, Chen J, Zhang J, Liu J, Ouyang L. Targeting Autophagy-Related Epigenetic Regulators for Cancer Drug Discovery. J Med Chem 2021; 64:11798-11815. [PMID: 34378389 DOI: 10.1021/acs.jmedchem.1c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Existing evidence has demonstrated that epigenetic modifications (including DNA methylation, histone modifications, and microRNAs), which are associated with the occurrence and development of tumors, can directly or indirectly regulate autophagy. In particular, nuclear events induced by several epigenetic regulators can regulate the autophagic process and expression levels of tumor-associated genes, thereby promoting tumor progression. Tumor-associated microRNAs, including oncogenic and tumor-suppressive microRNAs, are of great significance to autophagy during tumor progression. Targeting autophagy with emerging epigenetic drugs is expected to be a promising therapeutic strategy for human tumors. From this perspective, we aim to summarize the role of epigenetic modification in the autophagic process and the underlying molecular mechanisms of tumorigenesis. Furthermore, the regulatory efficacy of epigenetic drugs on the autophagic process in tumors is also summarized. This perspective may provide a theoretical basis for the combined treatment of epigenetic drugs/autophagy mediators in tumors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
50
|
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A, Pless O. Targeting autophagy in disease: established and new strategies. Autophagy 2021; 18:473-495. [PMID: 34241570 PMCID: PMC9037468 DOI: 10.1080/15548627.2021.1936359] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved pathway responsible for clearing cytosolic aggregated proteins, damaged organelles or invading microorganisms. Dysfunctional autophagy leads to pathological accumulation of the cargo, which has been linked to a range of human diseases, including neurodegenerative diseases, infectious and autoimmune diseases and various forms of cancer. Cumulative work in animal models, application of genetic tools and pharmacologically active compounds, has suggested the potential therapeutic value of autophagy modulation in disease, as diverse as Huntington, Salmonella infection, or pancreatic cancer. Autophagy activation versus inhibition strategies are being explored, while the role of autophagy in pathophysiology is being studied in parallel. However, the progress of preclinical and clinical development of autophagy modulators has been greatly hampered by the paucity of selective pharmacological agents and biomarkers to dissect their precise impact on various forms of autophagy and cellular responses. Here, we summarize established and new strategies in autophagy-related drug discovery and indicate a path toward establishing a more efficient discovery of autophagy-selective pharmacological agents. With this knowledge at hand, modern concepts for therapeutic exploitation of autophagy might become more plausible. Abbreviations: ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related gene; AUTAC: autophagy-targeting chimera; CNS: central nervous system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome targeting chimera; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD: neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC: proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Muhammed Kocak
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | | | | | - Inés Maestro
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain
| | | | - Vladimir Kirkin
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | - Ana Martinez
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Neurodegenerativas (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| |
Collapse
|