1
|
Matsumoto E, Postrado M, Takahashi H. Induction of the Interdigitated Gel Phase of Hydrated Dipalmitoylphosphatidylcholine Bilayers by the Artificial Sweetener Sucralose. J Phys Chem B 2024; 128:9745-9755. [PMID: 39321204 DOI: 10.1021/acs.jpcb.4c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Recent research indicates that high doses of sucralose content can weaken the immune response in mice. To better understand the interaction between cell membranes and sucralose, we studied model biomembranes composed of dipalmitoylphosphatidylcholine bilayers in a sucralose solution. Calorimetry measurements showed that the effect of sucralose on the phase behavior is biphasic. Pretransitions and main transitions are decreased at low sucralose concentrations, while the main transition is increased at high concentrations. Pretransitions cannot be detected above the concentration at which the direction of change in the main transition temperature reverses. X-ray diffraction measurements revealed that sucralose at concentrations higher than 0.2 M induces the interdigitated gel (LβI) phase below the main transition temperature. Fluorescence Prodan measurements suggested that the sucralose solution is slightly more hydrophobic than the sucrose solution. This could be one reason why sucralose induces the LβI phase.
Collapse
Affiliation(s)
- Emika Matsumoto
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Michael Postrado
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
2
|
Munteanu V, Starostin V, Greco A, Pithan L, Gerlach A, Hinderhofer A, Kowarik S, Schreiber F. Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge. J Appl Crystallogr 2024; 57:456-469. [PMID: 38596736 PMCID: PMC11001411 DOI: 10.1107/s1600576724002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/03/2024] [Indexed: 04/11/2024] Open
Abstract
Due to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network. In this manner, the neural network can be trained simultaneously on all well-posed subintervals of a larger parameter space in which the inverse problem is underdetermined. During inference, users can flexibly input their own prior knowledge about the physical system to constrain the neural network prediction to distinct target subintervals in the parameter space. The effectiveness of the method is demonstrated in various scenarios, including multilayer structures with a box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. In contrast to previous methods, this approach scales favourably when increasing the complexity of the inverse problem, working properly even for a five-layer multilayer model and a periodic multilayer model with up to 17 open parameters.
Collapse
Affiliation(s)
- Valentin Munteanu
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Vladimir Starostin
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Alessandro Greco
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Linus Pithan
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexander Gerlach
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | - Stefan Kowarik
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Frank Schreiber
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Gubała D, Slastanova A, Matthews L, Islas L, Wąsik P, Cacho-Nerin F, Ferreira Sanchez D, Robles E, Chen M, Briscoe WH. Effects of Erucamide on Fiber "Softness": Linking Single-Fiber Crystal Structure and Mechanical Properties. ACS NANO 2024. [PMID: 38334316 PMCID: PMC10883039 DOI: 10.1021/acsnano.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Erucamide is known to play a critical role in modifying polymer fiber surface chemistry and morphology. However, its effects on fiber crystallinity and mechanical properties remain to be understood. Here, synchrotron nanofocused X-ray Diffraction (nXRD) revealed a bimodal orientation of the constituent polymer chains aligned along the fiber axis and cross-section, respectively. Erucamide promoted crystallinity in the fiber, leading to larger and more numerous lamellae crystallites. The nXRD nanostructual characterization is complemented by single-fiber uniaxial tensile tests, which showed that erucamide significantly affected fiber mechanical properties, decreasing fiber tensile strength and stiffness but enhancing fiber toughness, fracture strain, and ductility. To correlate these single-fiber nXRD and mechanical test results, we propose that erucamide mediated slip at the interfaces between crystallites and amorphous domains during stress-induced single-fiber crystallization, also decreasing the stress arising from the shear displacement of microfibrils and deformation of the macromolecular network. Linking the single-fiber crystal structure with the single-fiber mechanical properties, these findings provide the direct evidence on a single-fiber level for the role of erucamide in enhancing fiber "softness".
Collapse
Affiliation(s)
- Dajana Gubała
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Anna Slastanova
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Lauren Matthews
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, U.K
| | - Luisa Islas
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Patryk Wąsik
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, U.K
| | - Fernando Cacho-Nerin
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | | | - Eric Robles
- Procter & Gamble Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle NE12 9TS, U.K
| | - Meng Chen
- Procter & Gamble Technology (Beijing) Co., Ltd., 35 Yu'an Rd, Shunyi District, Beijing 101312, China
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
4
|
Taylor NM, Pilkington GA, Snow T, Dowding PJ, Cattoz BN, Schwarz AD, Bikondoa O, Vincent B, Briscoe WH. Surface forces and friction between Langmuir-Blodgett polymer layers in a nonpolar solvent. J Colloid Interface Sci 2024; 653:1432-1443. [PMID: 37804612 DOI: 10.1016/j.jcis.2023.09.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Optimization of boundary lubrication by tuning the confined molecular structures formed by surface-active additives such as surfactants and polymers is of key importance to improving energy efficiency in mechanical processes. Here, using the surface forces apparatus (SFA), we have directly measured the normal and shear forces between surface layers of a functionalised olefin copolymer (FOCP) in n-dodecane, deposited onto mica using the Langmuir-Blodgett (LB) technique. The FOCP has an olefin backbone decorated with a statistical distribution of polar-aromatic groups, with a structure that we term as "centipede". The effect of lateral confinement, characterised by the surface pressure, Πdep, at the air-water interface at which the LB films are transferred, was examined. Normal force profiles revealed that the thickness of the LB films increased significantly with Πdep, with the film thickness (t > 20 nm) inferring a multi-layered film structure, consistent with the interfacial characterisation results from synchrotron X-ray reflectivity (XRR) measurements. The coefficient of friction, µ, between the LB films spanned two orders of magnitude from superlubricity (µ ∼ 0.002) to much higher friction (µ > 0.1) depending nonlinearly on Πdep, with the lowest friction observed at the intermediate Πdep. Molecular arrangement upon LB compression leads to the multilayer film with a structure akin to an interfacial gel, with transient crosslinking facilitated by the intra- and inter-molecular interactions between the functional groups. We attribute the differences in frictional behaviour to the different prevalence of the FOCP functional groups at the lubricating interface, which depends sensitively on the degree of compression at the air-water interface prior to the LB deposition. The LB films remain intact after repeated compression (up to pressures of 10 MPa) and shear cycles, indicating strong surface anchorage and structural robustness as a load-bearing and shear-mediating boundary layer. These unprecedented results from the friction measurements between LB films of a statistical copolymer in oil point towards new strategies for tailoring macromolecular architecture for mediating efficient energy dissipation in oil-based tribological applications.
Collapse
Affiliation(s)
- Nicholas M Taylor
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Georgia A Pilkington
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Tim Snow
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Peter J Dowding
- Infineum UK Ltd, Milton Hill Business and Technology Centre, Abingdon, Oxon OX13 6BB, UK
| | - Beatrice N Cattoz
- Infineum UK Ltd, Milton Hill Business and Technology Centre, Abingdon, Oxon OX13 6BB, UK
| | - Andrew D Schwarz
- Infineum UK Ltd, Milton Hill Business and Technology Centre, Abingdon, Oxon OX13 6BB, UK
| | - Oier Bikondoa
- XMaS, The UK CRG Beamline, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Brian Vincent
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
5
|
Shin K, Lee KB, Hwang JH, Lee B, Ryu H, Noh M, Lee JB, Nam YS, Lim KM, Kim JW. Multilamellar ceramide core-structured microvehicles with substantial skin barrier function recovery. J Mater Chem B 2023; 11:2135-2144. [PMID: 36762491 DOI: 10.1039/d2tb02734h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study introduces a multilamellar ceramide core-structured microvehicle platform for substantial skin barrier function recovery. Our approach essentially focused on fabricating bacterial cellulose nanofiber (BCNF)-enveloped ceramide-rich lipid microparticles (CerMPs) by solidifying BCNF-armored oil-in-water Pickering emulsions. The oil drops consisted of Ceramide NP (a phytosphingosine backbone N-acylated with a saturated stearic acid) and fatty alcohols (FAs) with a designated stoichiometry. The thin BCNF shell layer completely blocked the growth of ceramide molecular crystals from the CerMPs for a long time. The CerMP cores displayed a multilamellar structure wherein the interlayer distance and lateral packing could be manipulated using FAs with different alkyl chain lengths. The CerMPs remarkably lowered the trans-epidermal water loss while restoring the structural integrity of the epidermis in damaged skin. The results obtained herein highlight that the CerMP system provides a practical methodology for developing various types of skin-friendly formulations that can strengthen the skin barrier function.
Collapse
Affiliation(s)
- Kyounghee Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Kun Bong Lee
- Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Hyun Hwang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Boryeong Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Hyunsun Ryu
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Minjoo Noh
- Innovation Lab, Cosmax R&I Center, Seongnam 13486, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab, Cosmax R&I Center, Seongnam 13486, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| |
Collapse
|
6
|
Baccile N, Derj A, Boissière C, Humblot V, Deniset-Besseau A. Homogeneous supported monolayer from microbial glycolipid biosurfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Gubała D, Taylor N, Harniman R, Rawle J, Hussain H, Robles E, Chen M, Briscoe WH. Structure, Nanomechanical Properties, and Wettability of Organized Erucamide Layers on a Polypropylene Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6521-6532. [PMID: 34015220 DOI: 10.1021/acs.langmuir.1c00686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the nanostructure and nanomechanical properties of surface layers of erucamide, in particular the molecular orientation of the outermost layer, is important to its widespread use as a slip additive in polymer materials. Extending our recent observations of nanomorphologies of erucamide layers on a hydrophilic silica substrate, here we evaluate its nanostructure on a more hydrophobic polypropylene surface. Atomic force microscopy (AFM) imaging revealed the molecular packing, thickness, and surface coverage of the erucamide layers, while peak force quantitative nanomechanical mapping (QNM) showed that erucamide reduced the adhesive response on polypropylene. Synchrotron X-ray reflectivity (XRR) was used to probe the out-of-plane structure of the surface layers. Static contact angle measurements further corroborated on the resulting wettability, also demonstrating the efficacy of erucamide physisorption in facilitating control over polypropylene surface wetting. The results show the formation of erucamide monolayers, bilayers and multilayers, depending on the concentration in the spin-cast solution. Correlation of AFM, XRR and wettability results consistently points to the molecular orientation in the outermost layer, i.e. with the erucamide tails pointing outward for the surface nanostructures with different morphologies (i.e., bilayers and multilayers). Rare occurrence of monolayers with exposed hydrophilic head groups were observed only at the lowest erucamide concentration. Compared with our previous observations on the hydrophilic surface, the erucamide surface coverage was much higher on the more hydrophobic propylene surface at similar erucamide concentrations in the spin-cast solution. Furthermore, the structure, molecular orientation and nanomechanical properties of the spin-cast erucamide multilayers atop polypropylene were also similar to those on industrially relevant polypropylene fibers coated with erucamide via blooming. These findings shed light on the nanostructural features of the erucamide surface layer underpinning its nanomechanical properties, relevant to many applications in which erucamide is commonly used as a slip additive.
Collapse
Affiliation(s)
- Dajana Gubała
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Nicholas Taylor
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Robert Harniman
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Jonathan Rawle
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Hadeel Hussain
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Eric Robles
- Household Care Analytical, Procter & Gamble Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle NE12 9TS, United Kingdom
| | - Meng Chen
- Procter & Gamble Beijing Innovation Centre, 35 Yu'an Rd, Shunyi District, Beijing 101312, China
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
8
|
Matthews L, Ruscigno S, Rogers SE, Bartlett P, Johnson AJ, Sochon R, Briscoe WH. Fracto-eutectogels: SDS fractal dendrites via counterion condensation in a deep eutectic solvent. Phys Chem Chem Phys 2021; 23:11672-11683. [PMID: 33978002 DOI: 10.1039/d1cp01370j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glyceline, a deep eutectic solvent comprising glycerol and choline chloride, is a green nonaqueous solvent with potential industrial applications. Molecular mechanisms of surfactant self-assembly in deep eutectic solvents are expected to differ from those in their constituent polar components and are not well understood. Here we report the observation of self-assembled SDS fractal dendrites with dimensions up to ∼mm in glyceline at SDS concentrations as low as cSDS ∼ 0.1 wt%. The prevalence of these dendritic fractal aggregates led to the formation of a gel phase at SDS concentrations above ≥1.9 wt% (the critical gelation concentration cCGC). The gel microscopic structure was visualised using polarised light microscopy (PLM); rheology measurements confirmed the formation of a colloidal gel, where the first normal stress difference was negative and the elastic modulus was dominant. Detailed nano-structural characterisation by small-angle neutron scattering (SANS) further confirmed the presence of fractal aggregates. Such SDS aggregation or gelation has not been observed in water at such low surfactant concentrations, whereas SDS has been reported to form lamellar aggregates in glycerol (a component of glyceline). We attribute the formation of the SDS fractal dendrites to the condensation of counterions (i.e. the choline ions) around the SDS aggregates - a diffusion-controlled process, leading to the aggregate morphology observed. These unprecedented results shed light on the molecular mechanisms of surfactant self-assembly in deep eutectic solvents, important to their application in industrial formulation.
Collapse
Affiliation(s)
- Lauren Matthews
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. and Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Silvia Ruscigno
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Sarah E Rogers
- ISIS Muon and Neutron Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Paul Bartlett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | - Robert Sochon
- GlaxoSmithKline, St George's Avenue, Weybridge, KT13 0DE, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
9
|
Heads or tails: Nanostructure and molecular orientations in organised erucamide surface layers. J Colloid Interface Sci 2021; 590:506-517. [PMID: 33567375 DOI: 10.1016/j.jcis.2021.01.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Despite the widespread industrial usage of erucamide as a slip additive to modify polymer surface properties, a controversy appears to have persisted regarding the nanostructure of erucamide surface layers, particularly the molecular orientation at the outermost layer. The erucamide nanostructure and molecular orientation, along with its surface coverage, hydrophobicity, and adhesive response, can be tuned by simply varying the erucamide concentration in the solution from which the spin coated layer is prepared. EXPERIMENTS Synchrotron X-ray reflectivity (XRR) allowed a comprehensive characterisation of the out-of-plane structural parameters (e.g. molecular packing and thickness) of the erucamide layers prepared via spin coating from nonaqueous solution on silica. Complementary Atomic Force Microscopy (AFM) imaging with high lateral resolution revealed localised in-plane structures. Contact angle measurements provided information on the wettability of erucamide-coated surfaces. Peak Force Quantitative Nanomechanical Mapping (QNM) allowed a correlation between the erucamide nanostructure with the surface nanomechanical properties (i.e. adhesive response). FINDINGS Our results reveal erucamide surface nanostructures on silica as patchy monolayers, isolated circular bilayers/rounded rectangle-like aggregates and overlapping plate-like multilayers as the erucamide concentration in the spin coating solution was varied. In all the cases, XRR and AFM results were consistent with the picture that the erucamide tails were oriented outwards. The QNM adhesion force mapping of all the observed morphologies also supported this molecular orientation at the outermost erucamide monolayer. The wettability study further confirmed this conclusion with the observed increase in the surface hydrophobicity and coverage upon increasing erucamide concentration, with the macroscopic water contact angle θ = 92.9° ± 2.9° at the highest erucamide concentration of 2 wt%.
Collapse
|
10
|
Onyeje C, Lavik E. Highlighting the usage of polymeric nanoparticles for the treatment of traumatic brain injury: A review study. Neurochem Int 2021; 147:105048. [PMID: 33901586 DOI: 10.1016/j.neuint.2021.105048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
There are very limited options for treating traumatic brain injury (TBI). Nanoparticles offer the potential of targeting specific cell types, and, potentially, crossing the BBB under the right conditions making them an area of active research for treating TBI. This review focuses on polymeric nanoparticles and the impact of their chemistry, size, and surface groups on their interactions with the vasculature and cells of the brain following injury. The vast majority of the work in the field focuses on acute injury, and when the work is looked at closely, it suggests that nanoparticles rely on interactions with vascular and immune cells to alter the environment of the brain. Nonetheless, there are promising results from a number of approaches that lead to behavioral improvements coupled with neuroprotection that offer promise for therapeutic outcomes. The majority of approaches have been tested immediately following injury. It is not entirely clear what impact these approaches will have in chronic TBI, but being able to modulate inflammation specifically may have a role both during and after the acute phase of injury.
Collapse
Affiliation(s)
- Chiad Onyeje
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA.
| |
Collapse
|
11
|
Luchini A, Corucci G, Chaithanya Batchu K, Laux V, Haertlein M, Cristiglio V, Fragneto G. Structural Characterization of Natural Yeast Phosphatidylcholine and Bacterial Phosphatidylglycerol Lipid Multilayers by Neutron Diffraction. Front Chem 2021; 9:628186. [PMID: 33968895 PMCID: PMC8104085 DOI: 10.3389/fchem.2021.628186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic and prokaryotic cell membranes are difficult to characterize directly with biophysical methods. Membrane model systems, that include fewer molecular species, are therefore often used to reproduce their fundamental chemical and physical properties. In this context, natural lipid mixtures directly extracted from cells are a valuable resource to produce advanced models of biological membranes for biophysical investigations and for the development of drug testing platforms. In this study we focused on single phospholipid classes, i.e. Pichia pastoris phosphatidylcholine (PC) and Escherichia coli phosphatidylglycerol (PG) lipids. These lipids were characterized by a different distribution of their respective acyl chain lengths and number of unsaturations. We produced both hydrogenous and deuterated lipid mixtures. Neutron diffraction experiments at different relative humidities were performed to characterize multilayers from these lipids and investigate the impact of the acyl chain composition on the structural organization. The novelty of this work resides in the use of natural extracts with a single class head-group and a mixture of chain compositions coming from yeast or bacterial cells. The characterization of the PC and PG multilayers showed that, as a consequence of the heterogeneity of their acyl chain composition, different lamellar phases are formed.
Collapse
Affiliation(s)
| | - Giacomo Corucci
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| | | | | | | | | | - Giovanna Fragneto
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| |
Collapse
|
12
|
Fujino Y, Nakamura R, Han HW, Yamashita I, Shimizu T, Shingubara S, Ito T. Electrochemical impedance spectroscopy study of liposome adsorption and rupture on self-assembled monolayer: Effect of surface charge. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study. J Membr Biol 2020; 253:205-219. [DOI: 10.1007/s00232-020-00117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
|
14
|
Fox LJ, Matthews L, Stockdale H, Pichai S, Snow T, Richardson RM, Briscoe WH. Structural changes in lipid mesophases due to intercalation of dendritic polymer nanoparticles: Swollen lamellae, suppressed curvature, and augmented structural disorder. Acta Biomater 2020; 104:198-209. [PMID: 31904557 DOI: 10.1016/j.actbio.2019.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
Understanding interactions between nanoparticles and model membranes is relevant to functional nano-composites and the fundamentals of nanotoxicity. In this study, the effect of polyamidoamine (PAMAM) dendrimers as model nanoparticles (NP) on the mesophase behaviour of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) has been investigated using high-pressure small-angle X-ray scattering (HP-SAXS). The pressure-temperature (p-T) diagrams for POPE mesophases in excess water were obtained in the absence and presence of G2 and G4 polyamidoamine (PAMAM) dendrimers (29 Å and 45 Å in diameter, respectively) at varying NP-lipid number ratio (ν = 0.0002-0.02) over the pressure range p = 1-3000 bar and temperature range T = 20-80 °C. The p-T phase diagram of POPE exhibited the Lβ, Lα and HII phases. Complete analysis of the phase diagrams, including the relative area pervaded by different phases, phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), the pressure-dependence of d-spacing (Δd/Δp), and the structural ordering in the mesophase as gauged by the Scherrer coherence length (L) permitted insights into the size- and concentration-dependent interactions between the dendrimers and the model membrane system. The addition of dendrimers changed the phase transition pressure and temperature and resulted in the emergence of highly swollen lamellar phases, dubbed Lβ-den and Lα-den. G4 PAMAM dendrimers at the highest concentration ν = 0.02 suppressed the formation of the HII phase within the temperature range studied, whereas the addition of G2 PAMAM dendrimers at the same concentration promoted an extended mixed lamellar region in which Lα and Lβ phases coexisted. STATEMENT OF SIGNIFICANCE: Using high pressure small angle X-ray scattering in the pressure range 1-3000 bar and temperature range 20-60 °C, we have studied interactions between PAMAM dendrimers (as model nanoparticles) and POPE lipid mesophases (as model membranes). We report the pressure-temperature phase diagrams for the dendrimer-lipid mesophases for the first time. We find that the dendrimers alter the phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), and the structural order in the mesophase. We interpret these unprecedented results in terms of the fluidity of the lipid membranes and the interactions between the dendrimers and the membranes. Our findings are of fundamental relevance to the field of nanotoxicity and functional nanomaterials that integrate nanoparticles and organized lipid structures.
Collapse
|
15
|
Interactions between PAMAM dendrimers and DOPC lipid multilayers: Membrane thinning and structural disorder. Biochim Biophys Acta Gen Subj 2020; 1865:129542. [PMID: 31987955 DOI: 10.1016/j.bbagen.2020.129542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Understanding the structure of hybrid nanoparticle-lipid multilayers is of fundamental importance to their bioanalytical applications and nanotoxicity, where nanoparticle-membrane interactions play an important role. Poly(amidoamine) (PAMAM) dendrimers are branched polymeric nanoparticles with potential biomedical applications due to precise tunability of their physicochemical properties. Here, the effect of PAMAM dendrimers (2.9-4.5 nm) with either a hydrophilic amine (NH2) or a hydrophobic C12 chain surface termination on the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayers has been studied for the first time. METHODS DOPC multilayers were created by the liposome-rupture method via drop-casting dendrimer-liposome dispersions with the dendrimers added at different concentrations and at three different stages. The multilayer structure was evaluated via the analysis of the synchrotron X-ray reflectivity (XRR) curves, obtaining the bilayer d-spacing, the coherence length from the Scherrer (Ls) analysis of the Bragg peaks, and the paracrystalline disorder parameter (g). RESULTS Dendrimer addition led to lipid bilayer thinning and more disordered multilayer structures. Larger hydrophobic dendrimers caused greater structural disruption to the multilayers compared to the smaller dendrimers. The smallest, positively charged dendrimers at their highest concentration caused the most pronounced bilayer thinning. The dendrimer-liposome mixing method also affected the multilayer structure due to different dendrimer aggregation involved. CONCLUSIONS These results show the complexity of the effect of dendrimer physicochemical properties and the addition method of dendrimers on the structure of mixed dendrimer-DOPC multilayers. GENERAL SIGNIFICANCE These insights are useful for fundamental understanding of nanotoxicity and future biomedical application of nanocomposite multilayer materials in which nanoparticles are added for enhanced properties and functionality.
Collapse
|
16
|
Luchini A, Delhom R, Cristiglio V, Knecht W, Wacklin-Knecht H, Fragneto G. Effect of ergosterol on the interlamellar spacing of deuterated yeast phospholipid multilayers. Chem Phys Lipids 2020; 227:104873. [PMID: 31926858 DOI: 10.1016/j.chemphyslip.2020.104873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Sterols regulate several physico-chemical properties of biological membranes that are considered to be linked to function. Ergosterol is the main sterol molecule found in the cell membranes of yeasts and other fungi. Like the cholesterol found in mammalian cells, ergosterol has been proposed to have an ordering and condensing effect on saturated phospholipid membranes. The effects of cholesterol have been investigated extensively and result in an increase in the membrane thickness and the lipid acyl chain order. Less information is available on the effects of ergosterol on phospholipid membranes. Neutron Diffraction (ND) was used to characterize the effect of ergosterol on lipid multilayers prepared with deuterated natural phospholipids extracted from the yeast Pichia pastoris. The data show that the effect of ergosterol on membranes prepared from the natural phospholipid extract rich in unsaturated acyl chains, differs from what has been observed previously in membranes rich in saturated phospholipids. In contrast to cholesterol in synthetic phospholipid membranes, the presence of ergosterol up to 30 mol % in yeast phospholipid membranes only slightly altered the multilayer structure. In particular, only a small decrease in the multilayer d-spacing was observed as function of increasing ergosterol concentrations. This result highlights the need for further investigation to elucidate the effects of ergosterol in biological lipid mixtures.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, UniversiteTsparken 5, 2100 Copenhagen, Denmark.
| | - Robin Delhom
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | | | - Wolfgang Knecht
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden; Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, P.O. Box 176, 22100 Lund, Sweden; Division of Physical Chemistry, Lund University, P.O.Box 124, 22100 Lund, Sweden
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue Des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
17
|
Elastic compliance as a tool to understand Hofmeister ion specific effect in DMPC liposomes. Biophys Chem 2019; 249:106148. [PMID: 30981138 DOI: 10.1016/j.bpc.2019.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/21/2022]
Abstract
Elastic compliance of DMPC liposomes with Hofmeister electrolytes: NaCl, Na2SO4, Na2CO3, NaNO3, KCl and MgCl2 studied using Quartz crystal microbalance with dissipation has been correlated with changes in their lamellar spacing from SAXS. The study suggests that hydration water of the different ions has an effect on the overall packing of the lipid bilayer that results as either a dehydrated liposome or where water smears the surface of the liposomes. Ratio of hydrogen bonded carbonyl and phosphate of polar region of the liposomes from ATR-FTIR spectroscopy, suggests that the polar groups are less hydrated due to the displacement of water by the electrolytes compared to pure DMPC and ordered in the sequence for cations as: K+ < Na+,Mg2+ and for anions as SO42- < CO32- < Cl- < NO3-. These findings show the usefulness of Elastic compliance for structural studies of composite phospholipid bilayers, lipid-protein complexes and lipid systems of reduced dimensionalities.
Collapse
|
18
|
Wlodek M, Kolasinska-Sojka M, Szuwarzynski M, Kereïche S, Kovacik L, Zhou L, Islas L, Warszynski P, Briscoe WH. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure. NANOSCALE 2018; 10:17965-17974. [PMID: 30226255 DOI: 10.1039/c8nr05877f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding interactions between functional nanoparticles and lipid bilayers is important to many emerging biomedical and bioanalytical applications. In this paper, we report incorporation of hydrophobic cadmium sulphide quantum dots (CdS QDs) into mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) liposomes, and into their supported bilayers (SLBs). The QDs were found embedded in the hydrophobic regions of the liposomes and the supported bilayers, which retained the QD fluorescent properties. In particular, we studied the effect of the QD size (2.7-5.4 nm in diameter) on the formation kinetics and structure of the supported POPC/POPE bilayers, monitored in situ using quartz crystal microbalance with dissipation monitoring (QCM-D), as the liposomes ruptured onto the substrate. The morphology of the obtained QD-lipid hybrid bilayers was studied using atomic force microscopy (AFM), and their structure by synchrotron X-ray reflectivity (XRR). It was shown that the incorporation of hydrophobic QDs promoted bilayer formation on the PEI cushion, evident from the rupture and fusion of the QD-endowed liposomes at a lower surface coverage compared to the liposomes without QDs. Furthermore, the degree of disruption in the supported bilayer structure caused by the QDs was found to be correlated with the QD size. Our results provide mechanistic insights into the kinetics of the rupturing and formation process of QD-endowed supported lipid bilayers via liposome fusion on polymer cushions.
Collapse
Affiliation(s)
- Magdalena Wlodek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
PAMAM dendrimer - cell membrane interactions. Adv Colloid Interface Sci 2018; 257:1-18. [PMID: 30008347 DOI: 10.1016/j.cis.2018.06.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
Abstract
PAMAM dendrimers have been conjectured for a wide range of biomedical applications due to their tuneable physicochemical properties. However, their application has been hindered by uncertainties in their cytotoxicity, which is influenced by dendrimer generation (i.e. size and surface group density), surface chemistry, and dosage, as well as cell specificity. In this review, biomedical applications of polyamidoamine (PAMAM) dendrimers and some related cytotoxicity studies are first outlined. Alongside these in vitro experiments, lipid membranes such as supported lipid bilayers (SLBs), liposomes, and Langmuir monolayers have been used as cell membrane models to study PAMAM dendrimer-membrane interactions. Related experimental and theoretical studies are summarized, and the physical insights from these studies are discussed to shed light on the fundamental understanding of PAMAM dendrimer-cell membrane interactions. We conclude with a summary of some questions that call for further investigations.
Collapse
|
20
|
Wąsik P, Redeker C, Dane TG, Seddon AM, Wu H, Briscoe WH. Hierarchical Surface Patterns upon Evaporation of a ZnO Nanofluid Droplet: Effect of Particle Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1645-1654. [PMID: 29293357 DOI: 10.1021/acs.langmuir.7b03854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface structures with tailored morphologies can be readily delivered by the evaporation-induced self-assembly process. It has been recently demonstrated that ZnO nanorods could undergo rapid chemical and morphological transformation into 3D complex structures of Zn(OH)2 nanofibers as a droplet of ZnO nanofluid dries on the substrate via a mechanism very different from that observed in the coffee ring effect. Here, we have investigated how the crystallinity and morphology of ZnO nanoparticles would affect the ultimate pattern formation. Three ZnO particles differing in size and shape were used, and their crystal structures were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their dispersions were prepared by sonication in a mixture of isobutylamine and cyclohexane. Residual surface patterns were created by drop casting a droplet of the nanofluid on a silicon substrate. The residual surface patterns were analyzed by scanning electron microscopy (SEM) and microfocus grazing incidence X-ray diffraction (μGIXRD). Nanofluid droplets of the in-house synthesized ZnO nanoparticles resulted in residual surface patterns consisting of Zn(OH)2 nanofibers. However, when commercially acquired ZnO powders composed of crystals with various shapes and sizes were used as the starting material, Zn(OH)2 fibers were found covered by ZnO crystal residues that did not fully undergo the dissolution and recrystallization process during evaporation. The difference in the solubility of ZnO nanoparticles was linked to the difference in their crystallinity, as assessed using the Scherrer equation analysis of their XRD Bragg peaks. Our results show that the morphology of the ultimate residual pattern from evaporation of ZnO nanofluids can be controlled by varying the crystallinity of the starting ZnO nanoparticles which affects the nanoparticle dissolution process during evaporation.
Collapse
Affiliation(s)
- Patryk Wąsik
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Christian Redeker
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Thomas G Dane
- The European Synchrotron (ESRF) 71, Avenue des Martyrs, Grenoble, France
| | | | - Hua Wu
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
21
|
Kang M, Tuteja M, Centrone A, Topgaard D, Leal C. Nanostructured Lipid-based Films for Substrate Mediated Applications in Biotechnology. ADVANCED FUNCTIONAL MATERIALS 2018; 28:10.1002/adfm.201704356. [PMID: 31080383 PMCID: PMC6508631 DOI: 10.1002/adfm.201704356] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amphiphilic in nature, lipids spontaneously self-assemble into a range of nanostructures in the presence of water. Among lipid self-assembled structures, liposomes and supported lipid bilayers have long held scientific interest for their main applications in drug delivery and plasma membrane models, respectively. In contrast, lipid-based multi-layered membranes on solid supports only recently begun drawing scientists' attention. New studies on lipid films show that the stacking of multiple bilayers on a solid support yields interestingly complex features to these systems. Namely, multiple layers exhibit cooperative structural and dynamic behavior. In addition, the materials enable compartmentalization, templating, and enhanced release of several molecules of interest. Importantly, supported lipid phases exhibit long-range periodic nano-scale order and orientation that is tunable in response to a changing environment. Herein, we summarize current and pertinent understanding of lipid-based film research focusing on how unique structural characteristics enable the emergence of new applications in biotechnology including label-free biosensors, macroscale drug delivery, and substrate-mediated gene delivery. Our very recent contributions to lipid-based films, focusing on the structural characterization at the meso, nano, and molecular-scale, using Small-Angle X-ray Scattering, Atomic Force Microscopy, Photothermal Induced Resonance, and Solid-State NMR will be also highlighted.
Collapse
Affiliation(s)
- Minjee Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mohit Tuteja
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- Maryland Nanocenter, University of Maryland, College Park, MD 20742, United States
| | - Andrea Centrone
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Wlodek M, Kolasinska-Sojka M, Wasilewska M, Bikondoa O, Briscoe WH, Warszynski P. Interfacial and structural characteristics of polyelectrolyte multilayers used as cushions for supported lipid bilayers. SOFT MATTER 2017; 13:7848-7855. [PMID: 28976532 DOI: 10.1039/c7sm01645j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The surface properties of polyelectrolyte multilayers (PEMs) obtained via sequential adsorption of oppositely charged polyions from their solutions and used as cushions for supported lipid bilayers were investigated. Five types of polyelectrolytes were used: cationic polyethyleneimine (PEI), poly(diallyldimethylammonium)chloride (PDADMAC), and poly-l-lysine hydrobromide (PLL); and anionic polysodium 4-styrenesulfonate (PSS) and poly-l-glutamic acid sodium (PGA). The wettability and surface free energy of the PEMs were determined by contact angle measurements using sessile drop analysis. Electrokinetic characterisation of the studied films was performed by streaming potential measurements of selected multilayers and the structure of the polyelectrolyte multilayer was characterized by synchrotron X-ray reflectometry. The examined physicochemical properties of the PEMs were correlated with the kinetics of the formation of supported lipid bilayers atop the PEM cushion.
Collapse
Affiliation(s)
- M Wlodek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
23
|
Bartenstein JE, Liu X, Lange K, Claesson PM, Briscoe WH. Polymersomes at the solid-liquid interface: Dynamic morphological transformation and lubrication. J Colloid Interface Sci 2017; 512:260-271. [PMID: 29073467 DOI: 10.1016/j.jcis.2017.10.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Polymersomes are hollow spheres self-assembled from amphiphilic block copolymers of certain molecular architecture. Whilst they have been widely studied for biomedical applications, relatively few studies have reported their interfacial properties. In particular, lubrication by polymersomes has not been previously reported. Here, interfacial properties of polymersomes self-assembled from poly(butadiene)-poly(ethylene oxide) (PBD-PEO; molecular weight 10,400 g mol-1) have been studied at both hydrophilic and hydrophobic surfaces. Their morphology at silica and mica surfaces was imaged with quantitative nanomechanical property mapping atomic force microscopy (QNM AFM), and friction and surface forces they mediate under confinement between two surfaces were studied using colloidal probe AFM (CP-AFM). We find that the polymersomes remained intact but adopted flattened conformation once adsorbed to mica, with a relatively low coverage. However, on silica these polymersomes were unstable, rupturing to form donut shaped residues or patchy bilayers. On a silica surface hydrophobized with a 19 nm polystyrene (PS) film, the polymer vesicles formed a more stable layer with a higher surface coverage as compared to the hydrophilic surface, and the interfacial structure also evolved over time. Moreover, friction was greatly reduced on hydrophobized silica surfaces in the presence of polymersomes, suggesting their potential as effective aqueous lubricants.
Collapse
Affiliation(s)
- Julia E Bartenstein
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Xiaoyan Liu
- Surface and Corrosion Science, Drottning Kristinas Väg 51, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Kathrin Lange
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Per M Claesson
- Surface and Corrosion Science, Drottning Kristinas Väg 51, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
24
|
Allen FJ, Griffin LR, Alloway RM, Gutfreund P, Lee SY, Truscott CL, Welbourn RJL, Wood MH, Clarke SM. An Anionic Surfactant on an Anionic Substrate: Monovalent Cation Binding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7881-7888. [PMID: 28731354 DOI: 10.1021/acs.langmuir.7b01837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neutron reflectometry has been used to study the adsorption of the anionic surfactant bis(2-ethylhexyl) sulfosuccinate cesium salt on the anionic surface of mica. Evidence of significant adsorption is reported. The adsorption is reversible and changes little with pH. This unexpected adsorption behavior of an anionic molecule on an anionic surface is discussed in terms of recent models for surfactant adsorption such as cation bridging, where adsorption has been reported with the divalent ion calcium but not previously observed with monovalent ions.
Collapse
Affiliation(s)
- Finian J Allen
- Department of Chemistry and BP Institute, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Lucy R Griffin
- Department of Chemistry and BP Institute, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Richard M Alloway
- Department of Chemistry and BP Institute, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | | | - Seung Yeon Lee
- Department of Chemistry and BP Institute, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Chris L Truscott
- Department of Chemistry and BP Institute, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Rebecca J L Welbourn
- ISIS Pulsed Neutron Facility, Harwell Science and Innovation Campus, STFC, Rutherford Appleton Laboratory , Didcot, Oxon OX11 0QX, United Kingdom
| | - Mary H Wood
- Department of Chemistry and BP Institute, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Stuart M Clarke
- Department of Chemistry and BP Institute, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
Briscoe WH. Aqueous boundary lubrication: Molecular mechanisms, design strategy, and terra incognita. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Beddoes CM, Berge J, Bartenstein JE, Lange K, Smith AJ, Heenan RK, Briscoe WH. Hydrophilic nanoparticles stabilising mesophase curvature at low concentration but disrupting mesophase order at higher concentrations. SOFT MATTER 2016; 12:6049-6057. [PMID: 27340807 DOI: 10.1039/c6sm00393a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using high pressure small angle X-ray scattering (HP-SAXS), we have studied monoolein (MO) mesophases at 18 wt% hydration in the presence of 10 nm silica nanoparticles (NPs) at NP-lipid number ratios (ν) of 1 × 10(-6), 1 × 10(-5) and 1 × 10(-4) over the pressure range 1-2700 bar and temperature range 20-60 °C. In the absence of the silica NPs, the pressure-temperature (p-T) phase diagram of monoolein exhibited inverse bicontinuous cubic gyroid (Q), lamellar alpha (Lα), and lamellar crystalline (Lc) phases. The addition of the NPs significantly altered the p-T phase diagram, changing the pressure (p) and the temperature (T) at which the transitions between these mesophases occurred. In particular, a strong NP concentration effect on the mesophase behaviour was observed. At low NP concentration, the p-T region pervaded by the Q phase and the Lα-Q mixture increased, and we attribute this behaviour to the NPs forming clusters at the mesophase domain boundaries, encouraging transition to the mesophase with a higher curvature. At high NP concentrations, the Q phase was no longer observed in the p-T phase diagram. Instead, it was dominated by the lamellar (L) phases until the transition to a fluid isotropic (FI) phase at 60 °C at low pressure. We speculate that NPs formed aggregates with a "chain of pearls" structure at the mesophase domain boundaries, hindering transitions to the mesophases with higher curvatures. These observations were supported by small angle neutron scattering (SANS) and scanning electron microscopy (SEM). Our results have implications to nanocomposite materials and nanoparticle cellular entry where the interactions between NPs and organised lipid structures are an important consideration.
Collapse
Affiliation(s)
- Charlotte M Beddoes
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. and Bristol Centre for Functional Nanomaterials, Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, UK
| | - Johanna Berge
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Julia E Bartenstein
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Kathrin Lange
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Andrew J Smith
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | | | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|